Question	Part	Sub Part		Mark	Comments
4	(a)	rait	nucleophilic addition M2 CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH	1 4	Attack by HCN loses M1 and M2 M2 not allowed independent of M1, but allow M1 for correct attack on C+ +C=O loses M2 M2 only allowed if correct carbon attacked allow minus charge on N i.e. :CN ⁻ allow C ₃ H ₇ in M3
			M4 for lp and arrow 2-hydroxy-2-methylpentan(e)nitrile	1	allow without – allow 2-hydroxy-2- methylpentanonitrile
4	(b)		Product from Q is a racemic mixture/ equal amounts of enantiomers racemic mixture is inactive or inactive explained Product from R is inactive (molecule) or has no chiral centre	1 1 1	if no reference to products then no marks; not Q is optically active or has a chiral centre etc
4	(c)	(i)	mark the three sections of Qu 4(c) separately R or CH ₃ CH ₂ COCH ₂ CH ₃	1	
4	(c)	(ii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	allow molecular formulae allow without brackets if brackets not shown, allow dot anywhere on radical or + anywhere on ion
4	(c)	(iii)	m/z = 43 or 71	1	

Question	Part	Sub Part		Mark	Question
5	(a)	(i)	propan(e)-1,2,3-triol or 1,2,3- propan(e)triol	1	not propyl ignore hyphen, commas
5	(a)	(ii)	soaps	1	allow anionic surfactant not cationic surfactant not detergents, not shampoos
5	(b)	(i)	(bio) <u>diesel</u>	1	Allow fuel for <u>diesel</u> engines not biofuel, not oils
5	(b)	(ii)	H_C=C	1	ignore anything else attached except any more H atoms.
5	(b)	(iii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	not allow equation doubled

Question	Part	Sub Part		Mark	Comments
		,,	H_{3} N $-C$ C $-COO$ C $+$		allow ⁺ NH ₃ — don't penalize position of + on NH ₃
6	(a)	(ii)	H ₂ N—C—COO CH(CH ₃) ₂	1	allow $-CO_2^-$ allow NH_2- allow C_3H_7
6	(a)	(iii)	H H ₃ N—C—COOH + (CH ₂) ₄ NH ₃	1	allow –CO ₂ H allow [†] NH ₃ – don't penalize position of + on NH ₃
6	(b)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	allow $-CO_2H$ allow NH_2- allow C_3H_7 allow as zwitterions if error in peptide link e.g. O H C C O N if twice, penalise both times not polymers if wrong amino acid in both can score Max 1

6	(c)	chromatography or electrophoresis	1	ignore qualification to chromatography

Question	Part	Sub Part			Mark	Comments
7	(a)		Α	H_3C — C — CH_3	1 1 	allow CH ₃ COCH ₃
			В	H_2C = CH - CH_2OH or H_2C = C CH_3	1	must show C=C Penalise sticks once per pair
7	(b)		С	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	1	T Chailse sticks office per pair
			D	H_3C CH_3 CH_3 CH_3 CH_3	1	NOT cyclopentane which is only C₅H₁₀ Penalise sticks once per pair
7	(c)		Е	CH ₃ CH ₂ COOCH ₃	1	Allow C ₂ H ₅ CO ₂ CH ₃
			F	CH ₃ COOCH ₂ CH ₃	1	Allow CH ₃ CO ₂ CH ₂ CH ₃ or CH ₃ CO ₂ C ₂ H ₅ Penalise sticks once per pair
7	(d)		G	$\begin{array}{c} \text{CHO} \\ \text{HCCH}_3 \\ \text{CH}_2\text{CH}_2\text{CH}_3 \end{array} \text{OR} \begin{array}{c} \text{CHO} \\ \text{HCCH}_3 \\ \text{CH}_2\text{CH}_3 \end{array} \text{OR} \begin{array}{c} \text{CH}_2\text{CHO} \\ \text{HCCH}_3 \\ \text{CH}_2\text{CH}_3 \end{array}$ $\text{allow C}_3\text{H}_7 \qquad \text{allow C}_2\text{H}_5$ $\text{Allow C}_2\text{H}_3 \\ \text{HCCOCH}_3 \\ \text{CH}_2\text{CH}_3 \end{array}$ $\text{allow C}_2\text{H}_5$	1	not C_5H_{11} nor C_4H_9 Penalise sticks once per pair

7	(e)	I	H CH ₃ CH ₂ NCH ₂ CH ₃	1	allow C₂H₅
		J	H CH ₃ NCH(CH ₃) ₂	1	NOT C ₃ H ₇ Penalise sticks once per pair

Question	Part	Sub Part		Mark	Comments
(8)	(a)	(i)	W 3	1	
			X 4	1	
			Y 2	1	
(8)	(a)	(ii)	$\begin{array}{c c} H & H \\ H & C \\ H & C \\ H & H \end{array}$	1	displayed formula shows ALL bonds
(8)	(b)	(i)	NO_{2}^{+} $HNO_{3} + 2H_{2}SO_{4} \rightarrow NO_{2}^{+} + 2HSO_{4}^{-} + H_{3}O^{+}$ OR $HNO_{3} + H_{2}SO_{4} \rightarrow NO_{2}^{+} + HSO_{4}^{-} + H_{2}O$	1	allow + anywhere can score in equation or use two equations via $H_2NO_3^+$
(8)	(b)	(ii)	electrophilic substitution $M1$ O_2N $O_$	3	Not Friedel Crafts M1 arrow from circle or within it to N or to + on N horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C1 M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure ignore base removing H in M3

8	(c)	(i)	H ₂ /Ni or H ₂ /Pt or Sn/HCl or Fe/HCl (conc or dil or neither) allow dil H ₂ SO ₄ ignore mention of NaOH $O_2N \longrightarrow NO_2 + 12[H] \rightarrow H_2N \longrightarrow NH_2 + 4H_2O$ Or $6H_2$	1	Not NaBH ₄ Not LiAlH ₄ Not Na/C ₂ H ₅ OH not conc H ₂ SO ₄ or any HNO ₃ allow $C_6H_4(NO_2)_2$ etc , allow NO ₂ — NH_2 — i.e. be lenient on structures, the mark is for balancing equ
8	(c)	(ii)	H O O IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2	allow –CONH- ignore [] _n as in polymer
8	(c)	(iii)	 M1 Kevlar is biodegradeable but polyalkenes not M2 Kevlar has polar bonds / is a (poly) amide / has peptide link M3 can be hydrolysed/attacked by nucleophiles/acids/bases/enzymes M4 polyalkenes non polar /has non-polar bonds 	1 1 1 1	allow Kevlar is more biodegradeable comment on structure of Kevlar comment on structure of polyalkenes but not just strong bonds

Question	Part	Sub Part		Mark	Comments
9	(a)		(nucleophilic) addition-elimination M2 M3 CH_3CH_2	4	minus on NH ₂ loses M1 M2 not allowed independent of M1, but allow M1 for correct attack on C+ +C=O loses M2
			C_2H_5 — H	1	only allow M4 after correct or very close M3 lose M4 for Cl ⁻ removing H ⁺ in mechanism, but ignore HCl as a product Not N-ethylpropaneamide
9	(b)		CH ₃ CN or ethan(e)nitrile or ethanonitrile for each step wrong or no reagent loses condition mark	1	not ethanitrile but allow correct formula with ethanitrile contradiction loses mark
			Step 1 Cl ₂ uv or above 300 °C Step 2 KCN	1	wrong or no reagent loses condition mark
			aq and alcoholic (both needed) Step 3 H ₂ /Ni or LiAlH ₄ or Na/C ₂ H ₅ OH	1	allow uv light / (sun)light / uv radiation not CN⁻ but mark on NOT HCN or KCN + acid, and this loses condition mark NOT NaBH₄ Sn/HCl (forms aldehyde!) ignore conditions

Q	Part	Sub Part	Marking Guidance	Mark	Comments
10	(a)	(i)	H H ₃ C—C—CH(CH ₃) ₂ must be branched and chiral Br	1	not allow C ₃ H ₇
			$\begin{array}{cccc} & & & & \text{CH}_3\\ & & & & \\ \text{or} & \text{BrCH}_2 - \text{C} - \text{CH}_2 \text{CH}_3 & \text{or} & \text{CH}_2 \text{Br} - \text{C} - \text{CH}_2 \text{CH}_3\\ & & \\ \text{H} & & \text{H} \end{array}$		allow C ₂ H ₅ bonded to C either way round
10		(a)	ii) elimination allow base – elimination	1	but penalise any other qualification
10	(a)	(iii)	Z-pent-2-ene or cis-pent-2-ene either Z or cis is necessary (allow Z-2-pentene or cis-2-pentene)	1	with or without brackets around Z with or without hyphens
10	(b)	(i)	С	1	
10	(b)	(ii)	A	1	
10	(b)	(iii)	В	1	
10	(b)	(iv)	D	1	
10	(c)		CH ₃ CH ₂ CH ₃ allow C ₂ H ₅ bonded via C or H CC—C— H H	1	must have both trailing bonds ignore brackets or n
			addition or radical or step or chain growth	1	QOL not additional

10	(d)	(i)	M1 H ₃ N ^{\$} H CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ Br M2 CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ H NH H M4 H NH NH NH NH NH NH NH NH NH	4	Allow SN1, i.e M2 first then attack of NH $_3$ on carbocation. Allow C $_2$ H $_5$ in M3 bonded either way Allow with or without NH $_3$ to remove H $^+$ in M4, but lose mark if Br $^-$ used. ignore δ + or δ – unless wrong + on central C instead of δ + loses M2
10 (d)	(ii)	excess NH ₃ ignore reflux	1	allow conc ammonia in sealed tube
10 (0	d)	(iii)	$\begin{array}{c} H \\ CH_{3}CH_{2}-C-CH_{2}CH_{3} \\ \\ N-H \\ CH_{3}CH_{2}-C-CH_{2}CH_{3} \\ \\ H \end{array}$ NOT $-C_{5}H_{11}$	1	Allow C ₂ H ₅ bonded either way
10 ((e)	(i)	CH ₃ CH ₃ —C—CH ₂ —NH ₂ CH ₃	1	
10	(e)	(ii)	CH ₃ CH ₃ —N—CH—CH ₃ CH ₃	1	NOT (C ₂ H ₅) ₂ NCH ₃ which is tertiary with 3 peaks but its spectrum has no doublet.

Chemistry - AQA GCE Mark Scheme

Q	Part	Sub	Marking Guidance	Mark	Comments
		Part			
11	(a)		chromatography (allow GLC TLC GC HPLC)	1	allow any qualification
11	(b)		5	1	
			Allow 320(.0) or 322(.0)	1	
11	(c)		Use of excess air/oxygen or high temperature (over 800 °C) or remove chlorine-containing compounds before incineration	1	
11	(d)	(i)	Si(CH ₃) ₄ allow SiC ₄ H ₁₂ allow displayed formula and do not penalise sticks	1	Not TMS
11	(d)	(ii)	3	1	