GCE AS MARKING SCHEME

SUMMER 2018

AS (NEW)
CHEMISTRY - UNIT 1 2410U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

UNIT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS
 MARK SCHEME
 GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions
A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer
Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao	$=$	correct answer only
ecf	$=$	error carried forward
bod	$=$	benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
7.	(a)	(i)		van der Waals forces are stronger in iodine than in chlorine / more van der Waals forces in iodine than in chlorine (1) iodine has more electrons than chlorine (1) therefore more energy needed to overcome forces / higher melting temperature (1)	3			3		
		(ii)	aluminium has more valence electrons than sodium therefore stronger metallic bonds	1			1			
		(iii)	silicon has a giant molecular structure, phosphorus only has weak forces between the molecules	1			1			
	(b)		nitrogen is higher since it only has unpaired $2 p$ electrons, O has two unpaired and two paired $2 p$ electrons / $\begin{equation*} N 1 s^{2} 2 s^{2} 2 p^{3}, O 1 s^{2} 2 s^{2} 2 p^{4} \tag{1} \end{equation*}$ repulsion between paired electrons makes it easier to remove one of the electrons / takes more energy to remove unpaired electron (1)	2			2			
	(c)		percentage abundance $121=57 \%, 123=43 \%$ (1) accept $121=28.5,123=21.5$ if divided by 50 in calculation relative atomic mass $=121.9$		2		2	2		

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8.	(a)	(i)		furthest line to the left	1			1		
		(ii)	electron falls from higher energy levels to lower energy levels / to $\mathrm{n}=2$ (1) the difference between any two energy levels is fixed / energy levels are quantised (1)	2			2			
	(b)	(i)	this is the energy required to remove an electron from an atom of hydrogen / for an electron to go from $n=1$ to $n=\infty$ (1) in the gaseous state (1) [award (1) for correct equation with state symbols but no explanation]	2			2			
		(ii)	$\begin{align*} & \mathrm{E}=\mathrm{hf} \tag{1}\\ & \mathrm{f}=2.18 \times 10^{-18} / 6.63 \times 10^{-34} \tag{1}\\ & \mathrm{f}=3.29 \times 10^{15} \tag{1} \end{align*}$	1	2		3	3		
	(c)		$\begin{align*} & V_{2}=\frac{163 \times 273}{398}=112 \tag{1}\\ & n \text { hydrazine }=112 / 22400=0.00500 \tag{1}\\ & M_{\mathrm{r}} \text { hydrazine }=0.160 / 0.005=32 \\ & \text { so molecular formula is } \mathrm{N}_{2} \mathrm{H}_{4} \tag{1}\\ & \text { ecf possible } \\ & \text { credit alternative method using } \mathrm{pV}=\mathrm{nRT} \end{align*}$		2	1	3	2		

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(d)	(i)		$\begin{gathered} \mathrm{H} \times \stackrel{x \times}{\underset{\sim}{x} \times \stackrel{\times}{\mathrm{N}}} \underset{\mathrm{H}}{\mathrm{H}} \underset{\mathrm{H}}{ } \end{gathered}$ shared pair of electrons between N atoms (1) rest of electrons correct (1) accept all electrons represented as dots/crosses		2		2		
	(ii)	a covalent bond where the electrons are not shared equally between the atoms / unequal electron density	1			1			
(e)		$\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~N}_{2} \mathrm{H}_{5}^{+}+\mathrm{OH}^{-}$ accept $\mathrm{N}_{2} \mathrm{H}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~N}_{2} \mathrm{H}_{6}{ }^{2+}+2 \mathrm{OH}^{-}$		1		1			
		Question 8 total	7	7	1	15	5	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
9.	(a)			$\frac{0.001}{0.500} \times 100=0.20 \%$ award (1) if one error made e.g. failure to convert mg to g		2		2	1	2
	(b)	(i)	it is the number of moles of ascorbic acid used that is important / concentration of acid is not important			1	1		1	
		(ii)	heated to ensure that all the acid / the tablet dissolved		1		1		1	
	(c)		total volume of titres $=26.73 \times 3=80.20 \mathrm{~cm}^{3} /$ third titre is $26.80 \mathrm{~cm}^{3}$ so final reading must be $27.00 \mathrm{~cm}^{3}$ do not accept $26.99 \mathrm{~cm}^{3}$		1	1	2	2	2	
	(d)		volume of sodium hydroxide added would be less (1) since fewer moles of acid present / calculated mass of acid in tablet would be less (1) award (2) for volume NaOH added more since OH groups in ascorbic acid oxidised to acid		1	1	2		2	
	(e)		moles $\mathrm{NaOH}=2.67(3) \times 10^{-3}$ which is equal to moles acid (1) $\begin{equation*} \text { mass acid }=0.4704 \mathrm{~g} \tag{1} \end{equation*}$ percentage acid $=94.1$		3		3	2		

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(f)	(i)		$\begin{align*} & {\left[\mathrm{H}^{+}\right]=0.02} \\ & \mathrm{pH}=1.7 \tag{1}\\ & \text { award (1) for } \mathrm{pH}=2 \end{align*}$		2		2	2	
	(ii)	oxidation state Mn changes from IV to II therefore it is reduced (1) oxidation state Cl changes from -1 to 0 therefore it is oxidised (1)		2		2			
		Question 9 total	0	12	3	15	7	8	

Question				Marking details	Marks available					
					AO1	AO2	AO3	Total	Maths	Prac
11.	(a)	(i)		Indicative content - add acid (not sulfuric/hydrochloric) to prove if carbonate present - if fizzing/effervescence carbonate present - if carbonate present, add acid until no more fizzing - divide solution into two (accept divide solution before adding acid) - add barium chloride to one half - precipitate shows that sulfate is present - add siver nitrate to other half - precipitate shows that chloride is present 5-6 marks Devises a plan with relevant observations and conclusions that unam present. The candidate constructs a relevant, coherent and logically structured content. A sustained and substantiated line of reasoning is evident and accurately throughout. 3-4 marks Devises a plan with relevant observations and conclusions that show The candidate constructs a coherent account including most of the k evident in the linking of key points and use of scientific conventions and 1-2 marks Devises a simple plan with some observations and conclusions that The candidate attempts to link at least two relevant points from the in inclusion of irrelevant material. There is some evidence of appropriat 0 marks The candidate does not make any attempt or give an answer worthy of cred	2 iguous metho scient that tw elem d voca ows th cative use of	hows cludin conve three of the ary ar ne of tent. ntific	2 one, key ns and ons icative nerally anion renc ventio	6 or thre ents cabul be pr ntent. und. uld be limited and vo	anions he indic are us ent. me rea resent. y omiss bulary.	6 e ning is and/or

UNIT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	6	3	1	10	1	1
7.	7	2	3	12	2	0
8.	7	7	1	15	5	0
9.	0	12	3	15	7	8
10.	2	9	2	13	7	0
11.	5	4	6	15	0	10
Totals	27	37	16	80	22	19

