
1)		
C		
2)		
С		
3)		
В		
4)		
Α		
5)		
C		
6)		
С		
7)		
B		
8)		
Α		
9)		
(a) (b)	A	
<u>(b)</u>	D	
(c)	В	
10)		
В		
11)		
D		
12)		
(a)	Do not penalize the use of A_r (Mg) =	1
	24.3 at any stage in this question. Penalize SF errors (1 SF, incorrect SF	
	(eg. 0.02) and incorrect rounding to	
	2 SF (e.g. 0.016)) only once in parts (a - d)	
	Allow 0.0166 Allow fractions (e.g. 1/60)	
	Amount Mg = $(0.4 \div 24) = 0.016666$ = 0.0167 (mol)	
	Allow	
	Amount Mg = (0.4 ÷ 24.3) =	
	0.016461 = 0.0165 (mol)	

		-	
(b)	Amount HCl = 1.5 × 22.2/1000 = 0.033333 = 0.0333 (mol)		1
	Amount HCl = 2 x answer in (a)		I
estion mber	Acceptable Answers	Reject	Ma
(c)	Amount of $H_2 = 400 \div 24\ 000 =$ 0.016666 = 0.0167 (mol)		1
estion mber	Acceptable Answers	Reject	Ma
(d)	Ratio mol Mg:HCl:H ₂ = 0.0167 (0.165) : 0.0333 : 0.0167 = 1:2:1	Just stating the molar ratio	1
	Allow answers in which the mole ratios of the reactant and products are compared separately		
(e)	$M_{r} (MgCl_{2}) = 24 + 2 \times 35.5 = 95 (1)$ Mol MgCl_{2} = (mol Mg) = 0.0166666 (or 0.0167) (1) Mass MgCl_{2} = 95 × 0.0166666 = 1.58 (g) 3 sf (1)		3
	Or 95 x 0.0167 = 1.59 (g) 3sf Or 95.3 x 0.0166666 = 1.59 Or 95 x 0.0165 = 1.58 Or 95.3 x 0.0165 = 1.57		
	Correct answer with no working scores (3)		
	TE on 17(a)		

13)

18 (b)	Dehydration reaction cannot be controlled OR temperature change (of dehydrat reaction) cannot be measured OR CuSO ₄ .5H ₂ O would need heating (temperature change cannot be measured) OR impossible to add exact amount of water (to obtain value by reverse process)	(so If	Temperature solid / cryst cannot be measured		1
Number	OR cannot mix solid with water to obtain perfect crystals				
(c)(i)	 First & second marks stand alone 1. Pipette/burette / measuring cylinder / balance to transfer (a known amount of) (water) (1) 2. to (expanded) polystyrene cup / calorimeter / any <i>insulated</i> container allow coffee / plastic cup (1) Third & fourth marks only awarded if correct chemicals and procedure used 3. add solid and stir (allow mix or shake) mixture (1) 4. measure initial and final temperature 	Tem	mass / me measured perature ease unless	4	

Question Number	Acceptable Answers	Reject	Mai
18 (c)(ii)	 Any three from: heat transfer (from surroundings) (allow loss or gain) approximation in (specific) heat capacity of solution neglecting (specific) heat capacity of calorimeter/apparatus (allow energy absorbed by the apparatus) reaction / dissolving may be incomplete/slow temperature change is very small (and difficult to measure) Density of solution is taken as the same as water conditions not standard (allow) 	Errors in calculation including adding mass of solid to mass of water loss of reagents / water incomplete combustion Just 'difficult to measure'	3

14)			
(a)(i)	C_nH_{2n+2} or any symbol in place of n		1
(-/(-/	Ignore C ₅ H ₁₂		
Question Number	Acceptable Answers	Reject	Mar
10	(structural / chain) isomers		1
(a)(ii)			

Question Number	Acceptable Answers	Reject	Mar
(a)(iii)	H H C H H H C C C C C C C H H H H H H H	Structures in which any bonds or atoms are omitted Structures with CH ₃ groups	1

Question Number	Acceptable Answers	Reject	Mar
	2,2-dimethylpropane (1)		1
(a)(iv)			
	Allow dimethylpropane, 2-dimethylpropane 2,2 dimethylpropane, 2 dimethylpropane		
	Ignore hyphens, commas, spaces		

Question Number	Acceptable Answers	Reject	Mar
(b)(i)	CH ₄ + 1½O ₂ → CO + 2H ₂ O Formulae (1) balance (1) Or multiples Ignore state symbols No TE on any other species		2
Number			
(b)(ii)	Insufficient / not excess oxygen / air	Reactant does not react completely with oxygen Just 'methane in excess'	1

(b)(ііі)	Any two from CO is toxic / poisonous (allow harmful) (1) Less energy is produced (allow (methane) becomes a less efficient fuel) (1)	Explosive Reactants wasted	2
	Unburned hydrocarbons react to form compounds which are toxic / harmful (1)	Air pollution	
	Allow sooty deposits / carbon / particulates in atmosphere (ignore reference to global dimming) (1)		
	Unburned hydrocarbons are toxic / harmful (1)		
	If reference to damage to ozone layer, global warming and / or acid rain then max (1)		

*	Global warming / climate change		3
(b)(iv)	(1)		
	Due to (increase in concentration of) CO_2 in the atmosphere / CO_2 is a greenhouse gas (1)	(heat) from the	
	Traps the heat from the earth / IR radiation (re-radiating) from the earth (1) If reference to damage to ozone	Sun	
	layer then max (2)	Global dimming due to complete	
	Photochemical smog is formed (0) NO _x is produced (by reaction of nitrogen & oxygen) (1) and	combustion of hydrocarbon fuels	
	reacts with (volatile) organic compounds in sunlight (1)	Effects (e.g. reactions of unburned	
	Ignore references to increase in (of concentration) of H ₂ O in the atmosphere	hydrocarbons) due to <i>incomplete</i> combustion	
	Ignore references to the effects of climate change		

Question Number	Acceptable Answers	Reject	Mar
(c)(i)	The arrows show the movement of electrons (1) Single-headed/I denotes 1 electron and Double-headed/II denotes a pair of / 2 electrons /allow lone pair (1) Allow Explanations just in terms of electron movement in bond fission	Just stating homolytic and heterolytic fission	2

- (c)(ii)	CI_CI_CI 2 CI [•] Equation (1)	2
	two arrows correctly showing a homolytic fission (1)	
	Here and in subsequent mechanisms the covalent bonds may be shown as lines or electron pairs or both	
	The mechanism arrows may be shown on the same side or on different sides of the bond	
	The single electrons need not be shown	

(c)(iii)	$CH_4 + Cl' \rightarrow CH_3' + HCl (1)$	2
()())	CH_3 + $Cl_2 \rightarrow CH_3Cl + Cl$ (1)	
	Ignore state symbols and curly arrows. Ignore order of equations so these marks may be scored if an initiation step with fission of C – H bond in methane is given in c(ii)	

Question Number	Acceptable Answers	Reject	Ma
(c)(iv)	Because a (chlorine) radical is regenerated / reformed / reproduced / recycled (by the propagation reactions each time a molecule of product is formed) (1) Allow methyl radical regenerated if initiation step with fission of C - H bond in methane is given in c(ii) and propagation order reversed	radical is regenerated by UV light (chlorine) radical is a catalyst	1
	Ignore references to chain reaction		
Number			-
(c)(v)	$CH_3^{\bullet} + CH_3^{\bullet} \rightarrow C_2H_6 / 2CH_3^{\bullet} \rightarrow C_2H_6$		1
	Ignore state symbols The single electrons need not be shown		

Question Number	Acceptable Answers	Reject	Ма
· (d)	UV light does not have enough energy to (ALLOW 'cannot') break the C-H bond (1) So no H free radicals / atoms are formed (therefore cannot combine to form H ₂) (1)	Just 'hydrogen' Just 'so no H2 formed	2

15)			
(a)	CO ₂ has polar bonds / oxygen does not have polar bonds (1)	CO ₂ is a polar molecule	2
	Ignore O2 is a non polar molecule		
	(As it vibrates) polarity of CO ₂ changes / dipole moment changes / shifts (1)		
	Allow "Oxygen has no difference in electronegativity so polarity does not change" for 2 marks		

(b)(i)	Hydrogen bonds can form with water	Just "it is polar"	1
	Allow full description of hydrogen bonds in absence of name.		
	Ignore incorrect naming of functional groups in aminoethanol.		

estion mber	Acceptable Answers	Reject	M
(b)(ii)	Exothermic, with attempt at a reason OR reverse reaction is endothermic, with attempt at a reason (1) Reaction will go in the endothermic direction on heating / equilibrium moves to left to use up heat supplied (1) Second mark depends on the reaction being exothermic in first mark	Just "exothermic"	2

(c)(i)

(i)	**************************************	
	Electrons in double bond (1) Other electrons (1)	
	Second mark dependent on first	
	Only bonding electrons need be shown If inner shell electrons are included they must be correct.	
	Electrons may be on circles, within circles or no circles may be shown.	

lestion Imber	Acceptable Answers	Reject	Mar
⊧(c)(ii)	Number of electrons (per molecule) is greater in CO ₂ (than methane). If numbers are given must be correct. CO ₂ has 22e ⁻ , methane has 10e ⁻ . Ignore CO ₂ has larger surface area than methane	double bonds in CO ₂ as the cause	1

iestion imber	Acceptable Answers	Reject	Mar
i(c)(iii)	Butane has a greater surface area / butane is less branched (1) so more contact between (neighbouring) molecules / (neighbouring) molecules pack better (1) OR Reverse argument for 2-methylpropane		2

iestion imber	Acceptable Answers	Reject	Mar
(d)(i)	Mg – no colour in flame (1) Allow 'no flame visible'	Mg: white flame Bright / white light Clear flame	2
	Ca brick red / red / yellow-red / red-orange	Just orange	

(d)(ii)	First mark:			4
(d)(ii)	Detect thermal decomposition by			4
	Detect thermal decomposition by		First mark:	
	Passing gas into / reacting gas with lime		Combustion	
	water		Heating carbonate	
	OR		solution	
	By collecting the gas evolved (in syringe	or		
	by displacement)			
	OR			
	By measuring change of mass	(1)		
	Second mark:		Second mark:	
	Measure time for (same volume) of lime		Second mark:	
	water to go milky			
	OR			
	Measure volume of gas produced in a		Just "measure	
	measured time		volume of gas	
	OR		produced"	
	Measure time for a specified / same volu	ume		
	of gas to form		Measure time for a	
	OR		specified change in	
	Find loss of mass after heating samples		mass to occur	
	for equal time	(1)		
	The mark for measurement should only	ha		
	given if it matches the suggested metho			
	detection.			
	Third and fourth marks:			
	For fair comparison			
	Any two from:			
	Keep strength of flame constant	(1)		
	Distance of flame from containing tube			
	constant	(1)		
		• •		
	Use carbonates with similar particle size	(1)		
	Same volume of lime water	(1)		
		(-)		
	Heat equal moles / same amount of eac			
	carbonate	(1)		
	Judge equal milkiness of lime water usir	ng a		
	piece of paper marked with a cross	(1)		
	The marks for fair comparison should or			
	be given if they match the suggested	·		1
	method of detection.			

Ignore 'heat to same temperature' Ignore 'use same heat source' Ignore 'constant heat'	
These points could be shown on a diagram but marks are for the principles, not the detail of drawing a sketch diagram.	

estion nber	Acceptable Answers	Reject	Mar
d)(iii)	CaCO ₃ more stable / MgCO ₃ less stable (1) Mg ²⁺ is smaller than Ca ²⁺ / magnesium ions are smaller than calcium ions / charge density of Mg ²⁺ is greater than Ca ²⁺ / Ca ²⁺ has more shells (1) EITHER Mg ²⁺ causes more distortion of carbonate ion / more weakening of C-O / more polarisation of carbonate / more polarisation of anion / has more polarising power	Mg is smaller "It" (unspecified) is smaller MgCO3 is smaller More disruption of ion Polarisation of carbonate	3
	OR More energy is given out when MgO forms as the MgO lattice is stronger than CaO /as the 2+ ions can get closer to the 2 ⁻ ions on decomposition (1) Second and third marks can be scored if conclusion given in first mark is wrong	molecules CaO is less stable than MgO	