| Question | Part | Sub
Part | | Mark | Comments | |----------|------|-------------|---|-------|--| | 4 | (a) | rait | nucleophilic addition M2 CH ₃ CH ₂ CH ₂ | 1 4 | Attack by HCN loses M1 and M2 M2 not allowed independent of M1, but allow M1 for correct attack on C+ +C=O loses M2 M2 only allowed if correct carbon attacked allow minus charge on N i.e. :CN ⁻ allow C ₃ H ₇ in M3 | | | | | M4 for lp and arrow 2-hydroxy-2-methylpentan(e)nitrile | 1 | allow without –
allow 2-hydroxy-2-
methylpentanonitrile | | 4 | (b) | | Product from Q is a racemic mixture/ equal amounts of enantiomers racemic mixture is inactive or inactive explained Product from R is inactive (molecule) or has no chiral centre | 1 1 1 | if no reference to products then no marks; not Q is optically active or has a chiral centre etc | | 4 | (c) | (i) | mark the three sections of Qu 4(c) separately R or CH ₃ CH ₂ COCH ₂ CH ₃ | 1 | | | 4 | (c) | (ii) | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 | allow molecular formulae allow without brackets if brackets not shown, allow dot anywhere on radical or + anywhere on ion | | 4 | (c) | (iii) | m/z = 43 or 71 | 1 | | | Question | Part | Sub
Part | | Mark | Question | |----------|------|-------------|--|------|---| | 5 | (a) | (i) | propan(e)-1,2,3-triol or 1,2,3- propan(e)triol | 1 | not propyl ignore hyphen, commas | | 5 | (a) | (ii) | soaps | 1 | allow anionic surfactant
not cationic surfactant
not detergents, not shampoos | | 5 | (b) | (i) | (bio) <u>diesel</u> | 1 | Allow fuel for <u>diesel</u> engines not biofuel, not oils | | 5 | (b) | (ii) | H_C=C | 1 | ignore anything else attached except any more H atoms. | | 5 | (b) | (iii) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 | not allow equation doubled | | Question | Part | Sub
Part | | Mark | Comments | |----------|------|-------------|--|------|---| | | | ,, | H_{3} N $-C$ C $-COO$ C $+$ | | allow ⁺ NH ₃ — don't penalize position of + on NH ₃ | | 6 | (a) | (ii) | H ₂ N—C—COO

 CH(CH ₃) ₂ | 1 | allow $-CO_2^-$
allow NH_2-
allow C_3H_7 | | 6 | (a) | (iii) | H
H ₃ N—C—COOH
 +
(CH ₂) ₄ NH ₃ | 1 | allow –CO ₂ H
allow [†] NH ₃ –
don't penalize position of + on NH ₃ | | 6 | (b) | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 | allow $-CO_2H$ allow NH_2- allow C_3H_7 allow as zwitterions if error in peptide link e.g. O H C C O N if twice, penalise both times not polymers if wrong amino acid in both can score Max 1 | | 6 | (c) | chromatography or electrophoresis | 1 | ignore qualification to chromatography | |---|-----|-----------------------------------|---|--| | Question | Part | Sub
Part | | | Mark | Comments | |----------|------|-------------|---|--|--------------|---| | 7 | (a) | | Α | H_3C — C — CH_3 | 1
 1
 | allow CH ₃ COCH ₃ | | | | | В | H_2C = CH - CH_2OH or H_2C = C CH_3 | 1 | must show C=C Penalise sticks once per pair | | 7 | (b) | | С | CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ | 1 | T Chailse sticks office per pair | | | | | D | H_3C CH_3 CH_3 CH_3 CH_3 | 1 | NOT cyclopentane which is only C₅H₁₀ Penalise sticks once per pair | | 7 | (c) | | Е | CH ₃ CH ₂ COOCH ₃ | 1 | Allow C ₂ H ₅ CO ₂ CH ₃ | | | | | F | CH ₃ COOCH ₂ CH ₃ | 1 | Allow CH ₃ CO ₂ CH ₂ CH ₃ or CH ₃ CO ₂ C ₂ H ₅
Penalise sticks once per pair | | 7 | (d) | | G | $\begin{array}{c} \text{CHO} \\ \text{HCCH}_3 \\ \text{CH}_2\text{CH}_2\text{CH}_3 \end{array} \text{OR} \begin{array}{c} \text{CHO} \\ \text{HCCH}_3 \\ \text{CH}_2\text{CH}_3 \end{array} \text{OR} \begin{array}{c} \text{CH}_2\text{CHO} \\ \text{HCCH}_3 \\ \text{CH}_2\text{CH}_3 \end{array}$ $\text{allow C}_3\text{H}_7 \qquad \text{allow C}_2\text{H}_5$ $\text{Allow C}_2\text{H}_3 \\ \text{HCCOCH}_3 \\ \text{CH}_2\text{CH}_3 \end{array}$ $\text{allow C}_2\text{H}_5$ | 1 | not C_5H_{11} nor C_4H_9 Penalise sticks once per pair | | 7 | (e) | I | H

CH ₃ CH ₂ NCH ₂ CH ₃ | 1 | allow C₂H₅ | |---|-----|---|--|---|--| | | | J | H

CH ₃ NCH(CH ₃) ₂ | 1 | NOT C ₃ H ₇
Penalise sticks once per pair | | Question | Part | Sub
Part | | Mark | Comments | |----------|------|-------------|---|------|--| | (8) | (a) | (i) | W 3 | 1 | | | | | | X 4 | 1 | | | | | | Y 2 | 1 | | | (8) | (a) | (ii) | $\begin{array}{c c} H & H \\ H & C \\ H & C \\ H & H \end{array}$ | 1 | displayed formula shows ALL bonds | | (8) | (b) | (i) | NO_{2}^{+} $HNO_{3} + 2H_{2}SO_{4} \rightarrow NO_{2}^{+} + 2HSO_{4}^{-} + H_{3}O^{+}$ OR $HNO_{3} + H_{2}SO_{4} \rightarrow NO_{2}^{+} + HSO_{4}^{-} + H_{2}O$ | 1 | allow + anywhere can score in equation or use two equations via $H_2NO_3^+$ | | (8) | (b) | (ii) | electrophilic substitution $M1$ O_2N $O_$ | 3 | Not Friedel Crafts M1 arrow from circle or within it to N or to + on N horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C1 M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure ignore base removing H in M3 | | 8 | (c) | (i) | H ₂ /Ni or H ₂ /Pt or Sn/HCl or Fe/HCl (conc or dil or neither) allow dil H ₂ SO ₄ ignore mention of NaOH $O_2N \longrightarrow NO_2 + 12[H] \rightarrow H_2N \longrightarrow NH_2 + 4H_2O$ Or $6H_2$ | 1 | Not NaBH ₄ Not LiAlH ₄ Not Na/C ₂ H ₅ OH not conc H ₂ SO ₄ or any HNO ₃ allow $C_6H_4(NO_2)_2$ etc , allow NO ₂ — NH_2 — i.e. be lenient on structures, the mark is for balancing equ | |---|-----|-------|---|------------------|---| | 8 | (c) | (ii) | H O O IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 | allow –CONH- ignore [] _n as in polymer | | 8 | (c) | (iii) | M1 Kevlar is biodegradeable but polyalkenes not M2 Kevlar has polar bonds / is a (poly) amide / has peptide link M3 can be hydrolysed/attacked by nucleophiles/acids/bases/enzymes M4 polyalkenes non polar /has non-polar bonds | 1
1
1
1 | allow Kevlar is more biodegradeable comment on structure of Kevlar comment on structure of polyalkenes but not just strong bonds | | Question | Part | Sub
Part | | Mark | Comments | |----------|------|-------------|---|------|--| | 9 | (a) | | (nucleophilic) addition-elimination M2 M3 CH_3CH_2 | 4 | minus on NH ₂ loses M1 M2 not allowed independent of M1, but allow M1 for correct attack on C+ +C=O loses M2 | | | | | C_2H_5 — H | 1 | only allow M4 after correct or very close M3 lose M4 for Cl ⁻ removing H ⁺ in mechanism, but ignore HCl as a product Not N-ethylpropaneamide | | 9 | (b) | | CH ₃ CN or ethan(e)nitrile or ethanonitrile for each step wrong or no reagent loses condition mark | 1 | not ethanitrile
but allow correct formula with
ethanitrile
contradiction loses mark | | | | | Step 1 Cl ₂ uv or above 300 °C Step 2 KCN | 1 | wrong or no reagent loses condition mark | | | | | aq and alcoholic (both needed) Step 3 H ₂ /Ni or LiAlH ₄ or Na/C ₂ H ₅ OH | 1 | allow uv light / (sun)light / uv radiation not CN⁻ but mark on NOT HCN or KCN + acid, and this loses condition mark NOT NaBH₄ Sn/HCl (forms aldehyde!) ignore conditions | | Q | Part | Sub
Part | Marking Guidance | Mark | Comments | |----|------|-------------|---|------|--| | 10 | (a) | (i) | H
H ₃ C—C—CH(CH ₃) ₂ must be branched and chiral
Br | 1 | not allow C ₃ H ₇ | | | | | $\begin{array}{cccc} & & & & \text{CH}_3\\ & & & & \\ \text{or} & \text{BrCH}_2 - \text{C} - \text{CH}_2 \text{CH}_3 & \text{or} & \text{CH}_2 \text{Br} - \text{C} - \text{CH}_2 \text{CH}_3\\ & & \\ \text{H} & & \text{H} \end{array}$ | | allow C ₂ H ₅ bonded to C either way round | | 10 | | (a) | ii) elimination allow base – elimination | 1 | but penalise any other qualification | | 10 | (a) | (iii) | Z-pent-2-ene or cis-pent-2-ene either Z or cis is necessary (allow Z-2-pentene or cis-2-pentene) | 1 | with or without brackets around Z with or without hyphens | | 10 | (b) | (i) | С | 1 | | | 10 | (b) | (ii) | A | 1 | | | 10 | (b) | (iii) | В | 1 | | | 10 | (b) | (iv) | D | 1 | | | 10 | (c) | | CH ₃ CH ₂ CH ₃ allow C ₂ H ₅ bonded via C or H CC—C— H H | 1 | must have both trailing bonds ignore brackets or n | | | | | addition or radical or step or chain growth | 1 | QOL not additional | | 10 | (d) | (i) | M1 H ₃ N ^{\$} H CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ Br M2 CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ H NH H M4 H NH NH NH NH NH NH NH NH NH | 4 | Allow SN1, i.e M2 first then attack of NH $_3$ on carbocation. Allow C $_2$ H $_5$ in M3 bonded either way Allow with or without NH $_3$ to remove H $^+$ in M4, but lose mark if Br $^-$ used. ignore δ + or δ – unless wrong + on central C instead of δ + loses M2 | |-------|-----|-------|---|---|---| | 10 (| d) | (ii) | excess NH ₃ ignore reflux | 1 | allow conc ammonia in sealed tube | | 10 (0 | d) | (iii) | $\begin{array}{c} H \\ CH_{3}CH_{2}-C-CH_{2}CH_{3} \\ \\ N-H \\ CH_{3}CH_{2}-C-CH_{2}CH_{3} \\ \\ H \end{array}$ NOT $-C_{5}H_{11}$ | 1 | Allow C ₂ H ₅ bonded either way | | 10 ((| e) | (i) | CH ₃
CH ₃ —C—CH ₂ —NH ₂
CH ₃ | 1 | | | 10 | (e) | (ii) | CH ₃
CH ₃ —N—CH—CH ₃
CH ₃ | 1 | NOT (C ₂ H ₅) ₂ NCH ₃ which is tertiary with 3 peaks but its spectrum has no doublet. | Chemistry - AQA GCE Mark Scheme | Q | Part | Sub | Marking Guidance | Mark | Comments | |----|------|------|---|------|-------------------------| | | | Part | | | | | 11 | (a) | | chromatography (allow GLC TLC GC HPLC) | 1 | allow any qualification | | 11 | (b) | | 5 | 1 | | | | | | Allow 320(.0) or 322(.0) | 1 | | | 11 | (c) | | Use of excess air/oxygen or high temperature (over 800 °C) or remove chlorine-containing compounds before incineration | 1 | | | 11 | (d) | (i) | Si(CH ₃) ₄ allow SiC ₄ H ₁₂ allow displayed formula and do not penalise sticks | 1 | Not TMS | | 11 | (d) | (ii) | 3 | 1 | |