Mark Scheme

YOU WILL BE REQUIRED TO UNDERTAKE 10 PRACTICE AND 10 STANDARDISATION SCRIPTS BEFORE STARTING TO MARK LIVE SCRIPTS.

1 The schedule of dates for the marking of this paper is very important. It is vital that you meet these requirements. If you experience problems then you must contact your Team Leader (Supervisor) without delay.

2 An element of professional judgement is required in the marking of any written paper. Candidates often do not use the exact words which appear in the detailed sheets which follow. If the science is correct and also answers the question then the mark(s) should normally be credited. If you are in doubt about the validity of any answer then consult your Team Leader (Supervisor) by phone, the messaging system within SCORIS or e-mail.

3 Correct answers to calculations always gain full credit even if no working is shown. (The 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)

4 Some questions may have a 'Level of Response' mark scheme. Any details about these will be in the Additional Guidance.

5 If an answer has been crossed out and no alternative answer has been written then mark the answer crossed out.

6 In addition to the award of 0 marks, there is a NR (No Response) option on SCORIS.

Award 0 marks

- if there is any attempt that earns no credit (including copying out the question or some crossed out working)

Award NR (No Response)

- if there is nothing written at all in the answer space OR
- if there is any comment which does not in any way relate to the question being asked (e.g. 'can't do', 'don't know')
OR
- if there is any sort of mark which is not an attempt at the question (e.g. a dash, a question mark)

7 Abbreviations, annotations and conventions used in the detailed Mark Scheme.
/ = alternative and acceptable answers for the same marking point
not = answers which are not worthy of credit
reject $=$ answers which are not worthy of credit
ignore $=$ statements which are irrelevant
allow $=$ answers that can be accepted
() = words which are not essential to gain credit
= underlined words must be present in answer to score a mark
= error carried forward
AW = alternative wording
ora $=$ or reverse argument

8 Annotations: the following annotations are available on SCORIS.

```
\checkmark = correct response
x = incorrect response
bod = benefit of the doubt
nbod = benefit of the doubt not given
ECF = error carried forward
^ = information omitted
I = ignore
R = reject
```

9 The Comments box
The comments box will be used by your PE to explain their marking of the practice scripts for your information. Please refer to these comments when checking your practice scripts. You should only type in the comments box yourself when you have an additional object of the type described in Appendix B of the Handbook for Assistant Examiners and Subject Markers
Please do not use the comments box for any other reason.
Any questions or comments you have for your Team Leader should be communicated by phone, SCORIS messaging system or e-mail.

10 Please send a brief report on the performance of the candidates to your Team Leader (Supervisor) by the end of the marking period. The Assistant Examiner's Report Form (AERF) can be found on the Cambridge Assessment Support Portal. This should contain notes on particular strengths displayed, as well as common errors or weaknesses. Constructive criticisms of the question paper/mark scheme are also appreciated.

Question			Expected Answers	Marks	Additional Guidance
1	a	1	${ }^{118}$ Sn 50p 68n 50e Complete row \checkmark	1	
		ii	${ }^{120}{ }_{50} \mathrm{Sn}$ has (two) more neutrons / 70 neutrons \checkmark ora	1	ALLOW There is a different number of neutrons IGNORE correct reference to protons / electrons DO NOT ALLOW incorrect references to protons / electrons ALLOW ECF for stated number of neutrons from 1a(i)
	b	i	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) compared with $1 / 12$ th (the mass) \checkmark of (one atom of) carbon-12 \checkmark	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular; 'isotope' For second and third marking points ALLOW compared with (the mass of) carbon-12 which is 12 ALLOW mass of one mole of atoms compared to $1 / 12$ th \checkmark (mass of) one mole OR 12 g of carbon-12 \checkmark ALLOW \qquad 1/12th mass of one mole OR 12 g of carbon-12
	C		$\text { moles of } \mathrm{Sn}=\frac{2080}{118.7}=17.52$ $17.52 \times 6.02 \times 10^{23}=1.05 \times 10^{25} \text { atoms } \checkmark$	2	ALLOW 17.5 up to (correctly rounded) calculator value of 17.52316765 DO NOT ALLOW use of 118 , which makes moles of $\mathrm{Sn}=17.63$ ALLOW 105×10^{23} atoms DO NOT ALLOW answers which are not to three sig figs for second marking point ALLOW two marks for answer only of 1.05×10^{25} ALLOW one mark for answer only if not 3 sig figs up to calculator value of $1.054894693 \times 10^{25}$ Eg 100×1 ALLOW ECF for any calculated moles of Sn (based on use of any A_{r} value) \times 6.02×10^{23} if shown to 3 sig figs DO NOT ALLOW mass of $\mathrm{S} n \times 6.02 \times 10^{23}$

Mark Scheme

Question			Expected Answers			Marks	Additional Guidance
1	d		$\frac{78.8}{118.7} \quad$ and OR $=0.66(4) \quad$ and $\frac{0.66(4)}{0.66(4)}=1$ ans $=\mathrm{SnO}_{2} \checkmark$	$\begin{aligned} & \frac{21.2}{16.0} \\ & =1.3(25) \\ & \frac{1.325}{0.66(4)}=2 \end{aligned}$	\checkmark	2	ALLOW SnO_{2} for one mark if no working shown ALLOW use of 118 for this part IGNORE incorrect rounding provided given to two sig figs IGNORE incorrect symbols e.g. T or Ti for Tin, as long as correct A_{r} of tin (118.7 or 118) used ALLOW $\mathrm{Sn}_{2} \mathrm{O}$ for 1 mark ECF if both inverted mole calculations are shown ALLOW $\mathrm{Sn}_{3} \mathrm{O}_{5}$ with evidence of use of both atomic numbers for one mark ALLOW 2 marks if candidate has adopted the following approach 78.8% of mass $=118.7$ 100% of mass $=118.7 / 0.788=150.6(151)$ $150.6-118.7=31.9$ (32) Both masses would get one mark $31.9 / 16=2$
					Total	9	

Question		Expected Answers	Marks	Additional Guidance	
$\mathbf{2}$	\mathbf{a}	\mathbf{i}	Any two from $\checkmark \checkmark$ H^{+} $\mathrm{SO}_{4}{ }^{2-}$ $\mathrm{HSO}_{4}{ }^{-}$		

Mark Scheme

Question			Expected Answers	Marks	Additional Guidance
3	a		3 d 4 p	1	Correct order is essential ALLOW '3D'
	b	i	A region (within an atom) that can hold (up to) two electrons \checkmark (with opposite spin)	1	ALLOW 'can be found' for 'can hold' ALLOW 'area' OR 'volume' OR ‘space’ for region DO NOT ALLOW 'place' for region DO NOT ALLOW path of an electron IGNORE references to 'orbitals being parts of sub-shells'
		ii	$11 \checkmark$	1	
	C		$18 \checkmark$	1	
	d	i	2nd, 3rd OR 1817, $2745 \checkmark$ 10th, 11th OR 38458, $42655 \checkmark$	2	Mark as pairs IGNORE references to 12th and 13th Three answers with one correct pair = 1 mark Four answers with one correct pair = 1 mark Five answers with both pairs correct = 1 mark Five answers with only one pair correct $=0$ marks Six (or more) answers = 0 marks
		ii	$\mathrm{Al}^{2+}(\mathrm{g}) \rightarrow \mathrm{Al}^{3+}(\mathrm{g})+\mathrm{e}^{-} \checkmark \checkmark$	2	ALLOW Al ${ }^{2+}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{Al}^{3+}(\mathrm{g})$ for 2 marks ALLOW 1 mark for $\mathrm{Al}(\mathrm{g}) \rightarrow \mathrm{Al}^{3+}(\mathrm{g})+3 \mathrm{e}^{-}$as states are correct ALLOW 1 mark for $\mathrm{Al}^{2+}(\mathrm{g})+2 \mathrm{e}^{-} \rightarrow \mathrm{Al}^{3+}(\mathrm{g})+3 \mathrm{e}^{-}$as states are correct ALLOW 1 mark if symbol of Al is incorrect, but equation is otherwise fully correct. ALLOW e for electron (i.e. no charge) IGNORE states on electron
			Total	8	

Question		Expected Answers	Marks	Additional Guidance	
$\mathbf{4}$	a	i	$\begin{array}{l}1=\text { purple / lilac / violet / pink / mauve } \checkmark \\ 3=\text { orange } \checkmark\end{array}$	2	$\begin{array}{l}\text { ALLOW any Combination of these but no others for } 1 \\ \text { ALLOW yellow as an alternative for 3 }\end{array}$
DO NOT ALLOW 'precipitate' in either					

Mark Scheme

Question		Expected Answers	Marks	Additional Guidance
$\mathbf{4}$	\mathbf{c}	iii	The ease of (thermal) decomposition decreases (down the group) ora \checkmark	1

Question			Expected Answers	Marks	Additional Guidance
5	a		Diagram showing a regular arrangement of labelled ' $\mathrm{Li}^{+ \text {', }}$ or '+ ions' with some attempt to show electrons Scattering of labelled electrons between other species OR a statement anywhere of delocalised electrons (can be in text or in diagram) The attraction between + ions and e^{-}is strong OR metallic bonding is strong	3	Lattice diagram must have at least two rows of correctly charged ions and a minimum of 2 ions per row ALLOW as label: + ions, positive ions, cations If ' + ' is unlabelled in diagram, award label from a correct statement within the text below DO NOT ALLOW 2+, 3+ etc ions DO NOT ALLOW for label or in text: nuclei OR positive atom OR protons ALLOW e- OR e as label for electron ALLOW a lot of energy is needed to break the (metallic) bond DO NOT ALLOW incorrect particles or incorrect attraction e.g. 'intermolecular attraction' or 'nuclear attraction'
	b	I	Dot and cross bond +6 matching electrons on each F atom \checkmark	1	ALLOW diagram consisting of all dots OR all crosses Circles not essential ALLOW 'Fl' for fluorine
		ii	F_{2} has induced dipoles OR temporary dipoles OR van der Waals' forces (between the molecules) \checkmark which are weak \checkmark	2	ALLOW little energy needed to overcome intermolecular bonding for second mark ALLOW 'weak' intermolecular bonding for second mark ALLOW max 1 mark if structure is referred to as giant with first and second marking points correct Award no marks if 'weak' is applied to incorrect bonding. E.g. ionic, covalent, metallic or unspecified bonding

Question		Expected Answers	Marks	Additional Guidance	
$\mathbf{5}$					

| Question | | Expected Answers | Marks | Additional Guidance |
| :---: | :--- | :--- | :--- | :---: | :--- |
| $\mathbf{5}$ | \mathbf{e} | | | |

