Section A (multiple choice)

Question 1: N/A

Question Number	Correct Answer	Mark
2	С	1
Question	Correct Answer	Mark
Number		
3	В	1
Question	Correct Answer	Mark
Number		
4	C	1
Question	Correct Answer	Mark
Number		
5	В	1
Question	Correct Answer	Mark
Number		
6	A	1
Question	Correct Answer	Mark
Number		
7	D	1

Question 8: N/A

Question Number	Correct Answer	Mark
9 (a)	C	1

Question	Correct Answer	Mark
Number		
9 (b)	A	1

I

Question Number	Correct Answer	Mark
10	D	1

Section B

Question Number	Acceptable Answers	Reject	Mark
11 (a) (i)	Electrophilic substitution (any order)		1

Question Number	Acceptable Answers	Reject	Mark
	$ Cl_3 + CH_3CH(Br)CH_2CH_3 \rightarrow A Cl_3Br^- + CH_3C^+HCH_2CH_3$	AlCl ₄	4
	ALLOW $CH_3CH(Br)CH_2CH_3 \rightarrow Br^- + CH_3C^+HCH_2CH_3$ Ignore position of the + for this mark		
	Ignore curly arrows in this equation (1)		
	CH ₃		
	Electron pair (curly arrow) from ring to positively charged second carbon of carbocation (1)		
	Structure of intermediate must include positive sign (1)		
	Electron pair from C-H bond reforms delocalized ring (1)		

Question Number	Acceptable Answers	Reject	Mark
(b)	Advantage Graphite catalyst easier to remove / separate / can be filtered off (from reaction mixture) / graphite can be re-used (1) Justification AlCl ₃ is soluble or graphite is insoluble /different state / different phase	Just graphite is a heterogeneous catalyst	2
	OR Graphite can be re-used (1)		
	Mark independently		

Question Number	Acceptable Answers		Reject	Mark
(c) (i)	(Conc) nitric acid	(1)		2
	(Conc) sulfuric acid	(1)		
	penalise dilute once only			

Question Number	Acceptable Answers		Reject	Mark
(c) (ii) (reater electron density in ring / ring is activated / more susceptible to electrophilic attack Due to electron releasing / donating methyl	(1)	Just more susceptible to attack	2
	groups	(1)		

Question Number	Acceptable Answers	Reject	Mark
(c) (iii) R	eduction ALLOW redox	Hydrogenation	1

Question	Acceptable Answers		Reject	Mark
Number				
(c) (iv) N	NaNO ₂ / sodium nitrite / sodium nitrate(III) &		HNO ₃	5
	HCl (any strong acid)	(1)		
	Temp 0-10°C / less than 10°C / any quoted			
	temperature between 0 -10°C / in ice bath	(1)		
	$C_6H_3(CH_3)_2NH_2 + HNO_2 + HCl \rightarrow C_6H_3(CH_3)_2N_2^+C$:[- +		
	2H ₂ O	(1)		
	Add phenol dissolved in alkali	(1)		
	(6.11 (611) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	$(C_6H_3(CH_3)_2N_2^+Cl^- + C_6H_5OH) \rightarrow C_6H_3(CH_3)_2N_2C_5H_3(CH_3)_2N_2C_5H_3(CH_3)_2N_2C_5H_3(CH_3)_2N_2C_5H_3(CH_3)_2N_2C_5H_3(CH_3)_2N_2C_5H_3(CH_3)_2N_2C_5H_3(CH_3)_2N_$	H₄OH		
	+ (HCl) (1)			
	Mark given for correct organic product			
	Allow correct organic product shown as -0			
	instead of -OH			
	Manufacture de manufacture			
	Mark independently			

Question Number	Acceptable Answers	Reject	Mark
12 (b) (ii)	Mix organic solvent and oil-water mixture in a separating funnel then separate (1) Distil / rotary evaporate (to separate clove oil from organic solvent) (1) Add (anhydrous)CaCl ₂ / (anhydrous) MgSO ₄ / (anhydrous) Na ₂ SO ₄ / silica gel / calcium oxide to clove oil, (then filter / decant) (1) ALLOW name or formula of drying agent (Second and third marks in either order) OR	(Anhydrous) CuSO ₄ NaOH, sodium carbonate, sodium hydrogencarbonate, calcium carbonate	3
	Add (saturated solution) of NaCl / sodium salt (1)		
	Separate in a separating funnel (1)		
	Add named drying agent to clove oil, (then filter / decant) (1)		

Question Number	Acceptable Answers	Reject	Mark
12 (c)	Choice with justification (1 e.g. 'yes it's reasonable as clove oil may be in use at harmful /toxic levels so we need to identify what that level is') Yes because it's toxic	1
	'no as clove oil has been in use for many years in many ways so tests on animals not necessary to confirm it's safe to use at current levels' / no, as humans would have to consume large amounts	No, because of objections to animal testing in general	

Question Number	Acceptable Answers	Reject	Mark
12 (d)*	4 clear justified comparisons - 1 mark each ScCO ₂		5
	oil obtained seems purer (as colour closely matches that of eugenol)	produces pale yellow	
	requires no further purification, (others use solvent extraction)	Just no organic	
	greater yield per hour	Only two hours /	
	yield 15.3g per 100g of buds	shorter time than other methods Just higher percentage yield	
	no organic solvent (because it is chlorinated) and so environmental problems / harmful / damage ozone layer	Just no organic solvent	
	requires high pressure so likely to be expensive / requires specialist equipment		
	Steam distillation steam distillation can be done using standard lab equipment /does not require high pressures		
	yield only 6.1g / 6.2g per 100g of buds	Higher yield than	
	Steam gives the least yield per hour	soxhlet	
	Soxhlet produces greater yield of oil but has a smaller percentage of eugenol /eugenol ethanoate		
	yield 16.8g per 100g of buds		
	(takes longer) but does not require high pressures		
	uses organic solvent (because it is chlorinated) and so environmental problems / harmful / damage ozone layer		
	Oil obtained seems least pure		
	Synthetic route has several steps, each with a low yield clove buds are renewable but materials in synthesis are not / materials in synthesis likely to		
	be obtained from oil (1)	Cost of chemicals Yield is 35 %	

Question	Correct Answer	Reject	Mark
Number			
13 (a)	В		1

Question Number	Correct Answer	Reject	Mark
13 (b)	В		1
		15	
Question	Correct Answer	Reject	Mark
Number 14	D		1
14	l D		1
Question	Correct Answer	Reject	Mark
Number			
15	D		1
Question	Correct Answer	Reject	Mark
Number	<u> </u>		4
16 (a)	C		1
Question	Correct Answer	Reject	Mark
Number		,	
16 (b)	D		1
Question	Correct Answer	Reject	Mark
Number			-
17	В		1
Question	Correct Answer	Reject	Mark
Number	Correct / triswer	Kejece	Tidik
18	D		1
Question	Correct Answer	Reject	Mark
Number			
19	C		1

Question Number	Acceptable Answers	Reject	Mark
20 (a)	Orange/yellow and precipitate/ppt or solid or crystals	Any other colour alone or in combination,	1
	ALLOW orange-red or red-orange for colour	e.g.red	

Question	Acceptable Answers	Reject	Mark
Number 20(b)	eat with) Benedict's/Fehling's (solution) (1)		3
	Ketone/X would remain blue/no change/no reaction		
	Aldehyde/Y would form red/brown and ppt/Cu ₂ O (1	Just orange	
	ALLOW combinations of red or brown with orange		
	OR		
	(Heat with) Tollens' Reagent/ammoniacal silver nitrate (1)	
	Ketone/X remains colourless/no change/no reaction		
	Aldehyde/Y forms a silver mirror or black/grey precipitate/Ag/silver (1		
	OR		
	(Heat with) acidified dichromate((VI)) (ions) (1	.)	
	Ketone/X remains orange/no change/no reaction (1	.)	
	Aldehyde/Y goes green/blue (1 ALLOW <i>answer with acidified or alkaline KMnO</i> ₄	Ppt	
	Ketone/X remains purple/pink/no change/no reactio		
	Aldehyde/Y goes colourless (with acid)/goes green (with alkali)	Just clear	
	Near miss on reagent (e.g. silver nitrate not ammoniacal silver nitrate) observations can score 2	2	
	ALLOW iodoform test with ketone identified (since > can only be butanone)		
	(Aqueous) sodium hydroxide and iodine (1	1)	
	Ketone/X forms yellow precipitate/solid/crystals (1)	
	Aldehyde/Y no change/no reaction (1	L)	

Question Number	Acceptable Answers	Reject	Mark
20(c)(i)	Both CH ₃ CH ₂ CH ₂ CHO And (CH ₃) ₂ CHCHO	COH unless shown correctly in a displayed or skeletal formula	1
	ACCEPT displayed or skeletal formulae if structural formulae not given		

Question Number	Acceptable Answers	Reject	Mark
20(c)(ii)	Recrystallization	Just crystallization	1
	IGNORE solvent	-	

Question Number	Acceptable Answers	Reject	Mark
20(c)(iii)	Measure melting temperature / point (1)	Just boiling temperature	2
	Compare with literature/database / known value (1)		
	Second mark can only be awarded if first mark scored		

Question Number	Acceptable Answers		Reject	Mark
21(a)	Hazard – methanol/alcohol is flammable IGNORE flammability of vegetable/diesel oils	(1)	Just volatile	4
	Precaution – use electrical heating source/water /avoid naked flames	bath (1)		
	OR			
	Hazard – methanol/alcohol is toxic	(1)	Just dangerous /harmful	
	Precaution – Use in well-ventilated area/fume cupboard/store away from children/wear gloves	(1)		
	OR			
	Hazard – NaOH/reaction mixture is corrosive /burns (the skin)/damages the eyes IGNORE references to (strong) alkali(ne) Precaution – wear gloves/goggles	(1)	Just irritant	
	ALLOW any 2 hazards but the precaution must be associated with the appropriate hazard	е		
	If the Hazard is not clearly identified but the precaution is appropriate then allow one mark, e. "Use of flammable substances so avoid naked flames" = (1) mark	.g.		

Question Number	Acceptable Answers	Reject	Mark
21(b)	Any two from:		2
	Reuses/reduces waste (vegetable) oil/ lessens need to dispose of (vegetable) oil (1)		
	Could lessen use of (non-renewable/non-sustainable) crude oil/fossil fuels OR	Just methanol is renewable	
	vegetable oil/biodiesel/reactants renewable/ sustainable (1)		
	Plants grown for vegetable oil could offset some CO ₂ emissions (1)	Just carbon neutral/just reduces carbon footprint	
	IGNORE references to transport/temperature/ energy savings cost/profit/high yield/ biodegradability/greenhouse gases		

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	Sodium/potassium dichromate((VI))/potassium manganate ((VII))/Na ₂ Cr ₂ O ₇ /K ₂ Cr ₂ O ₇ /KMnO ₄	Just Cr ₂ O ₇ ²⁻ /MnO ₄ -	1
	IGNORE references to acid		

Question Number	Acceptable Answers		Reject	Mark
22(a)(ii)	(Heat under) reflux Use excess/sufficient oxidizing agent/reagent named in (a)(i), even if incorrect IGNORE references to (excess) acid Stand alone marks	(1)		2

Question Number	Acceptable Answers	Reject	Mark
	CH3CH2CN/C2H5CN (1)	Hydroxynitriles	3
	ACCEPT displayed or skeletal formulae		
	$CH_3CH_2CN + H^+ + 2H_2O \rightarrow CH_3CH_2COOH + NH_4^+$		
	OR		
	$CH_3CH_2CN + HCI + 2H_2O \rightarrow CH_3CH_2COOH + NH_4CI$ (2)		
	If equation is incorrect then presence of H ⁺ or acid in equation/or above arrow and water on LHS scores (1) Mark cq on formula of nitrile		
	ALLOW one mark for the following equation without H^+ . $CH_3CH_2CN + 2H_2O \rightarrow CH_3CH_2COOH + NH_3$		
	ALLOW two marks for either of the following with H^+ above the arrow $CH_3CH_2CN + 2H_2O \rightarrow CH_3CH_2COOH + NH_3$ $CH_3CH_2CN + 2H_2O \rightarrow CH_3CH_2COOH + NH_4^+$		
	ALLOW answers for alkaline hydrolysis followed by acidification $CH_3CH_2CN + OH^- + H_2O \rightarrow CH_3CH_2COO^- + NH_3$ (1)		
	Then $CH_3CH_2COO^- + H^+ \rightarrow CH_3CH_2COOH$ (1)		
	If propanamide, $CH_3CH_2CONH_2$ is given initially then ALLOW the two equation marks for the hydrolysis $CH_3CH_2\ CONH_2\ +\ H^+\ +\ H_2O\ \to\ CH_3CH_2COOH\ +\ NH_4^+$		
	If no acid is used then only one mark $CH_3CH_2 CONH_2 + H_2O \rightarrow CH_3CH_2COOH + NH_3$		

Question Number	Acceptable Answers		Reject	Mark
22(b)	Reagent - Propanoyl chloride/CH ₃ CH ₂ COCl	(1)	Propyl chloride	3
	Any two from:			
	C-Cl bond is weaker (than C- 0)	(1)		
	Cl ⁻ /chloride (ion) is a better leaving group	(1)		
	Carbonyl carbon is more positive/more $\delta + / more$ attractive to nucleophiles	(1)	Just Cl is more electronegative	
	OR			
	Reagent - Propanoic anhydride/(CH ₃ CH ₂ CO) ₂ O	(1)		
	CH₃COO [−] /propanoate (ion) is a better leaving g	roup (1)		
	Carbonyl carbon is more positive/more $\delta + / more \ attractive$ to nucleophiles	(1)		
	IGNORE references to eversible/equilibrium/ catalysts IGNORE bond polarity			

Question Number	Acceptable Answers	Reject	Mark
22 (c)(i)	Radio waves/radio frequency	Just radio	1

Question Number	Acceptable Answers		Reject	Mark
(c)(ii) A	ny two from:			2
	Protons/nuclei/they have a property called spin/ have a magnetic moment/ have a magnetic field/ are aligned with the external magnetic field	(1)	starts to spin just dipole moment	
	which flips/changes align against the external magnetic field (when radiation is absorbed)	(1) (1)	polarity flips any reference to electrons or molecules	

Question Number	Acceptable Answers		Reject	Mark
(c)(iii)	Quartet ALLOW quadruplet/indication of four (peaks)	(1)		2
	Value from 0.1 to 1.9 (ppm) inclusive ACCEPT any range within the above range	(1)		