Question	Marking Guidance	Mark	Comments
1(a)	Average/mean mass of 1 atom (of an element) 1/12 mass of one atom of ¹² C <i>OR</i> Average/mean mass of atoms of an element 1/12 mass of one atom of ¹² C <i>OR</i> Average/mean mass of atoms of an element x12 mass of one atom of ¹² C <i>OR</i> (Average) mass of one mole of atoms 1/12 mass of one mole of ¹² C <i>OR</i> (Weighted) average mass of all the isotopes 1/12 mass of one atom of ¹² C <i>OR</i> Average mass of an atom/isotope (compared to C-12) on a scale in which an atom of C-12 has a mass of 12	1 1	If moles and atoms mixed, max = 1 Mark top and bottom line independently. All key terms must be present for each mark. This expression = 2 marks.
1(b)	$\frac{(70x3) + (72x4) + 73 + (74x5)}{13} = \frac{941}{13}$ = 72.4	1 1 1	72.4 only.
1(c)	(72) <u>Ge*</u> or <u>germanium*</u>	1	Must show '+' sign. Penalise wrong mass number.

1(d)	70	1	If M1 incorrect or blank CE = 0/2 Ignore symbols and charge even if wrong.
	Low <u>est</u> mass / low <u>est</u> m/z	1	Accept lightest.
			Accept fewest neutrons.
1(e)	Electron(s) transferred / flow (at the detector)	1	M1 must refer to electron flow at the detector.
			If M1 incorrect CE = 0/2
	(From detector / plate) to the (+) ion	1	Do not allow from a charged plate.
1(f)	They do not have the same electron configuration / they have different number of electrons (in the outer shell)	1	Ignore electrons determine the properties of an atom.
	have different number of electrons (in the outer shell)		Ignore they are different elements or different number of protons.

2)

stion	Marking Guidance	Mark	Comments
(a)	Giant covalent / giant molecular / macromolecular	1	Not giant alone. Not covalent alone.
(b)	Shared pair of electrons / one electron from each C atom	1	
(c)	No delocalised / free / mobile electrons	1	Allow all (outer) electrons involved in (covalent) bonds. Ignore ions.
(d)	СН	1	Allow HC C and H must be capital letters.

tion	Marking Guidance	Mark	Comments
a)	Hydrogen bonding / hydrogen bonds / H-bonding / H-Bonds	1	Not just hydrogen.
))	0	3	One mark for minimum of 4 correct partial charges shown on the N-H and O-H
	$\delta N \sim \dots \delta^+$		One mark for the 3 lone pairs.
	$H^{\delta+}$ $H^{\delta+}$		One mark for H bond from the lone pair on O or N to the H^{δ^+}
	_{δ+} Η´ `Η _{δ+}		
	OR		
	0 0 − H − H H 5+		The N-H-O should be linear but can accept if the lone pair on O or N hydrogen bonded 胶the H
	$ \overset{\circ}{\underset{N_{N_{H}}}{\overset{\circ}}} \overset{N_{N_{H}}}{\underset{N_{N_{H}}}{\overset{N_{H}}{\overset{N_{N}}{\overset{N}}}}}}}}}}$		If wrong molecules or wrong formula, CE = 0/3
:)	(Phosphine) does not form hydrogen bonds (with water)	1	

4)

+) stion	Marking Guidance	Mark	Comments
(a)	Al + 1.5Cl ₂ \rightarrow AlCl ₃	1	Accept multiples. Also 2Al + 3Cl ₂ \rightarrow Al ₂ Cl ₈
(b)	Coordinate / dative (covalent) Electron pair on Cl ⁻ donated to Al(Cl ₃)	1	Ignore state symbols. If wrong CE=0/2 if covalent mark on. QoL Lone pair from Cl ⁻ not just Cl Penalise wrong species.
(c)	Al ₂ Cl ₆ or AlBr ₃	1	Allow Br_3Al or Cl_0Al_2 Upper and lower case letters must be as shown. Not $2AlCl_3$
(d)	SiCl₄ / silicon tetrachloride	1	Accept silicon(4) chloride or silicon(IV) chloride. Upper and lower case letters must be as shown. Not silicon chloride.
(e)	Br Br Br Br Br	1	Accept shape containing 5 bonds and no lone pairs from TL to each of 5 Br atoms. Ignore charge.
	Trigonal bipyramid(al)	1	

i(f)(i)	СІ— ТІ — СІ	1	Accept this linear structure only with no lone pair on Tl
(f)(ii)	(Two) bonds (pairs of electrons) repel equally / (electrons in) the bonds repel to be as far apart as possible	1	Dependent on linear structure in 5(f)(i). Do not allow electrons /electron pairs repel alone.
(g)	Second	1	

stion	Marking	Guidance	Mark	Comments
(a)	Method 1	Method 2		
	Mass of H ₂ O = 4.38-2.46 (= 1.92 g)	Percentage of H ₂ O = 44%	1	If there is an AE in M1 then can score M2 and M3 If M_r incorrect can only score M1
	ZnSO₄ H₂O <u>2.46</u> <u>1.92</u> 161.5 18	ZnSO4 H2O <u>56</u> <u>44</u> 161.5 18	1	
	(0.0152 0.107) (1 : 7)	(0.347 2.444) (1 : 7)		
	x = 7	x = 7	1	If x = 7 with working then award 3 marks. Allow alternative methods. If M1 incorrect due to AE, M3 must be an integer.
(b)	Moles HCl = 0.12(0)		1	
	mol ZnCl ₂ <u>= 0.06(0)</u> OR <u>0.12</u>	/2	1	If M2 incorrect then CE and cannot score M2, M3 and M4.
	mass ZnCl ₂ = 0.06 × 136.4		1	Allow 65.4 + (2 × 35.5) for 136.4
	= <u>8.18(4)</u> (g) <i>OR</i>	<u>8.2</u> (g)	1	Must be to 2 significant figures or more. Ignore units.
	-		1	
'(c)	Moles $\text{ZnCl}_2 = \frac{10.7}{136.4}$ (= 0.07	84)	1	
	OR moles Zn = 0.0784			
	Mass Zn reacting = 0.0784 ×	65.4 = (5.13 g)	1	M2 is for their M1 × 65.4
	% purity of Zn = $\frac{5.13}{5.68}$ × 100		1	M3 is M2 × 100 / 5.68 provided M2 is < 5.68
	= <u>90.2</u> % OR <u>90.3</u> %		1	Allow alternative methods.
				M1 = Moles $ZnCl_2 = \frac{10.7}{136.4}$ (= 0.0784)
				M2 = Theoretical moles $Zn = \frac{5.68}{65.4}$ (= 0.0869)
				M3 = M1 × 100 / M2 = (0.0784 × 100 / 0.0869)
				M4 = <u>90.2%</u> OR <u>90.3</u> %
'(d)	Ionic		1	If not ionic CE = 0/3
	<u>Strong</u> (electrostatic) <u>attracti</u> between oppositely charged Zn ²⁺ ions		1 1	If IMF, molecules, metallic bonding implied CE = 0/3

Question	Marking Guidance	Mark	Comments
6 (a)(i)	$3CuS(s) + 8HNO_3(aq) \longrightarrow 3CuSO_4(aq) + 8NO(g) + 4H_2O(l)$	1	
(a)(ii)	(+) 5 (+) 2	2	
(a)(iii)	4H [*] + NO ₃ ⁻ + 3e ⁻ → 2H ₂ O + NO	1	Ignore state symbols. Credit multiples of this equation only. Ignore absence of charge on the electron.
(a)(iv)	S ²⁻ + 4 H₂O → SO4 ²⁻ + 8 e ⁻ + 8 H ⁺	1	Ignore state symbols. Credit multiples of this equation only. Ignore absence of charge on the electron.
(b)	M1 add scrap / recycled / waste iron (or steel) to the aqueous solution M2 the iron is a more reactive metal OR Fe is a better reducing agent M3 Cu^{2*} / copper ions are reduced / gain electrons OR Cu^{2*} + 2e ⁻ \longrightarrow Cu OR copper / Cu is displaced by Fe M4 Fe + Cu^{2*} — \rightarrow Fe ^{2*} + Cu ONLY	4	If M1 refers to iron / steel, but does not make it clear in the text that it is "scrap" / "waste" / "recycled", penalise M1 but mark on. Credit zinc or magnesium as an alternative to iron for M2, M3 and M4 only, penalising M1 Ignore absence of charge on the electron. For M4, ignore state symbols.