

GCE A LEVEL MARKING SCHEME

SUMMER 2017

A LEVEL (NEW) CHEMISTRY - UNIT 4 1410U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Overtic	Maukina dataila			Marks a	available		
Questic	on Marking details	AO1	AO2	AO3	Total	Maths	Prac
1.	Reagent Observation						
	iron(III) chloride purple coloration / solution	2			2		2
	sodium hydroxide no observation / change						
2.	$C_6H_8O_3$		1		1		
3.	+ Na ₂ CO ₃ accept C ₆ H ₅ ONa + NaHCO ₃		1		1		
4.	sodium tetrahydridoborate(III) / sodium borohydride / NaBH ₄	1			1		1
5.	total relative peak area = 36 + 18 + 13 = 67 % 1,3-dimethylbenzene = 18 × 100 / 67 = 26.87 = 27		1		1	1	
6.	1-propyl ethanoate (accept propyl ethanoate)		1		1		

	Quest	tion	Marking details			Marks a	vailable	able		
	Ques	liOii	Marking details	AO1	AO2	AO3	Total	Maths	Prac	
7.			CH _x		1		1			
8.			 A nitric(III) acid / HNO₂ / sodium nitrate(III) and hydrochloric acid / NaNO₂ and HCI (1) B acidified dichromate / Cr₂O₇²⁻ and H⁺ (1) 	2					2	
			Section A total	5	5	0	10	1	5	

Section B

	0	-41		Mauking dataila			Marks a	vailable		
	Ques	stion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
9.	(a)	(i)		sulfur oxide dichloride / thionyl chloride / SOCl ₂ phosphorus(III) chloride / PCl ₃ phosphorus(V) chloride PCl ₅	1			1		1
		(ii)		it does not absorb in the visible region	1			1		
		(iii)		loss of 191 – 91 / 100 (1)						
				could be $(C_2H_5)_2N$ —C=O which has M_r of 29 + 29 + 14 + 28 = 100 (1)			2	2		
				accept C ₅ H ₁₀ NO						
	(b)	(i)		alkaline potassium manganate(VII) solution / MnO ₄ ⁻ + OH ⁻	1			1		1
		(ii)		as the reaction is carried out in alkaline solution the salt of the acid rather than the acid itself is produced			1	1		1
	(c)	(i)		*MH ₂ 0000"		1		1		
		(ii)		the ester contains a basic —NH ₂ group which can accept a proton		1		1		
		(iii)	I	water is produced as during the esterification reaction / an aqueous solution of sodium carbonate has been added		1		1		1
			II	electrically heated / hot water bath			1	1		1

Oug	stion	Marking details			Marks a	vailable	е		
Que	Stion	Warking details	AO1	AO2	AO3	Total	Maths	Prac	
(d)	(i)	2.0×10^{-5}		1		1	1		
	(ii)	as BA is produced it dissolves preferentially in the hexane (1) this removes BA from the reaction and moves the position of equilibrium to the right (1) 2-aminobenzoic acid remains largely in the aqueous alcohol mixture (1)			3	3		3	
		Question 9 total	3	4	7	14	1	8	

	0	otion	Mouking details			Marks a	vailable		
	Que	stion	Marking details	A01	AO2	AO3	Total	Maths	Prac
10.	(a)	(i)	O _Z N — NH _Z (1)						
			OH (1)		2		2		
		(ii)	the wavelength of the light absorbed increases as the pH increases; in the visible spectrum, violet has the shortest wavelength and this increases as the colour moves towards red			1	1		
		(iii)	$f = c / \lambda$ $f = 3.00 \times 10^8 / 385 \times 10^{-9}$ (1) $f = 7.79 \times 10^{14}$ (1)	1	1		2	2	
		(iv)	$E = hf$ $E = 6.63 \times 10^{-34} \times 7.79 \times 10^{14} \text{ (1)}$ $E = 5.16 \times 10^{-19} \text{ (1)}$ $E = 5.16 \times 10^{-19} \times 6.02 \times 10^{23} = 310684 \text{ J mol}^{-1} = 310.68 \text{ kJ mol}^{-1}$					1	
			311 (1) ecf from part (ii)		3		3	1	

Ques	etion	Marking details			Marks a	vailable		
Ques	StiOii	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(b)	(i)	tin (or iron) and concentrated hydrochloric acid	1			1		1
	(ii)	there are two signals of equal size / area (1) the 4 aromatic protons are in identical environments and give singlet / no splitting (1) the 4 NH ₂ protons are in identical environments and give singlet / no splitting (1)			3	3		
	(iii)	н³и— Соо_ин ₊		1		1		
	(iv)	-0.2. H		1		1		
		Question 10 tota	2	8	4	14	4	1

	Oug	stion	Marking details			Marks a	vailable		
			Marking details	AO1	AO2	AO3	Total	Maths	Prac
11.	(a)	(i)	$\frac{c}{cH_{s}} = \frac{c}{cH_{s}} = \frac{c}$						
			nucleophilic addition (1) curly arrows (1) partial / full charges (1)	3			3		
		(ii)	incomplete extraction by ethoxyethane (1) incomplete distillation / decomposition of product (1)			2	2		2
		(iii)	moles of propanone used = 17.4 / 58.06 = 0.300 (1)						
			1:1 molar ratio \Rightarrow 0.300 mol of 2-hydroxy-2-methylpropanenitrile						
			mass of 2-hydroxy-2-methylpropanenitrile = 0.300×85.07 = 25.5 g (1)						
			percentage yield = 18.6 × 100 / 25.5 = 73 % (1)		3		3	2	
		(iv)	- H CH, - H CH, -		1		1		

Questio	on	Marking details			Marks a	vailable		
	<u> </u>	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(b)		balancing i.e. n monomer units and nH ₂ O molecules on product side (1)		1	1	2		
(c)		in condensation polymerisation a small molecule e.g. water is lost; this does not occur with addition polymerisation accept alternatives e.g. different numbers of monomer types, functional groups, atom economy must refer to both types of polymerisation	1			1		
(d)	(i)	surround the flask with a cold water bath	1			1		1
	(ii)	1 mol = 24500 cm ³ of hydrogen from 2 mol of the alcohol 184 cm ³ from 184 × 2 / 24500 = 0.015 mol of the alcohol (1) $M_r = 0.900 / 0.015 = 60$ (1)		2		2	1	2
	(iii)	ecf possible from incorrect M_r in part (ii)		1		1		1
		Question 11 total	5	8	3	16	3	6

	Question	Marking details			Marks a	vailable		
	Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
12.	(a)	Indicative content 65.2 % of carbon and M_r 184 ' M_r ' of the carbon content is 65.2 × 184 / 100 = 120 therefore must be 10 carbon atoms 26.1 % of oxygen and M_r 184						
		${}^{\circ}M_{r}{}^{\circ}$ of the oxygen content is 26.1 × 184 / 100 = 48 therefore must be 3 oxygen atoms						
		remaining mass 16 therefore must be 16 hydrogen atoms $\Rightarrow \text{molecular formula is } C_{10}H_{16}O_3$						
		straight chain, double bond between carbons 2 and 3 and an <i>E</i> -isomer $\mathbf{c} - \mathbf{c} - \mathbf{c}$						
		2,4-DNP derivative, but no silver mirror therefore must be a ketone gives the triiodomethane test therefore must contain CH ₃ C=O group; these must be carbon atoms 9 and 10						
		effervescence therefore must be a carboxylic acid; not branched, therefore carbon 1 must be the carboxylic acid group						
		formula must be H D H H H H H H H H H H H H H H H H H		2	4	6		3

		5-6 marks Correct structure given; reference to all information provided The candidate constructs a relevant, coherent and logically structured accordance A sustained and substantiated line of reasoning is evident and scientific conthroughout.						
		3-4 marks Molecular formula obtained but insufficient chemical deductions to obtain the candidate constructs a coherent account including many of the key element in the linking of key points and use of scientific conventions and volume.	ements o	f the indic	ative con		me reaso	ning is
		1-2 marks Some use of analytical results and / or chemical deductions but insufficient The candidate attempts to link relevant points from the indicative content. irrelevant material. There is some evidence of appropriate use of scientific	Coheren	ce is limit	ed by om		d/or inclu	sion of
		0 marks The candidate does not make any attempt or give an answer worthy of cre	dit.					
(b)	(i)	но соон		1		1		
	(ii)	one isomer rotates the plane to the left and the other to the right (1)						
		isomers present in equimolar amounts therefore the effect of rotation is cancelled out (1)	2			2		2
	(iii)	HO NH ₃ H		1		1		

0	ıcotion	Moving details			Marks	available		
Qu	uestion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(c)	(i)	benzene compounds are very resistant to addition reactions and this would destroy the stable ring system of electrons / needs too much energy	1			1		
	(ii)	at least one Br needed on both rings (any position)			1	1		
		Question 12 total	3	4	5	12	0	5

	Ques	otion		Mayking dataila			Marks	available		
	Ques	Stion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
13.	(a)	(i)		it is compound N (1)						
				singlet for the —CH $_3$ group bonded to the carbon atom of the double bond that is also bonded to the bromine atom (2.2 δ) (1)						
				the CH proton is as a quartet – split by the adjacent CH $_3$ protons (5.7 δ) (1)						
				the other —CH $_3$ group is a doublet, split by the adjacent CH proton (1.7 δ) (1)			4	4		
		(ii)	I	add aqueous bromine / aqueous acidified manganate(VII) – this is decolourised by L , M and N but unaffected by bromocyclobutane		1		1		1
			Ш	bromocyclobutane would only give three ¹³ C signals (1)						
				L, M and N would each give four signals as each carbon atom is in a different environment for these alkenes (1)		2		2		
				accept answer based on C=C at δ 90 to 150 present in \textbf{L},\textbf{M} and \textbf{N} but not in bromocyclobutane						
	(b)			$ \begin{array}{c} \overset{\circ}{\bigoplus}_{B_{1}} \overset{\circ}{\longrightarrow}_{B_{2}} \overset{\circ}{\longrightarrow}_{B_{2}} \overset{\circ}{\longrightarrow}_{B_{1}} & \overset{\circ}{\longrightarrow}_{B_{2}} & \overset{\circ}{\longrightarrow}_{B$						
				curly arrows (1) partial / full charges (1) regeneration of catalyst (1)	3			3		

Question	Marking details	Marks available					
Question	marking details		AO2	AO3	Total	Maths	Prac
(c) (i)	1:1 molar ratio 0.150 × 159.8 = 23.97 g (1)		2		2		
(ii)	potassium cyanide / sodium cyanide	1					1
(iii)	dilute sulfuric acid / hydrochloric acid	1					1
	Question 13 total	5	5	4	14	0	3

UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
Section A	5	5	0	10	1	5
9.	3	4	7	14	1	8
10.	2	8	4	14	4	1
11.	5	8	3	16	3	6
12.	3	4	5	12	0	5
13.	5	5	4	14	0	3
Totals	23	34	23	80	9	28

WJEC GCE A Level Chemistry Unit 4 MS (New) Summer 2017/ED