## Gravity Lab

This lab evaluates several key physics-based concepts essential to astronomy and cosmology, including:

1. Quantitative methodology, the Scientific Method (Galileo)
2. Application of fundamental laws of physics (Newton)
3. Sir Isaac Newton's breakthrough in explaining astronomical phenomena with a mathematical model based on physics principles vis-à-vis Kepler's explanation(s) which were derived from empirical observations.

Specifically, you will apply Newton's Version of Kepler's Third Law to calculate the period of the Moon's orbit.

## Formulas used in this lab:

## Preliminary Data/Instructions:

- Mean radius of Earth at equator: 6378 Km
- Mean radius of Moon's orbit: 384,000 Km
- Numeric value of Universal Gravitational Constant: $6.672 \times 10^{-11}$
- Remember, you cannot use kilometers, hours, days in Newton's formulas you must use standard units: meters, seconds, kilograms!
- 1 hour $=3600 \mathrm{sec}, 1$ day $=24$ hours
- USE SCIENTIFIC NOTATION!

Lab Procedure:

1. Using a pendulum determine the acceleration of gravity on the surface of the Earth
Analysis 1:
2. Determine the average velocity of each event using the formula for velocity. Use measured distance(s) in meters for $D$, duration for $T$
3. Calculate the average acceleration of gravity by using the acceleration formula; use the average velocity of the earlier Event for $V_{i}$, the later Event for $\mathrm{V}_{\mathrm{f}}$, and elapsed time ( not duration) for T .
4. Use procedure in Step 2 to compare $E_{2}$ with $E_{1}, E_{3}$ with $E_{2}$, and $E_{3}$ with $E_{1}$.
5. Average the results from Step 3. This is your measured/calculated average acceleration of gravity $\left(\mathrm{a}_{\mathrm{g}}\right)$ at sea level.

Analysis 2:

1. Calculate the mass of Earth using the preliminary data and your measurement of $\mathrm{a}_{\mathrm{g}}$ using the variant of simplified version of Newton's law of Gravity.
2. IMPORTANT: Use your measured/calculated $\mathrm{a}_{\mathrm{g}}$ for the value of $F_{g}$

Analysis 3:

1. Calculate the period of the Lunar orbit (in seconds) using Newton's Version of Kepler's Third Law
2. Use values from Preliminary Data and your calculations from Analysis 2
3. Convert result to "days"

## 4. USE SCIENTIFIC NOTATION!

## ANALYSIS 2 WORKSHEET

Required data:

1. Calculated $a_{\text {avg }}$ :
2. Radius of Earth (in meters) $\qquad$
3. Numerical value of G : $\qquad$
Calculations:

## ANALYSIS 3 WORKSHEET

Required Data:

1. Earth Mass as calculated in Analysis 2 $\qquad$
2. Numerical value of G $\qquad$
3. Radius of Lunar orbit in meters $\qquad$

ANSWER (IN DAYS):

