| Question | Marking Guidance | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 1(a) | (Enthalpy change to) break the bond in 1 mol of chlorine (molecules) <br> To form (2 mol of) gaseous chlorine atoms / free radicals |  | Allow (enthalpy change to) convert 1 mol of chlorine molecules into atoms <br> Do not allow energy or heat instead of enthalpy, allow heat energy <br> Can score 2 marks for 'Enthalpy change for the reaction': $\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{~g})$ <br> Equation alone gains M2 only <br> Can only score M2 if 1 mol of chorine molecules used in M1 (otherwise it would be confused with atomisation enthalpy) <br> Any mention of ions, CE $=0$ |
| 1(b) | (For atomisation) only 1 mol of chlorine atoms, not 2 mol (as in bond enthalpy) is formed / equation showing $1 / 2 \mathrm{~mol}$ Chlorine giving 1 mol of atoms | 1 | Allow breaking of one bond gives two atoms <br> Allow the idea that atomisation involves formation of 1 mol of atoms not 2 mol <br> Allow the idea that atomisation of chlorine involves half the amount of molecules of chlorine as does dissociation <br> Any mention of ions, CE = 0 |
| 1(c)(i) | 1/2F2(g) ${ }^{1} / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{ClF}(\mathrm{g})$ | 1 |  |

\begin{tabular}{|c|c|c|c|}
\hline 1(c)(ii) \& $$
\begin{aligned}
& \Delta H=1 / 2 \mathrm{E}(\mathrm{~F}-\mathrm{F})+1 / 2 \mathrm{E}(\mathrm{Cl}-\mathrm{Cl})-\mathrm{E}(\mathrm{Cl}-\mathrm{F}) \\
& \mathrm{E}(\mathrm{Cl}-\mathrm{F})=1 / 2 \mathrm{E}(\mathrm{~F}-\mathrm{F})+1 / 2 \mathrm{E}(\mathrm{Cl}-\mathrm{Cl})-\Delta H \\
& =79+121-(-56) \\
& =256\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
\end{aligned}
$$ \& 1

1 \& | Allow correct cycle |
| :--- |
| -256 scores zero |
| Ignore units even if wrong | \\

\hline 1(c)(iii) \& $$
\begin{aligned}
& 1 / 2 \mathrm{Cl}_{2}+3 / 2 \mathrm{~F}_{2} \rightarrow \mathrm{ClF}_{3} \\
& \Delta H=1 / 2 \mathrm{E}(\mathrm{Cl}-\mathrm{Cl})+3 / 2 \mathrm{E}(\mathrm{~F}-\mathrm{F})-3 \mathrm{E}(\mathrm{Cl}-\mathrm{F}) \\
& =121+237-768 /(\text { or } 3 \times \text { value from (c)(ii)) } \\
& =-410\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
\end{aligned}
$$ \& 1

1 \& | If equation is doubled $C E=0$ unless correcr answer gained by $/ 2$ at end |
| :--- |
| This would score M1 |
| This also scores M1 (note $=358-768$ ) |
| If given value of 223 used ans $=-311$ |
| Allow $1 / 3$ for +410 and +311 | \\

\hline 1(c)(iv) \& (Bond enthalpy of) $\mathrm{Cl}-\mathrm{F}$ bond in ClF is different from that in $\mathrm{ClF}_{3}$ \& 1 \& Allow $\mathrm{Cl}-\mathrm{F}$ bond (enthalpy) is different in different compounds (QoL) \\
\hline 1(d) \& NaCl is ionic / not covalent \& 1 \& \\
\hline
\end{tabular}

| Question | Marking Guidance | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 2(a) | $\mathrm{MgCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{g})$ | 1 |  |
| 2(b) | The magnesium ion is smaller / has a smaller radius / greater charge density (than the calcium ion) <br> Attraction between ions / to the chloride ion stronger |  | If not ionic or if molecules / IMF / metallic / covalent / bond pair / electronegativity mentioned, $\mathrm{CE}=0$ <br> Allow ionic bonds stronger <br> Do not allow any reference to polarisation or covalent character <br> Mark independently |
| 2(c) | The oxide ion has a greater charge / charge density than the chloride ion <br> So it attracts the magnesium ion more strongly | 1 | If not ionic or if molecules / IMF / metallic / covalent / bond pair mentioned, $\mathrm{CE}=0$ <br> Allow oxide ion smaller than chloride ion <br> Allow ionic bonds stronger <br> Mark independently |
| 2(d) | $\begin{aligned} & \Delta H_{\text {solution }}=\Delta H_{\mathrm{L}}+\Sigma \Delta H_{\text {hyd }} \mathrm{Mg}^{2+} \text { ions }+\Sigma \Delta H_{\text {hyd }} \mathrm{Cl}^{-} \text {ions } \\ & -155=2493+\Delta H_{\text {hyd }} \mathrm{Mg}^{2+} \text { ions }-2 \times 364 \\ & \Delta H_{\text {hyd }} \mathrm{Mg}^{2+} \text { ions }=-155-2493+728 \\ & =-1920\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ | 1 <br> 1 | Allow correct cycle <br> Ignore units <br> Allow max 1 for +1920 <br> Answer of + or -1610, CE $=0$ <br> Answer of -2284, CE $=0$ |


| 2(e) | Water is polar / O on water has a delta negative charge <br> $\mathrm{Mg}^{2+}$ ion / + ve ion / + charge attracts (negative) O on a water <br> molecule | 1 | 1 |
| :---: | :--- | :---: | :--- | | Allow $\underline{\mathrm{O} \text { (not water) has lone pairs (can score on diagram) }}$Allow $\mathrm{Mg}^{2+}$ attracts lone pair(s) <br> M 2 must be stated in words (QoL) <br> Ignore mention of co-ordinate bonds <br> $\mathrm{CE}=0$ if $\mathrm{O}^{2-}$ or water ionic or H bonding |
| :--- |
| 2(f) |
| Magnesium oxide reacts with water / forms $\mathrm{Mg}(\mathrm{OH})_{2}$ |


| Question | Marking Guidance | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 3(a) | $\Delta G=\Delta H-T \Delta S$ <br> If $\Delta G$ / expression $<=0$ reaction is feasible | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | Or expression $\Delta H-T \Delta S$ must be evaluated <br> Or any explanation that this expression $<=0$ <br> Do not allow just $\Delta G=0$ |
| 3(b) | The molecules become more disordered / random when water changes from a liquid to a gas / evaporates <br> Therefore the entropy change is positive / Entropy increases <br> $T \Delta S>\Delta H$ <br> $\Delta \mathrm{G}<0$ |  | For M1 must refer to change in state AND increase in disorder <br> Only score M2 if M1 awarded <br> Allow M3 for $T$ is large / high (provided M2 is scored) <br> Mark M3, M4 independently |
| 3(c)(i) | Condition is $T=\Delta H / \Delta S$ $\begin{aligned} & \Delta S=189-205 / 2-131=-44.5 ; \\ & \Delta H=-242 \text { therefore } T=(-242 \times 1000) /-44.5) \\ & =5438 \mathrm{~K} \text { (allow } 5400-5500 \mathrm{~K}) \end{aligned}$ | 1 <br> 1 <br> 1 <br> 1 | Units essential (so 5438 alone scores 3 out of 4) 2719 K allow score of 2 <br> 5.4(K) scores 2 for M1 and M2 only <br> 1646 (K) scores 1 for M1 only |
| 3(c)(ii) | It would decompose into hydrogen and oxygen / its elements Because $\Delta G$ for this reaction would be $<=0$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | Can score this mark if mentioned in M2 <br> Allow the reverse reaction / decomposition is feasible Only score M2 if M1 awarded |

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER 21 MARK SCHEME

| 3(d) | $\Delta H=T \Delta S$ | 1 | Allow correct substituted values instead of symbols |
| :---: | :--- | :---: | :---: |
|  | $\Delta S=70-189=-119 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ | 1 |  |
|  | $\Delta H=(-119 \times 373) / 1000=-44.4{\mathrm{~kJ}\left(\mathrm{~mol}^{-1}\right)(\text { allow }-44 \mathrm{to}-45)}^{1}$ | Allow -44000 to $-45000 \mathrm{~J}\left(\mathrm{~mol}^{-1}\right)$ <br> Answer must have correct units of kJ or J |  |


| Question | Marking Guidance | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 4(a) | $\mathrm{Na}_{2} \mathrm{O}$ is an ionic lattice / giant ionic / ionic crystal <br> With strong forces of attraction between ions | 1 <br> 1 | $C E=0$ if molecules, atoms, metallic mentioned <br> Mention of electronegativity max 1 out of 2 <br> Allow strong ionic bonds/lots of energy to separate ions |
| 4(b) | $\mathrm{SO}_{3}$ is a larger molecule than $\mathrm{SO}_{2}$ <br> So van der Waals' forces between molecules are stronger | 1 <br> 1 | Allow greater $M_{\mathrm{r}}$ / surface area <br> Any mention of ions, $\mathrm{CE}=0$ |
| 4(c) | Ionic <br> Contains $\underline{\mathrm{O}}^{2-}$ ions / oxide ions <br> These / $\mathrm{O}^{2-}$ ions (accept protons to) form $\mathrm{OH}^{-}$/ hydroxide / water (must score M2 to gain M3) | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | Do not allow ionic with covalent character <br> Equations of the form $\mathrm{O}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{OH}^{-} / \mathrm{O}^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O} /$ $\mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-}$score M2 and M3 |
| 4(d)(i) | $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{HSO}_{3}^{-}$ | 1 | Allow $2 \mathrm{H}^{+}+\mathrm{SO}_{3}{ }^{2-}$ but no ions, no mark Only score (d)(ii) if (d)(i) correct |
| 4(d)(ii) | Reaction is an equilibrium / reversible reaction displaced mainly to the left / partially ionised / dissociated | 1 | Allow reaction does not go to completion |
| 4(e) | $\mathrm{SiO}_{2}$ reacts with bases / $\mathrm{NaOH} / \mathrm{CaO} / \mathrm{CaCO}_{3}$ | 1 | Ignore incorrect formulae for silicate |


| Question | Marking Guidance | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 5(a) | Yellow (solution) <br> Orange solution $2 \mathrm{CrO}_{4}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O}$ | $1$ | Allow equation with $\mathrm{H}_{2} \mathrm{SO}_{4}$ |
| 5(b) | Yellow / purple (solution) <br> Brown precipitate / solid $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | Allow orange / brown (solution) |
| 5(c) | Blue (solution) <br> Dark / deep blue solution $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | Allow pale blue <br> Ignore any reference to blue ppt <br> Can be in two equations |
| 5(d) | Colourless (solution) <br> White precipitate / solid <br> Bubbles / effervescence / gas evolved / given off $2\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}^{2-} \rightarrow 2 \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ | 1 <br> 1 <br> 1 <br> 1 | Do not allow grey <br> Do not allow just $\mathrm{CO}_{2}$ |


| Question | Marking Guidance | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 6(a) | Variable / many oxidation states | 1 |  |
| 6(b) | $\mathrm{V}_{2} \mathrm{O}_{5}+\mathrm{SO}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{3}$ $\mathrm{V}_{2} \mathrm{O}_{4}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5}$ | 1 <br> 1 | Equations can be in either order Allow multiples |
| 6(c)(i) | In a different phase / state from reactants | 1 |  |
| 6(c)(ii) | Impurities poison / deactivate the catalyst / block the active sites | 1 | Allow (adsorbs onto catalyst AND reduces surface area) |
| 6(d)(i) | The catalyst is a reaction product | 1 |  |
| 6(d)(ii) | $\mathrm{Mn}^{2+} / \mathrm{Mn}^{3+}$ ion(s) | 1 |  |
| 6(d)(iii) | $\begin{aligned} & 4 \mathrm{Mn}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow 5 \mathrm{Mn}^{3+}+4 \mathrm{H}_{2} \mathrm{O} \\ & 2 \mathrm{Mn}^{3+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+2 \mathrm{CO}_{2} \end{aligned}$ | 1 | Equations can be in either order |


| Question | Marking Guidance | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 7(a) | Diagram of an $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ electrode that includes the following parts labelled: <br> Solution containing $\mathrm{Fe}^{2+}$ and $\mathrm{Fe}^{3+}$ ions <br> Platinum electrode connected to one terminal of a voltmeter <br> Salt bridge <br> 298 K and $100 \mathrm{kPa} / 1 \mathrm{bar}$ <br> all solutions unit / $1 \mathrm{~mol} \mathrm{dm}^{-3}$ concentration | 1 <br> 1 <br> 1 <br> 1 <br> 1 | Must be in the solution of iron ions (one type will suffice) <br> Do not allow incorrect material for salt bridge and salt bridge must be in the solution (ie it must be shown crossing a meniscus) <br> Allow zero current / high resistanve voltmeter as alternative to M4 or M5 <br> Ignore hydrogen electrode even if incorrect |
| 7(b) | $\mathrm{Cu}^{2+}+\mathrm{Fe} \rightarrow \mathrm{Cu}+\mathrm{Fe}^{2+}$ <br> Fe\|Fe ${ }^{2+} \\| \mathrm{Cu}^{2+} \mid \mathrm{Cu}$ correct order <br> Phase boundaries and salt bridge correct, no Pt <br> Copper electrode | 1 <br> 1 <br> 1 <br> 1 | Ignore state symbols <br> Allow $\mathrm{CuI}_{\mathrm{Cu}}{ }^{2+}\| \| \mathrm{Fe}^{2+} \mid \mathrm{Fe}$ <br> Allow single/double dashed line for salt bridge <br> Penalise phase boundary at either electrode end <br> Can only score M3 if M2 correct <br> Allow any reference to copper |


| 7(c) | $E^{\ominus} \mathrm{Au}^{+}(/ \mathrm{Au})>E^{\ominus} \mathrm{O}_{2}\left(/ \mathrm{H}_{2} \mathrm{O}\right)$ <br> So $\mathrm{Au}^{+}$ions will oxidise water / water reduces $\mathrm{Au}^{+}$ $2 \mathrm{Au}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Au}+1 / 2 \mathrm{O}_{2}+2 \mathrm{H}^{+}$ | 1 1 1 | Allow $E$ cell/e.m.f. $=0.45 \mathrm{~V}$ <br> Allow $1.68>1.23$ <br> QoL <br> Allow multiples |
| :---: | :---: | :---: | :---: |
| 7(d) | $E^{\ominus} \mathrm{Ag}^{+}(/ \mathrm{Ag})>E^{\ominus} \mathrm{Fe}^{2+}(/ \mathrm{Fe})$ <br> And $E^{\ominus} \mathrm{Ag}^{+}(/ \mathrm{Ag})>E^{\ominus} \mathrm{Fe}^{3+}\left(/ \mathrm{Fe}^{2+}\right)$ <br> So silver ions will oxidise iron (to iron(II) ions) and then oxidise Fe (II) ions (further to Fe (III) ions producing silver metal) | 1 1 1 | Allow $E$ cell/e.m.f. $=1.24$ <br> Allow $0.80>-0.44$ <br> Allow $E$ cell/e.m.f. $=0.03$ <br> Allow $0.80>0.77$ <br> Allow $\mathrm{Ag}^{+}$ions will oxidise iron to iron(III) |


| Question | Marking Guidance | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 8(a) | A ligand is an electron pair / lone pair donor <br> A bidentate ligand donates two electron pairs (to a transition metal ion) from different atoms / two atoms (on the same molecule / ion) | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | Allow uses lone / electron pair to form a co-ordinate bond QoL |
| 8(b) | $\mathrm{CoCl}_{4}{ }^{2-}$ diagram Tetrahedral shape $109^{\circ} 28^{\prime}$ $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ diagram Octahedral shape $90^{\circ}$ |  | Four chlorines attached to Co with net 2- charge correct Charge can be placed anywhere, eg on separate formula Penalise excess charges <br> Allow $109^{\circ}$ to $109.5^{\circ}$ <br> Six ammonia / $\mathrm{NH}_{3}$ molecules attached to Co with 2+ charge correct <br> Allow $180^{\circ}$ if shown clearly on diagram <br> $\mathrm{CE}=0$ if wrong complex but mark on if only charge is incorrect |
| 8(c) | In different complexes the $\underline{d}$ orbitals / $\underline{d}$ electrons (of the cobalt) will have different energies / $\underline{d}$ orbital splitting will be different <br> Light / energy is absorbed causing an electron to be excited <br> Different frequency / wavelength / colour of light will be absorbed / transmitted / reflected | 1 <br> 1 <br> 1 |  |

\begin{tabular}{|c|c|c|c|}
\hline 8(d) \& \begin{tabular}{l}
1 mol of \(\mathrm{H}_{2} \mathrm{O}_{2}\) oxidises 2 mol of \(\mathrm{Co}^{2+}\) \\
\(M_{\mathrm{r}} \mathrm{CoSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}=281\) \\
Moles \(\mathrm{Co}^{2+}=9.87 / 281=0.03512\) \\
Moles \(\mathrm{H}_{2} \mathrm{O}_{2}=0.03512 / 2=0.01756\) \\
Volume \(\mathrm{H}_{2} \mathrm{O}_{2}=(\) moles \(\times 1000) /\) concentration
\[
=0.01756 \times 1000) / 5.00
\] \\
\(=3.51 \mathrm{~cm}^{3} /\left(3.51 \times 10^{-3} \mathrm{dm}^{3}\right)\)
\end{tabular} \& 1
1

1 \& | Or $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{Co}^{2+} \rightarrow 2 \mathrm{OH}^{-}+2 \mathrm{Co}^{3+}$ |
| :--- |
| If $M_{r}$ wrong, $\max 3$ for M1, M4, M5 |
| M4 is method mark for (M3)/2 (also scores M1) |
| Units essential for answer |
| M5 is method mark for (M4) $\times 1000 / 5$ |
| Allow 3.4 to $3.6 \mathrm{~cm}^{3}$ |
| If no 2:1 ratio or ratio incorrect Max 3 for M2, M3 \& M5 |
| Note : Answer of $7 \mathrm{~cm}^{3}$ scores 3 for M2, M3, M5 (and any other wrong ratio max 3 ) |
| Answer of $16.8 \mathrm{~cm}^{3}$ scores 3 for M1, M4, M5 (and any other wrong $M_{\mathrm{r}} \max 3$ ) |
| Answer of $33.5 \mathrm{~cm}^{3}$ scores 1 for M5 only (so wrong $M_{r}$ AND wrong ratio max 1) | \\

\hline
\end{tabular}

