Question	Marking Guidance	Mark	Comments
1(a)	(Enthalpy change to) break the bond in 1 mol of chlorine (molecules)	1	Allow (enthalpy change to) convert 1 mol of chlorine molecules into atoms Do not allow energy or heat instead of enthalpy, allow heat energy
	To form (2 mol of) gaseous chlorine atoms / free radicals	1	Can score 2 marks for 'Enthalpy change for the reaction': $CI_2(g) \rightarrow 2CI(g)$
			Equation alone gains M2 only
			Can only score M2 if 1 mol of chorine molecules used in M1 (otherwise it would be confused with atomisation enthalpy)
			Any mention of ions, $CE = 0$
1(b)	(For atomisation) only 1 mol of chlorine atoms, not 2 mol (as in bond enthalpy) is formed / equation showing ½ mol Chlorine giving 1 mol of atoms	1	Allow breaking of one bond gives two atoms
			Allow the idea that atomisation involves formation of 1 mol of atoms not 2 mol
			Allow the idea that atomisation of chlorine involves half the amount of molecules of chlorine as does dissociation
			Any mention of ions, CE = 0
1(c)(i)	$\frac{1}{2}F_2(g) + \frac{1}{2}CI_2(g) \rightarrow CIF(g)$	1	

1(c)(ii)	$\Delta H = \frac{1}{2} E(F-F) + \frac{1}{2} E(CI-CI) - E(CI-F)$	1	Allow correct cycle
	$E(CI-F) = \frac{1}{2}E(F-F) + \frac{1}{2}E(CI-CI) - \Delta H$		
	= 79 + 121 - (-56)		
	$= 256 (kJ mol^{-1})$	1	-256 scores zero Ignore units even if wrong
1(c)(iii)	$1/_2CI_2 + 3/2F_2 \rightarrow CIF_3$	1	If equation is doubled CE=0 unless correct answer gained
	$\Delta H = \frac{1}{2} E(CI-CI) + \frac{3}{2} E(F-F) - 3E(CI-F)$		by /2 at end This would score M1
	= 121 + 237 - 768 / (or 3 x value from (c)(ii))	1	This also scores M1 (note = 358 – 768)
	$= -410 (kJ mol^{-1})$	1	If given value of 223 used ans = -311 Allow 1/3 for +410 and +311
1(c)(iv)	(Bond enthalpy of) <u>CI-F</u> bond in CIF is different from that in CIF_3	1	Allow <u>CI-F</u> bond (enthalpy) is different in different compounds (QoL)
1(d)	NaCI is ionic / not covalent	1	

Question	Marking Guidance	Mark	Comments
2(a)	$MgCI_2(s) \rightarrow Mg^{2+}(g) + 2CI^{-}(g)$	1	
2(b)	The magnesium <u>ion</u> is smaller / has a smaller radius / greater charge density (than the calcium ion)	1	If not ionic or if molecules / IMF / metallic / covalent / bond pair / electronegativity mentioned, CE = 0
	Attraction between ions / to the chloride ion stronger	1	Allow ionic bonds stronger
			Do not allow any reference to polarisation or covalent character
			Mark independently
2(c)	The oxide ion has a greater charge / charge density than the chloride ion	1	If not ionic or if molecules / IMF / metallic / covalent / bond pair mentioned, $CE = 0$
			Allow oxide ion smaller than chloride ion
	So it attracts the magnesium ion more strongly	1	Allow ionic bonds stronger
			Mark independently
2(d)	$\Delta H_{\text{solution}} = \Delta H_{\text{L}} + \Sigma \Delta H_{\text{hyd}} \text{ Mg}^{2+} \text{ ions } + \Sigma \Delta H_{\text{hyd}} \text{ CI}^{-} \text{ ions}$	1	Allow correct cycle
	$-155 = 2493 + \Delta H_{hyd} \text{ Mg}^{2+} \text{ ions} - 2 \times 364$		
	$\Delta H_{\rm hyd} {\rm Mg}^{2+} {\rm ions} = -155 - 2493 + 728$	1	
	$= -1920 (kJ mol^{-1})$	1	Ignore units
			Allow max 1 for +1920
			Answer of $+ \text{ or } -1610, \text{ CE} = 0$
			Answer of -2284, CE = 0

2(e)	Water is polar / O on water has a delta negative charge Mg ²⁺ ion / +ve ion / + charge attracts (negative) O on a water molecule	1	Allow \underline{O} (not water) has lone pairs (can score on diagram) Allow Mg ²⁺ attracts lone pair(s) M2 must be stated in words (QoL) Ignore mention of co-ordinate bonds CE = 0 if O ²⁻ or water ionic or H bonding
2(f)	Magnesium oxide reacts with water / forms Mg(OH) ₂	1	Allow MgO does not dissolve in water / sparingly soluble / insoluble

Question	Marking Guidance	Mark	Comments
3(a)	$\Delta G = \Delta H - T \Delta S$	1	Or expression $\Delta H - T \Delta S$ must be evaluated
	If ΔG / expression <=0 reaction is feasible	1	Or any explanation that this expression ≤ 0 Do not allow just $\Delta G = 0$
3(b)	The molecules become more disordered / random when water changes from a liquid to a gas / evaporates	1	For M1 must refer to change in state AND increase in disorder
	Therefore the entropy change is positive / Entropy increases	1	Only score M2 if M1 awarded
	ΤΔS>ΔΗ	1	Allow M3 for T is large / high (provided M2 is scored)
	ΔG<0	1	Mark M3, M4 independently
3(c)(i)	Condition is $T = \Delta H / \Delta S$	1	
	$\Delta S = 189 - 205/2 - 131 = -44.5;$	1	
	$\Delta H = -242$ therefore $T = (-242 \times 1000)/-44.5)$	1	
	= 5438K (allow 5400 – 5500K)	1	Units essential (so 5438 alone scores 3 out of 4) 2719K allow score of 2 5.4 (K) scores 2 for M1 and M2 only 1646 (K) scores 1 for M1 only
3(c)(ii)	It would decompose into hydrogen and oxygen / its elements	1	Can score this mark if mentioned in M2
	Because ΔG for this reaction would be <= 0	1	Allow the reverse reaction / decomposition is feasible Only score M2 if M1 awarded

3(d)	$\Delta H = T \Delta S$	1	Allow correct substituted values instead of symbols
	$\Delta S = 70-189 = -119 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$	1	
	$\Delta H = (-119 \times 373)/1000 = -44.4 \text{ kJ} (\text{mol}^{-1}) \text{ (allow -44 to -45)}$	1	Allow -44000 to -45000 J (mol ⁻¹)
			Answer must have correct units of kJ or J

Question	Marking Guidance	Mark	Comments
4(a)	Na ₂ O is an ionic <u>lattice</u> / giant ionic / ionic crystal	1	CE= 0 if molecules, atoms, metallic mentioned
			Mention of electronegativity max 1 out of 2
	With strong forces of attraction between ions	1	Allow strong ionic bonds/lots of energy to separate ions
4(b)	SO_3 is a larger molecule than SO_2	1	Allow greater M_r / surface area
	So van der Waals' forces between molecules are stronger	1	Any mention of ions, CE= 0
4(c)	Ionic	1	Do not allow ionic with covalent character
	Contains <u>O²⁻</u> ions / oxide ions	1	Equations of the form $O^{2-} + H^+ \rightarrow OH^- / O^{2-} + 2H^+ \rightarrow H_2O / H_2O^-$
	These / O^{2-} ions (accept protons to) form OH^{-} / hydroxide / water	1	$O^{2-} + H_2O \rightarrow 2OH^-$ score M2 and M3
	(must score M2 to gain M3)		
4(d)(i)	$SO_2 + H_2O \rightarrow H^+ + HSO_3^-$	1	Allow $2H^+ + SO_3^{2-}$ but no ions, no mark
			Only score (d)(ii) if (d)(i) correct
4(d)(ii)	Reaction is an equilibrium / reversible reaction displaced mainly to the left / partially ionised / dissociated	1	Allow reaction does not go to completion
4(e)	SiO ₂ reacts with bases / NaOH / CaO / CaCO ₃	1	Ignore incorrect formulae for silicate

Question	Marking Guidance	Mark	Comments
5(a)	Yellow (solution)	1	
	Orange <u>solution</u>	1	
	$2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$	1	Allow equation with H_2SO_4
5(b)	Yellow / purple (solution)	1	Allow orange / brown (solution)
	Brown precipitate / solid	1	
	$\left[Fe(H_2O)_6\right]^{3+} + 3OH^- \rightarrow Fe(H_2O)_3(OH)_3 + 3H_2O$	1	
5(c)	Blue (solution)	1	Allow pale blue
	Dark / deep blue <u>solution</u>	1	Ignore any reference to blue ppt
	$[Cu(H_2O)_6]^{2+} + 4NH_3 \rightarrow [Cu(H_2O)_2(NH_3)_4]^{2+} + 4H_2O$	1	Can be in two equations
5(d)	Colourless (solution)	1	
	White precipitate / solid	1	Do not allow grey
	Bubbles / effervescence / gas evolved / given off	1	Do not allow just CO ₂
	$2[AI(H_2O)_6]^{3+} + 3CO_3^{2-} \rightarrow 2AI(H_2O)_3(OH)_3 + 3CO_2 + 3H_2O$	1	

Question	Marking Guidance	Mark	Comments
6(a)	Variable / many oxidation states	1	
6(b)	V_2O_5 + $SO_2 \rightarrow V_2O_4$ + SO_3	1	Equations can be in either order Allow multiples
	$V_2O_4 + \frac{1}{2}O_2 \rightarrow V_2O_5$	1	
6(c)(i)	In a different phase / state from reactants	1	
6(c)(ii)	Impurities poison / deactivate the catalyst / block the active sites	1	Allow (adsorbs onto catalyst AND reduces surface area)
6(d)(i)	The catalyst is a reaction product	1	
6(d)(ii)	Mn ²⁺ / Mn ³⁺ ion(s)	1	
6(d)(iii)	$4Mn^{2+} + MnO_4^- + 8H^+ \rightarrow 5Mn^{3+} + 4H_2O$	1	Equations can be in either order
	$2Mn^{3+} + C_2O_4^{2-} \rightarrow 2Mn^{2+} + 2CO_2$	1	

Question	Marking Guidance	Mark	Comments
7(a)	Diagram of an Fe ³⁺ /Fe ²⁺ electrode that includes the following parts labelled:		
	Solution containing Fe ²⁺ and Fe ³⁺ ions	1	
	Platinum electrode connected to one terminal of a voltmeter	1	Must be in the solution of iron ions (one type will suffice)
	Salt bridge	1	Do not allow incorrect material for salt bridge and salt bridge must be in the solution (ie it must be shown crossing a meniscus)
	298K and 100kPa / 1 bar	1	
	all solutions unit / 1 mol dm ⁻³ concentration	1	Allow zero current / high resistanve voltmeter as alternative to M4 or M5
			Ignore hydrogen electrode even if incorrect
7(b)	Cu^{2+} + Fe \rightarrow Cu + Fe ²⁺	1	Ignore state symbols
	Fe Fe ²⁺ Cu ²⁺ Cu correct order	1	Allow Cu Cu ²⁺ Fe ²⁺ Fe
	Phase boundaries and salt bridge correct, no Pt	1	Allow single/double dashed line for salt bridge
			Penalise phase boundary at either electrode end
			Can only score M3 if M2 correct
	Copper electrode	1	Allow any reference to copper

7(c)	$E^{\circ} \operatorname{Au}^{+}(/\operatorname{Au}) > E^{\circ} \operatorname{O}_{2}(/\operatorname{H}_{2}\operatorname{O})$	1	Allow <i>E</i> cell/e.m.f. = 0.45 V Allow 1.68 > 1.23
	So Au ⁺ ions will oxidise water / water reduces Au ⁺	1	QoL
	$2Au^+ + H_2O \rightarrow 2Au + 1/2O_2 + 2H^+$	1	Allow multiples
7(d)	$E^{\circ} \operatorname{Ag}^{+}(/\operatorname{Ag}) > E^{\circ} \operatorname{Fe}^{2+}(/\operatorname{Fe})$	1	Allow E cell/e.m.f. = 1.24
			Allow 0.80 > -0.44
	And $E^{e} Ag^{+}(/Ag) > E^{e} Fe^{3+}(/Fe^{2+})$	1	Allow E cell/e.m.f. = 0.03
			Allow 0.80 > 0.77
	So silver ions will oxidise iron (to iron(II) ions) and then oxidise Fe(II) ions (further to Fe(III) ions producing silver metal)	1	Allow Ag ⁺ ions will oxidise iron to iron(III)

Question	Marking Guidance	Mark	Comments
8(a)	A ligand is an electron pair / lone pair donor	1	Allow uses lone / electron pair to form a co-ordinate bond
	A bidentate ligand donates two electron pairs (to a transition metal ion) from different atoms / two atoms (on the same molecule / ion)	1	QoL
8(b)	CoCl ₄ ²⁻ diagram	1	Four chlorines attached to Co with net 2- charge correct
	Tetrahedral shape	1	Charge can be placed anywhere, eg on separate formula Penalise excess charges
		1	Allow 109° to 109.5°
	$\begin{bmatrix} Co(NH_3)_6 \end{bmatrix}^{2+} \text{ diagram} \begin{bmatrix} NH_3 \\ NH_3 \end{bmatrix} \xrightarrow{NH_3} NH_3 \end{bmatrix}^{2+}$	1	Six ammonia / NH_3 molecules attached to Co with 2+ charge correct
	Octahedral shape NH3 Co NH3 90° NH3 NH3	1	Allow 180° if shown clearly on diagram
			CE= 0 if wrong complex but mark on if only charge is incorrect
8(c)	In different complexes the <u>d</u> orbitals / <u>d</u> electrons (of the cobalt) will have different energies / <u>d</u> orbital splitting will be different	1	
	Light / energy is absorbed causing an electron to be excited	1	
	Different frequency / wavelength / colour of light will be absorbed / transmitted / reflected	1	

8(d)	1 mol of H_2O_2 oxidises 2 mol of Co^{2+}	1	Or $H_2O_2 + 2Co^{2+} \rightarrow 2OH^- + 2Co^{3+}$
	$M_{\rm r} \operatorname{CoSO_4.7H_2O} = 281$	1	If M _r wrong, max 3 for M1, M4, M5
	Moles $Co^{2+} = 9.87/281 = 0.03512$	1	
	Moles $H_2O_2 = 0.03512/2 = 0.01756$	1	M4 is method mark for (M3)/2 (also scores M1)
	Volume H_2O_2 = (moles × 1000)/concentration = 0.01756 × 1000)/5.00		
	$= 3.51 \text{ cm}^3 / (3.51 \text{ x} 10^{-3} \text{ dm}^3)$	1	Units essential for answer
			M5 is method mark for (M4) x 1000/5 Allow 3.4 to 3.6 cm^3
			If no 2:1 ratio or ratio incorrect Max 3 for M2, M3 & M5
			Note : Answer of 7 cm ³ scores 3 for M2, M3, M5 (and any other wrong ratio max 3)
			Answer of 16.8 cm ³ scores 3 for M1, M4, M5 (and any other wrong M_r max 3)
			Answer of 33.5 cm ³ scores 1 for M5 only (so wrong M_r AND wrong ratio max 1)