Overview
 NIST Handbook 133
 "Checking the Net Contents of Packaged Goods"

*** Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose."

Learning Objectives

- The student will:
- Obtain a basic understanding of the Handbook 133 requirements for checking the net content of packaged goods.
- Be able to use the various gravimetric and volumetric test procedures to verify the net quantity of packages labeled by weight, measure, and count.

3

Basics

> Consumers and business cannot protect themselves from fraud.
$>$ When weights and measures is not active in any sector of the marketplace fraud (intentional, accidental, ignorance or apathy) proliferates and competition suffers (every time!!).
> One goal of weights and measures inspections is to provide a law enforcement PRESENCE in the marketplace to protect consumers and reputable businesses.
> Conduct every inspection and investigation as if you were going to defend it before the highest court in your state.

The standard of proof is always: "beyond a reasonable doubt."

5

Chapter 1. General Information

This presentation generally follows the chapters of NIST Handbook 133.

Chapter 1. General Information - Scope

The purpose of net quantity verification is to ensure the accuracy of the net quantity information that is required to appear on packages.

The requirements are based on law and the test procedures are based on science and are reproducible and repeatable.

Concurrent Jurisdiction

Chapter 1. General Information

1.1.a. Use Package Checking Procedures

> Point-of-Pack

- Greatest Impact
> Distribution \& Wholesale
- Strong Impact
> Retail
- Mixed Impact

What products can be tested?

Anything in packaged form.
Learn about the product BEFORE you test it (e.g, how is it made, safety requirements and how it is intended to be used).

- In-state packagers.
- Big consumer impact products (milk, bread, other staple goods).
- Packages delivered to state agencies.
- Marketplace Surveys \& Audit Testing.
- Seasonal products.
- Consumer \& business complaints.

HB133, Chapter 2.

National Institute of Standards and Technology
U.S. Department of Commerce

11

Example of a Balanced Work Plan

- 40 \% on Retail Store.
- 25 \% Distribution or Point-of-Pack.
- 10 \% Specialty (e.g., polyethyelene sheeting, oil, aerosols, mulch, paint, cement, industrial and construction materials).
- 10 \% Liquids (milk and other dairy products, soft drinks and cleaning supplies).
- 10% Follow-up inspections on products found short measure in past testing.
- 5 \% State or Local Institutions.

What is the purpose of a HB 133 inspections?

INFORMATION

We look at complex information systems

1.2.1. Inspection Lot

- The collection of identically labeled packages available for inspection at one time.
- This collection will pass or fail as a whole based on the results of tests on a sample drawn.

HB133, Chapter 2.

A sample must "pass" two requirements

> Average Requirement
> Individual Package Requirement

A sample "fails" if either requirement is not met.

How many packages to inspect

Sampling Plans from HB 133

Use the sampling plan Category A, Table 2-1.
Use the sampling plan Category B, Table 2-2. when packages are inspected inside a USDA - regulated establishment.

21

Reliability of the sampling plans

The Category A sampling plan has a 95% confidence level.
The Category B sampling plan has a 50 \% confidence level.

The SEL is the same as a confidence interval in statistics.

Add the SEL to the Average Error (AE) and if the result is a positive number the sample passes... if not the sample fails.

-1.083 Average Error (AE) of Sample

1.2.6. Moisture Allowances

A REASONABLE allowance for moisture loss must be based on a scientific study.

HB133 "Moisture Allowances" are based on a percentage of the labeled quantity.

HB133, Chapter 2.

Table 2-3. Moisture Allowances		
Verifying the labeled net weight of packages of:	Moisture Allowance is:	Notes
Flour	3 \%	
Dry pet food	3 \%	Dry pet food means all extruded dog and cat foods and baked treats packaged in kraft paper bags and/or cardboard boxes with a moisture content of 13% or less at time of pack.
Pasta products	3 \%	Pasta products means all macaroni, noodle, and like products packaged in kraft paper bags, paperboard cartons, and/or flexible plastic bags with a moisture content of 13% or less at the time of pack.
Borax	See Section 2.4.	
Wet Tare Only ${ }^{1}$		
Fresh poultry	3%	Fresh poultry is defined as poultry above a temperature of $-3{ }^{\circ} \mathrm{C}\left(26^{\circ} \mathrm{F}\right)$ that yields or gives when pushed with the thumb.
Franks or hot dogs	2.5 \%	
Bacon, fresh sausage, and luncheon meats	0 \%	For packages of bacon, fresh sausage, and luncheon meats, there is no moisture allowance if there is no free-flowing liquid or absorbent material in contact with the product and the package is cleaned of clinging material. Luncheon meats are any cooked sausage product, loaves, jellied products, cured products, and any sliced sandwich-style meat. This does not include whole hams, briskets, roasts, turkeys, or chickens requiring further preparation to be made into ready-to-eat sliced product. When there is no free-flowing liquid inside the package and there are no absorbent materials in contact with the product, Wet Tare and Used Dried Tare are equivalent.

${ }^{1}$ Wet tare procedures must not be used to verify the labeled net weight of packages of meat and poultry packed at an official United States Department of Agriculture (USDA) facility and bearing a USDA seal of inspection. The Food Safety and Inspection Service (FSIS) adopted specific sections of the $20054^{\text {th }}$ edition of NIST HB 133 by reference in 2008 but not the "Wet Tare" method for determining net weight compliance. FSIS considers the free-flowing liquids in packages of meat and poultry products, including single-ingredient, raw poultry products, to be integral components of these products (see Federal Register, September 9, 2008 [Volume 73, Number 175] [Final Rule pages 52189-52193]).

HB133, Chapter 2.
25

Section 1.2.6.1. Applying a Moisture Allowance

- To apply an allowance before determining package errors, adjust the Nominal Gross Weight. Do NOT adjust the MAV when using nominal gross weight.
- To apply an allowance after determining package errors, adjust both the Average Error and the MAV.

Section 1.6. Health and Safety

The inspector must:
\checkmark Identify the appropriate safety and health practices and procedures to be followed before the inspection begins.
\checkmark Comply with all handling, health, and safety warnings on package labels and those contained in any Safety Data Sheet (SDS)

27

Basic Test Procedure - Gravimetric Testing Chapter 2

Section 2.2. Inspectors Scale or Balance

\checkmark Follow Good Measuring Practice.

- place on solid - level surface - away from air movement and vibration.
\checkmark Test device before each inspection, after it is moved or if you see erratic results, and if the sample fails.
\checkmark Apply Acceptance Tolerance.

31

Suitability of Package Inspection Balances
 $d \leq$ MAV $\div 6$
 The MAV for 1 lb is 0.044 lb

$$
0.044 \div 6=.007
$$

Is d (.001) $\leq .007$?

Table 2-2. Acceptance Tolerances for Class of Scale Based on Test Load in Divisions		
Test Load in Divisions		Tolerance
Class II Scale	Class III Scale	
0 to 5000	0 to 500	± 0.5 Division
5001 to 20000	501 to 2000	
20001 or more	2001 to 4000	± 1.5 Divisions
Not Applicable	4001 or more	± 2.5 Divisions

Scale Tolerances

33

Level Condition

Scales equipped with a level indicator must be maintained in level.

Increasing - Decreasing Load Test

Class II Acceptance Tolerance changes based on test load

35

Shift Test Pattern

NGT

2.2.5. Which standards apply to other test equipment

105-1: Specifications \& Tolerances for Field Standard Weights (NIST Class F) - 2019
105-2: Specifications \& Tolerances for Field Standard Measuring Flasks - 1996
105-5: Specifications \& Tolerances for Field Standard Stopwatches - 1997
105-6: Specifications \& Tolerances for Thermometers - 1997
If you use another measurement instrument find a standard and have it calibrated. ASTM International is another source of standards - www.astm.org
www.nist.gov/pml/weights-and-measures/nist-handbook

HB133, Chapter 2.

National Institute of
Standards and Technology
U.S. Department of Commerce

Section 2.3. Basic Test Procedure

41

Table 2-5. Maximum Allowable Variations (MAVs) for Packages Labeled by Weight		NGT
	Maximum Allowable Variations 10% of labeled quantity	MAV's -
	coict	
Moer hen		WHERE ARE MAXIMUM ALLOWABLE VARIATIONS FOUND?
	coist	
	cinco	

	Table 2-9. Department of Agriculture, Meat and Poultry Groups and Lower Limits for Individual Packages (Maximum Allowable Variations)		
	Definition of Group and Labeled Quantity		Lower Limit for Individual Weights (MAVs)
	Homogenous Fluid when Filled (e.g., baby food or containers of lard)	All Other Products	
	Less than 85 g or 3 oz		10% of labeled quantity
	85 g or more to 453 g 3 oz or more to 16 oz		$\begin{gathered} 7.1 \mathrm{~g} \\ 0.016 \mathrm{lb}(0.25 \mathrm{oz}) \end{gathered}$
	More than 453 g More than 16 oz	$85 \mathrm{~g} \text { or more to } 198 \mathrm{~g}$ $3 \text { oz to } 7 \text { oz }$	$\begin{gathered} 14.2 \mathrm{~g} \\ 0.031 \mathrm{lb}(0.5 \mathrm{oz}) \end{gathered}$
		More than 198 g to 1.36 kg 7 oz to 48 oz	$\begin{gathered} 28.3 \mathrm{~g} \\ 0.062 \mathrm{lb}(1 \mathrm{oz}) \end{gathered}$
		More than 1.36 kg to 4.53 kg More than 48 oz to 160 oz	$\begin{gathered} 42.5 \mathrm{~g} \\ 0.094 \mathrm{lb}(1.5 \mathrm{oz}) \end{gathered}$
\%		More than 4.53 kg More than 160 oz	1\% of labeled quantity

For use with only on products subject to USDA inspection or regulations: Typically they bear an inspection seal.

Table 2-8. Maximum Allowable Variations for Packages Labeled by Length, (Width), or Area For Textiles, Polyethylene Sheeting and Film - See Table 2-10. Exceptions to the MAVs	
Labeled Quantity	Maximum Allowable Variations (MAVs)
1 m or less 1 yd or less	3% of labeled quantity
More than 1 m to 43 m More than 1 yd to 48 yd	1.5% of labeled quantity
More than 43 m to 87 m More than 48 yd to 96 yd	2% of labeled quantity
More than 87 m to 140 m More than 96 yd to 154 yd	2.5% of labeled quantity
More than 140 m to 301 m More than 154 yd to 330 yd	4% of labeled quantity
More than 301 m to $1,005 \mathrm{~m}$ More than 330 yd to 1,100 yd	5% of labeled quantity
More than $1,005 \mathrm{~m}$ or 1,100 yd	Maximum Allowable Variations for Packages Labeled by Area.
The MAV for packages labeled by area is 3 \% of labeled quantity.	
For Textiles, Polyethylene Sheeting and Film, see Table 2-10. Exceptions to the MAVs (Amended 2004)	

45

Section 2.3.4. Random Sample Selection

- To ensure that the sample represents the entire inspection lot.
- This means every package has an equal chance of selection.
- Eliminates bias and sloppiness.

47

If the sample packages are not randomly selected the test result will not be statistically valid. Since the test results are not valid they must not be used for enforcement purposes.

Use the results as an Audit Test

Appendix B. Random Number Tables

51

Random Sampling Production Line (Time)

Use 1 hour's production (3600 seconds).
Use random numbers to select samples from production line based on time.

NGT

Section 2.3.5.
 Tare Procedures

* "Unused Dry Tare" only available in stores or at Point-of-Pack.
* "Used" Dry Tare - closely replicates "Unused "Dry Tare

Defining Tare Accurately

Section 2.3.5.b. Unused Tare In-Store $\boldsymbol{*}^{\text {tran Noes }}$

If there is ANY variation between the first 2 tare samples have 3 more tare samples prepared and determine the Average Tare Weight for all 5 samples.

NGT

	Tare Weight
$\mathbf{1}$	0.83
$\mathbf{2}$	0.85
Avg Tare	0.84

> If variations are found you must open additional samples as prescribed.

Plastic Tray with Soaker
"used dry tare"

57

Think of the Numbers

National Institute of Standards and Technology U.S. Department of Commerce

Money Value of Weight

 NGT| Unit Price | 0.001 | 0.002 | 0.005 | 0.01 | 0.02 | 0.03 | 0.05 | 0.25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 ¢ | 0.05¢ | 0.1¢ | 0.25¢ | 0.5¢ | 14 | 1.5¢ | 2.56 | 12.5¢ |
| \$1.00 | 0.1¢ | 0.2¢ | 0.5¢ | 14 | 2C | 3c | 5¢ | 25¢ |
| \$2.00 | $0.2 ¢$ | 0.4C | 14 | 2C | 4 C | 6 C | 10¢ | 50¢ |
| \$3.00 | $0.3 ¢$ | 0.6¢ | $1.5 ¢$ | 3 C | 6 C | 94 | 15¢ | $75 ¢$ |
| \$4.00 | 0.4C | 0.8¢ | 2C | 4c | 8¢ | 12C | 20¢ | \$1 |
| \$5.00 | 0.5¢ | 14 | $2.5 ¢$ | 5¢ | 10¢ | 15¢ | 25¢ | \$1.25 |
| \$6.00 | 0.6¢ | $1.2 ¢$ | 3¢ | 64 | 12¢ | 18¢ | 30¢ | \$1.50 |
| \$8.00 | 0.8C | 1.6¢ | 4¢ | 8¢ | 16¢ | 24¢ | 40¢ | \$2 |
| \$10.00 | 14 | 2 C | 5c | 10¢ | $20 ¢$ | 30¢ | 50¢ | \$2.50 |
| \$20.00 | 2C | 4 C | 10¢ | $20 ¢$ | 40¢ | 60¢ | \$1 | \$5 |

Example of the Accumulation of Errors in 1 Year

Assume:

- 260 transactions per day
- $\$ 8 \mathrm{lb}$ average unit price
- \pm error of 0.01 lb per transaction

Then:
$(0.01 \mathrm{lb} \times \$ 8 \mathrm{lb}=) 8 \mathrm{c} \times 260$ (transactions/day) $\times 7$ days per week $\times 52$ weeks per year $=$ 94,640 total weighings/year

\$7,571 per year !!!

Section 2.3.5.2.a. Aerosol Containers \& Other Pre-Pressurized Containers
(How is tare determined)

- Cannot be opened for safety reasons.
- Required by the UPLR to deliver the declared net contents.
- Retained product \& propellant is "tare."
- Follow manufacturer instructions (including storage temperature) to empty the packages.

NGT

The wax on cheese is tare and it must be deducted.

65

Tare Audit and Test Purchases

NGT

- Verify the tare values used in the store.
- Select a department.
- Manually determine tare values.
- Compare to pre-programmed tares.
- Test Purchases (e.g., Produce)

Conversions and Rounding Net Quantity Declarations

- The UPLR does not prescribe mandatory rounding rules.
- Quantity declarations in U.S. Customary Units and SI Units on packages do not have to be mathematically equivalent.
- The Uniform Packaging and Labeling Regulation and NIST Handbook 133 requires inspectors to verify the largest declared quantity.

Exercise caution when using any conversion software unless you verify that the factors it uses conform to current values published by NIST

Ounces to grams

- $\quad 1 \mathrm{oz}=28.349523125 \mathrm{~g}^{1}$
- $\quad 10.5 \times 28.349523125=297.669992812 \mathrm{~g}$

Which is larger?

- $\quad 10.5 \mathrm{oz}$

What if the can was labeled: $10.5 \mathrm{oz}(297.7 \mathrm{~g})$?

Net Wt 10.5 oz (297 g)

HB 130 and HB 133 - SI \& U.S. Customary Conversion Factors

Appendix A: "Accurate Conversion Factors for Most Packaged Goods (UPLR HB130)"

Appendix B: "Converting U.S. Customary Units to SI Units for Quantity Declarations on Packages (UPLR HB130)"

Appendix E: "General Table of Units of Measure (HB133)"

69

Unique Test Procedures

Chapter 2.

Aerosol (self-pressurized) Containers
Borax
Drained Weight
Ice Deglazing
Block Ice
Chitterlings (small pig intestines)

71

NGT

Section 2.5. Determination of Drained Weight

All of the samples must be opened. Start the test with the lightest package in the sample - so possible MAV's can be found.

HB 133 follows FDA procedures.
Sieves:

- Quantity of 3 lb or less use a 8 inch sieve with No. 8 mesh.
- Quantities greater than 3 lb use a 12 inch sieve with No. 8 mesh.

HB133, Chapter 2.

73

NGT

Drain Angles

Drain Time

75

NGT

Net Weight of Glazed Seafood \& Fish (or other food)

- Hold glazed product under a gentle spray of cold water (e.g., in sieve).
- Carefully agitate the product but do not break (or tear) the pieces apart.
- Spray until all glaze is removed.
- Tilt sieve and drain for 2 minutes.
- Immediately transfer product to pan.

NGT

2.6. Drained Weight for Glazed or Frozen Food \& Frozen Shrimp \& Crabmeat

 (Blocks)
Equipment

- Thermometer -Water Temp: 23-29 ${ }^{\circ} \mathrm{C}\left(75-85^{\circ} \mathrm{F}\right)$.
- Continuous Water flow [4-15 L (1-4 gal)/min].
- Wire mesh basket.

No. 8 Sieve:

- $20 \mathrm{~cm}(8 \mathrm{in})$ for packages $453 \mathrm{~g}(1 \mathrm{lb})$ or less.
- 30 cm (12 in) for packages more than 453 g (1 $\mathrm{lb})$.

2 minute drain time.

77

Section 2.7. Chitterlings
 (small pig intestines)

Frozen Chitterlings

1. Fully immerse in a water bath maintained at a temperature between $23^{\circ} \mathrm{C}$ to $29^{\circ} \mathrm{C}\left(75^{\circ} \mathrm{F}\right.$ to $\left.85^{\circ} \mathrm{F}\right)$.

OR
2. Place them in a refrigerator for partial thawing over several days, and then carrying out the final thawing using the water bath technique.

Allowable Purge is 20\%
The sample must pass both the net weight and purge tests to comply.

Test Procedures for Packages Labeled By Volume - Chapter 3

Measuring Liquid Volumes

- Gravimetric Measurement
- Only the packages used for density determinations need be brought to reference temperature.

HB133, Chapter 2.

81

NGT

Selecting the Flask

EXCEPT FOR MILK, you should never mix liquids from two different packages.
For this reason, use the flask sized closest to, but smaller than, the labeled volume.

		NGI
	Flasks	- Calibrated to Deliver at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$. - must be wet down before use
		- 30 Second Pour. - 10 Second Drain (touch off drop). - @ 10° to 15° from vertical.
н8133, Crapere 2.		

Date: 5/20/14	NIST Handbook 133Worksheet for Packages Labeled by Fluid Volume Gravimetric Test Procedure -Decimal Pounds (ex. for 32 fl oz)						
Label Declaration	Converted to fluid ounce or metric	Largest Declaration		Manufacturer: Milk Packaging Company			
32 fl oz	946.352 mL	32 fl oz		Commodity: Whole Milk			
946 mL	31.988 oz			Lot Code: 19-9872		Plant Number: 20-999	
1 quart 32 fl oz				Pkg 3* sample size for			
		Pkg 1	Pkg 2				
		*For glass containers the initial tare sample size for sample sizes 24 \& 48 is 3					
TARE DETERMINATION		$\mathbf{R}_{\mathbf{t}}=$					
1. Gross Weight		2.221 2.222				$\mathbf{R}_{\mathrm{c}}=0.001$	
2. Tare Weight		0.076 0.076			$\mathbf{R}_{\mathrm{c}} \div \mathbf{R}_{\mathrm{t}}=$		
2a. Net Weight 2b Package Error		2.145 2.146 XXX XXX			\mathbf{R}_{t} - Range of Tare Weights \mathbf{R}_{c} - Range of Package Errors If there is any variation between tare values calculate $\mathrm{R}_{\mathrm{c}} \div \mathrm{R}_{\mathrm{t}}=$ and use the tare procedures in Section 2.3.5. and Table 2-3 to determine if additional packages must be opened to determine an Average Tare Weight.		
DENSITY							
3. Flask Weight (full)		3.509	3.509				
4. Flask Weight (empty, wetted)		1.354	1.354				
5. Weight of Liquid (Box $3-\operatorname{Box} 4=$)		2.155	2.155				
6. Volume of Flask (in Fluid Ounces)		32					
What is the Table 3-1. Reference Temperature for thisproduct?		$40^{\circ} \mathrm{F}$					
Temperature of Liquid at time of Density Determination?		$39.8{ }^{\circ} \mathrm{F}$	$41^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$			
7. Liquid Density in Fluid Ounces (Box $5 \div$ Box $6=$)		$0.0673437 \mathrm{lb} / \mathrm{fl} \mathrm{oz}$	$0.0673437 \mathrm{lb} / \mathrm{fl} \mathrm{oz}$				
8. Range of Densities		$\frac{0.000}{}$					

85

NGT

Chapter 3. Additional Test Procedures for Packages Labeled by Volume

Several of the procedures are similar.
Once you have learned how to measure one product you can test many others.

Why so much work?

The burden of proof:
"Beyond a Reasonable Doubt

The test procedures are complex and time consuming but they are needed to provide accurate determinations of quantity using scientifically valid test methods that are reproducible and that have undergone public review.

Use Section 4.46. "Berry Baskets and Boxes" in NIST Handbook 44
"Specifications, Tolerances and Other Technical Requirements for Weighing and Measuring Devices."

Berry Baskets

Procedures, material, and dimensional test procedures are taken from NIST Handbook 44 and NBS Handbook 45 "Testing of Measuring Equipment" (for a copy contact NIST).

Volumetric Test Procedure for Berry Baskets

Dimensional Test Procedure for Berry Baskets

Table 1.
Maintenance and Acceptance Tolerances in Excess

Table 1. Maintenance and Acceptance Tolerances in Excess and in Deficiency		
Nominal Capacity	Tolerance	
	In Excess Cubic Inches	In Deficiency Cubic Inches
$1 / 2$ pint	1	0.5
1 pint	2	1.0
1 quart	3	1.5

Section 3.4. Volumetric Test Procedure for Viscous Fluids - Headspace

[^0]

91

3.4. Volumetric Test Procedure for Viscous FluidsHeadspace

95

Section 3.5. Goods Labeled by Capacity Volumetric Test Procedure

Notice: the mention of trade or brand names does not imply endorsement or recommendation by the U.S. Department of Commerce over similar products available from other manufacturers.

Section 3.5. Pressed and Blown Glass Tumblers and

 Stemware

Different Package Requirements

$>$ The Average Requirement is NOT applied to these products.
$>$ The Maximum Allowable Variation (MAV) is NOT applied to these products.

Table 2-11. Accuracy Requirements for Packages Labeled by Low Count (50 or Fewer) and Packages Given Tolerances (Glass and Stemware)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Inspection Lot Size	Sample Size	For Packages Labeled by Low Count (50 or Fewer)	For Packages Given Tolerances (Glasses and Stemware)
	Number of Packages Allowed to Contain Less than the Labeled Count	Number of Package Errors that May Exceed the Allowable Difference	
$1-11$	$1-11$	1	0
$12-250$	12	2	1
$251-3200$	24	3	2
More than 3200	48		

Allowable Differences

Table 3-2.

Table 3-2.	
Allowable Differences for Pressed and Blown Glass	
Tumblers and Stemware	
Unit of Measure	
If the capacity in metric units is:	Then the allowable difference is:
200 mL or less	$\pm 10 \mathrm{~mL}$
More than 200 mL	$\pm 5 \%$ of the labeled capacity
If the capacity in inch-pound units is:	Then the allowable difference is:
5 fl oz or less	$\pm 1 / 4 \mathrm{fl}$ oz
More than $5 \mathrm{fl} . \mathrm{oz}$.	$\pm 5 \%$ of the labeled capacity

Section 3.7. Volumetric Test Procedure for Paint, Varnish, and Lacquers - Non-Aerosol.

Paint Test Procedure - Revised

Plant Audit and Violation Procedure.

Section 3.8. Testing Viscous Materials Such As Caulking Compounds and Pastes

3.8.1. Test Equipment

Pycnometer or "Density Cup" is a vessel of known Volume used for weighing semifluids.

The density cup can be bought or made.

A slicker plate is available commercially.

The metrology laboratory must calibrate the density cup.

Section 3.9. Peat Moss

Dimensional Measuring Frame (drawings are located at www.nist.gov/owm)

3.9.2. Uncompressed Volume Packages of Peat Moss

3.9.2.1. Test Equipment

- $12.7 \mathrm{~mm}($ or $1 / 2 \mathrm{in})$ SIEVE
- Use test measures as appropriate for the package size.

Refer to Table 3-4. "Specifications for Test Measures for Mulch and Soils" for additional information on test measure size and construction.

Section 3.10. Mulch and Soils by Volume

Table 2-10. Exceptions to the Maximum

For individual packages: 5% of the labeled volume. For samples: One package may exceed the MAV for every 12 packages in the sample.

NGT

Section 3.11. Ice Cream Novelties

Displacement vessel with

dimensions appropriate for the size of novelties being tested.

- Cold water maintained at $1^{\circ} \mathrm{C}$ ($33^{\circ} \mathrm{F}$) or below.
Ice-pop. Mark on the stick(s) with
the indelible marker the point to
which the pop will be submerged in
the ice water.
Remove the novelty to determine
the volume of the stick.

NGT

3.11. Ice Cream Novelties (Exception)

On April 17, 2009, the FDA issued a letter stating that the appropriate net quantity of content declaration for pelletized ice cream is net weight.

3.12. Fresh Oysters Labeled by Volume

Packaged fresh oysters removed from the shell must be labeled by volume.
Tested by Total Volume and \% Free Liquid.
The maximum amount of permitted free liquid is limited to 15% by weight.
E

Section 3.14. Firewood

Boxed Firewood

When a box contains a bundle of wrapped firewood, the volume of the bundle is verified using the test procedure in "Bundles and Bags."

Measuring the Internal Height of Box

National Instifute of
Standards and Technology
U.S. Department of Commerce

121

Width of Wood Stack.
Take at least five measurements at intervals spaced along the length of the stack. Average these values.

Top View of the Box. Measure at crosslines.

Measuring the Width of the Firewood in a Box.

Stacked Firewood

Bulk deliveries of firewood are typically required by law or regulation to be on the basis of cord measurements.

The "cord" is defined as the amount of wood contained in a space of 128 cubic feet when the wood is ranked and well stowed.

The standard dimensions for a cord of wood are $4 \mathrm{ft} \times 4 \mathrm{ft} \times 8 \mathrm{ft}$ but wood may be stacked and measured in any configuration.

A Cord of Wood

Bundles and Bagged - Packaged Firewood and

Stove Wood Labeled by Volume

Table 2-10. Exceptions to the Maximum Allowable Variations (MAVs)
20% of labeled quantity

NGT

127

Field Audit Procedure - Circumference Method

A circumference estimating method can be used for quickly identifying potentially short measure bundles.

Method of Sale of Commodities Regulation Section 2.23. Animal Bedding

The terms "Useable Volume" must appear in the quantity declaration on a package of compressed animal bedding.

If Unit Pricing is provided for use by retail customers to make a value comparison, it shall be in terms of the price per liter.

NOTE: This method of sale for animal bedding shall be enforceable after January 1, 2020.

Table-3.9. Illustrations of Depth Determinations with

 Cylindrical Test Measures

The ruler is read from the bottom edge of a straight edge or level from a position that reduces parallax.

Chapter 4.

Test Procedures - Packages Labeled by Count, Linear Measure, Area, Thickness, and Combinations of Quantities

137

Test Procedures

4.2. Packages Labeled by Count

- 50 Items or Less
- 51 Items or More
4.3. Paper Plates and Sanitary Products
4.4. Packages Labeled by Linear Measurement
4.5. Polyethylene (sheeting and bags)
4.6. Linear (length, width, thickness) and area.
4.7. Baler Twine
4.8. Area of Chamois
4.9. Agricultural Seed

4.2. Packages Labeled by Count Good Counting Practices

- Select a well-lit area away from disruptions.
- Inspect the container thoroughly to ensure pieces do not remain in the package.
- Segregate the units so they can be recounted and for easy visualization.

Packages Labeled by Count

The "Average Requirement" does not apply to packages labeled by count of 50 or fewer items, and an MAV is not applied to the lot. It only applies to the packages in the sample.

4.2.2. Packages Labeled by Count of More than 50-Items

There are two procedures to determine count without opening all packages in the sample:

1. Audit Procedure
2. Violation Procedure

Both use the weight of a counted number of items in the package.

Linear Measurement

Good Measuring Practices (GMP)

Examples of practices that cause errors in linear measurement

Manipulative and Parallax Errors

Bending a Tape or Using Improper Angles on a Ruler or Tape will Result in Measurement Errors

Eliminating Errors with Tape Hooks and Non-Blank End Rulers

National Institute of
Standards and Technology
U.S. Department of Commerce

Slippage

Experts have found that when observers moves their heads from the zero reference point to the measurement point they frequently move their hands apart and lose the zero reference.

"Measurement Frame" can be built to aid in keeping the reference point stable to improve the accuracy of the measurements.

Slippage

Rounding

GMP is to round measurements that fall between two graduations in favor of the packer.

4.3. Paper Plates and Sanitary Paper Products

4.3. Paper Plates and Sanitary Paper Products

GMP: Do not distort the item's shape during measurement.
GMP: The material should not be under tension when measured.

4.4. Special Test Requirements for Packages Labeled by Linear or Square Measure (area)

Some products labeled by length (such as yarn) or area, often require the application of tension to the ends of the product in order to straighten the product before measuring.

Unless specified in a recognized industry standard, the material should not be under tension.
The item should lay flat and smooth without wrinkles, creases or folds.

Polyethylene Products

Polyethylene Products

Most polyethylene products are sold by length, width, thickness, area, and net weight.

Deadweight Dial Micrometer

 (or equal)2.13.4. Declaration of Weight. - The labeled statement of weight for polyethylene sheeting and film products under Sections 2.13.1.1. Sheeting and film, and 2.13.3.1. Bags, shall be equal to or greater than the weight calculated by using the formula below.
This is a Method of Sale Violation.
For U.S. customary dimensions:

$W=T \times A \times 0.03613 \times D$, where:

$W=$ net weight in pounds
$T=$ nominal thickness in inches;
$A=$ nominal length in inches times nominal width [NOTE 6, page 126] in inches
$D=\underline{\text { minimum density }}$ in grams per cubic centimeter as defined by the latest version of ASTM Standard D1505, Standard Test Method for Density of Plastics by the Density - Gradient Technique".
0.03613 is a factor for converting $\mathrm{g} / \mathrm{cm}^{3}$ to $\mathrm{lb} / \mathrm{in}^{3}$

Section 4.6. Packages Labeled by Linear or Square (Area) Measure

-

Section 4.7. Baler Twine - Test Procedure for Length

2.25. Baler Twine. - Baler twine shall be sold on the basis of length in meters or feet, and net mass or weight by kilograms or pounds.

4.8. Procedure for Checking the Area Measurement of Chamois

Chamois is natural leather made from skins of sheep and lambs that have been oil-tanned.
Chamois are irregularly shaped, which makes area measurement difficult.

Special Measurements

How to Measure a Bolt

(length and diameter)

Thread Diameter (T). Also called major diameter.
Shank Diameter (S).
Root Diameter (R). Also called minor diameter.
The fastener diameter is almost always the Thread Diameter (or major diameter).

Head Diameter

Head Above Surface

Countersunk Head

Oval Head

It common for people to refer to hex bolts by the size of the head measured across the flats (this is also the size wrench the bolt uses).
This is incorrect and should be avoided for two reasons.
Miscommunication can result in getting a much larger bolt than needed.
Head size can vary for the same thread diameter, especially in metric bolts, so even comparing heads to heads you may get an incompatible bolt.

How to Measure a Knife Blade

www.akti.org - how to measure a knife blade

- National Institute of Standards and Technology U.S. Department of Commerce

Softwood Lumber

"Dimensional Lumber"
Based on NIST Voluntary Product Standard PS 20 "American Softwood Lumber Standard"

Table 1. Softwood Lumber Sizes

Examples of minimum dressed sizes at the time of manufacture for both unseasoned (green) and dry lumber in the latest version of | the U.S. Department of Commerce in Voluntary Product Standard PS 20-15 | |
| :---: | :---: |
| Product Classification | Minimum Dressed Sizes** |

Product Classification (Nominal Size)	Minimum Dressed Sizes**			
	Unseasoned		Dry	
Inches	Inches	Millimeters	Inches	Millimeters
Surfaced Lumber*				
2×2	$19 / 16 \times 1^{9 / 16}$	40×40	$11 / 2 \times 11 / 2$	38×38
$2 \times 21 / 2$	$19 / 16 \times 2{ }^{1 / 16}$	40×52	$11 / 2 \times 2$	38×51
2×3	$19 / 16 \times 29 / 16$	40×65	$11 / 2 \times 21 / 2$	38×64
2×4	$19 / 16 \times 39 / 16$	40×90	$11 / 2 \times 31 / 2$	38×89
2×6	$19 / 16 \times 55 / 8$	40×143	$11 / 2 \times 51 / 2$	38×140
2×8	$19 / 16 \times 71 / 2$	40×190	$11 / 2 \times 71 / 4$	38×184
2×10	$19 / 16 \times 91 / 2$	40×241	$11 / 2 \times 91 / 4$	38×235
2×12	$19 / 16 \times 111 / 2$	40×292	$11 / 2 \times 11^{1 / 4}$	38×286
Board Lumber				
1×2	$25 / 32 \times 19 / 16$	20×40	$3 / 4 \times 11 / 2$	19×38
1×3	$25 / 32 \times 29 / 16$	20×65	$3 / 4 \times 21 / 2$	19×64
1×4	$25 / 32 \times 39 / 16$	20×90	$3 / 4 \times 31 / 2$	19×89
1×6	$25 / 32 \times 5 / 8$	20×143	$3 / 4 \times 51 / 2$	19×140
1×8	$25 / 32 \times 71 / 2$	20×190	$3 / 4 \times 71 / 4$	19×184
1×10	$25 / 32 \times 91 / 2$	20×241	$3 / 4 \times 91 / 4$	19×235
1×12	$25 / 32 \times 111 / 2$	20×292	$3 / 4 \times 111 / 4$	19×286

*The dry thicknesses of nominal 3 in and 4 in lumber are $21 / 2$ in $(64 \mathrm{~mm})$ and $31 / 2$ in $(89 \mathrm{~mm})$; unseasoned thicknesses are $2^{9 / 16}$ in $(65 \mathrm{~mm})$ and $39 / 16(90 \mathrm{~mm})$. Widths for these thicknesses are the same as shown above.
**PS 20-15-defines dry lumber as being 19% or less in moisture content and unseasoned lumber as being over 19% moisture content. The size of lumber changes approximately 1% for each 4% change in moisture content. Lumber stabilizes at approximately 15% moisture content under normal use conditions.

Electronic Caliper

Wood Moisture Meters

Structural Plywood

Based on NIST Voluntary Product Standard PS 1-19, "Structural Plywood"

Plywood Sheathing

Sanded Plywood

Plywood Siding

STRUCTURAL PLYWOOD

Measuring and Other Equipment

To measure the thickness of a structural plywood panel and wood-based structural-use panels: use a micrometer.

To determine the Width:
Take at least two measurements across the sheets width about $1 / 4$ of the distance from each end of the sheet (see drawing). Average the results.

Note: Measurements should not be made across the ends of the board or where it has a knot or surface defect.

To determine the sheet Length:
Take at least 2 measurements along the sheet length about one-quarter of the way from the center line to each edge of the sheet. Average the results.

Note: Measurements should not be made across the ends of the board or where it has a knot or surface

To determine the THICKNESS:
The average of at least 10 measurements shall be taken as the thickness of that panel.
Take thickness measurement at least 15 mm (6 in) from each edge of the panel.
Note: Measurements should not be made across the ends of the board or where it has a knot or surface defect.

Other Packaged Products Test Procedures

Flexible Tubing, Shoelaces, Textiles, Tarps, Bedding, Blankets and Rugs

TUBING - FLEXIBLE

Procedure

1. Secure one end of tubing with clamp.

2. Apply a constant pull of ten pounds.
3. Maintain constant pull for five minutes and measure the length of the flexible tubing while maintaining constant pull.

Shoelaces

Procedure

1. Apply steady $85 \mathrm{~g}(3 \mathrm{oz})$ pull to shoelace.
2. Measure total length, including the tips.

Textiles, Tarps, Sleeping Bags, Bedding, Blankets and Rugs

Equipment

1. Linear measure.
2. Four 2-inch "C" clamps, or four weights.
3. Plastic drop cloth - to protect commodity from being soiled.

When inspecting for length, width or area, spread the product and remove all wrinkles without stretching the material.
Ruffles, fringes, etc., are considered part of the product and must be included in the measurement.

LADDERS

ANSI - ASC A14.5-2007 - American National Standard for Ladders - Portable Reinforced
Plastic.

Section 6.6. Step Stools

Includes the height of the top cap (step) and feet.
Any rail or handle that extend above the top cap (step) are not included in the height (see A).

ANSI - ASC A14.2- 2007 - American National Standard for Ladders Portable Metal.

Natural Sponges

Good Measurement Practice

- Dimensions are determined with the sponge wet.

Templates should be constructed of rigid metal or plastic material. - circular openings should graduate in increments of one-half inch (one centimeter).

Measuring templates (see photo below for the currently used type templates):

187

When measured, the sponge is "classified" as a specific size when at least three (including two opposing) points of the sponge touch the template.

For banana sponges the size will be determined as shown below.

7 in (17 cm)

Summary

We covered:

Chapter 1 -General Information (7 pages)

Chapter 2 - Test Procedures - Packages Labeled by Weight - Gravimetric Testing
Chapter 3 - Test Procedures - For Packages Labeled by Volume
Chapter 4 - Test Procedures - Packages Labeled by Count, Linear Measure, and Thickness

NIST Handbooks 133 \& 130

www.nist.gov\pml\wmd
David Sefcik
david.sefcik@nist.gov, 301-975-4868
Lisa Warfield
lisa.warfield@nist.gov, 301-975-3308

SI Resources \& Information

http://www.nist.gov/metric
Elizabeth Benham
elizabeth.benham@nist.gov, 301-975-3690

Physical Measurement Laboratory
Office of Weights and Measures Laws and Metric Program

[^0]: *Notice: the mention of trade or brand names does not imply endorsement or recommendation by the U.S. Department of Commerce over similar products available from other manufacturers.

