Medical genetics Introduction

Basic principles

Jan 29th 2020.

Schleiden & Schwann, (1839.)

Important concept!

cells are the living units (both plants and animals)

Haeckel (1860.)

Sperm is mostly nuclear

So!

Nucleus is responsible for heredity

Walther Flemming (1882.)

Observed chromosomes in the cells

Heinrich von Waldeyer-Hartz, 1888.

Named the chromosomes.

Chromosome discovery

Theodor Boveri i Walter Sutton, ~ 1900.

Chromosomes carry genetic material;

Chromosomes carry GENES

What was the view until then?

Homunculus (1694)

Nicolaas Hartsoeker – Leeuwenhoek' student

All is based on ...

Gregor Mendel (1850).

Hereditary elements!

Introduced:

1.homozygous/heterozygous

2.dominative/recessive

Number of chromosomes?

 Until 1956. normal number of human chromosomes in each cell = 48! (Theophilus Painter)

1956. Tjio i Levan:
46! is the number of chromosomes in human cells!

What are genes really made of?

1953. Francis
 Crick & James
 Watson (NP1962)

Rosalind Franklin

 Maurice Wilkins (NP1962)

Medical genetics milestones

- William Bateson i Archibald Garrod

 alkaptonuria
- Terminology:
 - Monogenic vs. polygenic
 - Chromosomal inheritance
- Victor McKusick Father of med.gen.
 - Catalogue of monogenic disorders
 (1966. 1500; 1998. 8500; 2010. 20000)
 - Online version 1985.

OMIM[®]

Online Mendelian Inheritance in Man®

An Online Catalog of Human Genes and Genetic Disorders Updated January 23, 2017

Search OMIM for clinical features, phenotypes, genes, and more...

Q

Advanced Search : OMIM, Clinical Synopses, Gene Map Need help? : Example Searches, OMIM Search Help, OMIM Tutorial Mirror site : mirror.omim.org

OMIM is supported by a grant from NHGRI, licensing fees, and generous contributions from people like you.

Make a donation!

Follow us on Twitter 💓

OMIM[®] - Online Mendelian Inheritance in Man[®]

Welcome to OMIM[®], Online Mendelian Inheritance in Man[®]. OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text, referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes. OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries contain copious links to other genetics resources.

This database was initiated in the early 1960s by Dr. Victor A. McKusick as a catalog of mendelian traits and disorders, entitled Mendelian Inheritance in Man (MIM). Twelve book editions of MIM were published between 1966 and 1998. The online version, OMIM, was created in 1985 by a collaboration between the National Library of Medicine and the William H. Welch Medical Library at Johns Hopkins. It was made generally available on the internet starting in 1987. In 1995, OMIM was developed for the World Wide Web by NCBI, the National Center for Biotechnology Information.

OMIM is authored and edited at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, under the direction of Dr. Ada Hamosh.

NLM's Profiles in Science -- The McKusick Papers

NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers, and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.

OMIM[®] and Online Mendelian Inheritance in Man[®] are registered trademarks of the Johns Hopkins University. Copyright[®] 1966-2017 Johns Hopkins University.

OMIM Entry Statistics

Number of Entries in OMIM (Updated January 25th, 2019) :

MIM Number Prefix	Autosomal	X Linked	Y Linked	Mitochondrial	Totals
Gene description *	15,212	732	49	35	16,028
Gene and phenotype, combined +	46	0	0	2	48
Phenotype description, molecular basis known #	5,084	329	4	32	5,449
Phenotype description or locus, molecular basis unknown %	1,446	125	4	0	1,575
Other, mainly phenotypes with suspected mendelian basis	1,651	105	3	0	1,759
Totals	23,439	1,291	60	69	24,859

OMIM Entry Statistics

Number of Entries in OMIM (Updated January 27th, 2020) :

MIM Number Prefix	Autosomal	X Linked	Y Linked	Mitochondrial	Totals
Gene description *	15,433	738	51	37	16,259
Gene and phenotype, combined +	36	0	0	0	36
Phenotype description, molecular basis known #	5,338	343	5	33	5,719
Phenotype description or locus, molecular basis unknown %	1,429	118	4	0	1,551
Other, mainly phenotypes with suspected mendelian basis	1,641	104	3	0	1,748
Totals	23,877	1,303	63	70	25,313

What is medical genetics?

Genetics that focuses on molecular diagnosis of hereditary diseases and disorders

Birth defects, developmental defects, mental disorders, autism, metabolic disorders, mitochondrial diseases, tumor genetics, prenatal diagnostics,...

DNA structure

Total length of human DNA (haploid) 3,28 x10⁹ bp = 1m long

Where is DNA that is inherited?

Nuclear DNA
~20.000 genes

• Mitohondrial DNA – 37 genes

(rRNA, tRNA, cytochrome b, cytochrome oxidase...)

Where is DNA that is inherited?

Nuclear
 DNA
 ~20,000

~20.000 genes

GENE TALLY

Scientists still don't agree on how many protein-making genes the human genome holds, but the range of their estimates has narrowed in recent years.

Where is DNA that is inherited?

Nuclear DNA
~20.000 genes

• Mitohondrial DNA – 37 genes

(rRNA, tRNA, cytochrome b, cytochrome oxidase...)

Nuclear genes

- ~ 20.000 (protein coding)
- Diversely distributed on chromosomes
 - E.g. 19. & 22. gene rich;

4. & 18. gene poor

 Non-coding regions: heterochromatin & centromere & telomere

Gene structure

Genetic code

second base in codon

third

base in codon

first base in codon

Codon degeneracy (redundancy)!!!

Human genes categorized by function of the transcribed proteins

Other types of nuclear DNA

- Repetitive DNA
 - Satelite
 - Minisatelite
 - Telomeric
 - Hypervariable minisatelite
 - Microsatelite
 - Transposable elements

Mitohondrial DNA

Mitohondrial inheritance

- **Disorders:**
 - diabetes mellitus & deafness
 - **Mitochondrial myopathies** ullet
 - Leber's hereditary optic neuropathy •
 - Leigh syndromed from mother!!! neuropathy, ataxia, retinitis pigmentosa
- mtDNA mutations are very often
 - No damage control during replication

Chromosome structure

Human karyotype

Mitosis

Meiosis

Mitosis vs. meiosis

	MITOSIS	MEIOSIS
Cell type	Somatic	Germ cells
No. of daugther cells	2	4
Chromosome no. (paternal/maternal cell)	diploid	diploid
Chromosome no. (daugther cells)	diploid	haploid
Function	growth	reproduction

MUTATIONS

Mutations

• Hereditary change in genetic material

Substitution mutations

Class	Group	Туре	Effect on Protein Product
Substitution	Synonymous	Silent [*]	Same amino acid
	Nonsynonymous	Missense*	Altered amino acid—may affect protein function or stability
		Nonsense*	Stop codon—loss of function or expression due to degradation of mRNA
		Splice site	Aberrant splicing—exon skipping or intron retention
		Promoter	Altered gene expression
		Enhancer	Altered gene expression

Mutations cont.

ATG TAT GCG CCA TCA ACA ATG TAT GCG CCA TCA ACA ATG TAT GG CCA TCA ACA ATG TAT GCGA CCA TCA ACA Met Tyr Ala Pro Ser Thr Met Tyr Ala Pro Ser Thr Th Met Tyr Gly His Glu Glu Met Tyr Ala Thr Ile Asp

Can lead to frameshift mutations

Deletions and insertions

Class	Group	Туре	Effect on Protein Product
Deletion	Multiple of 3 (codon)		In-frame deletion of one or more amino acid(s)—may affect protein function or stability
	Not multiple of 3	Frameshift	Likely to result in premature termination with loss of function or expression
	Large deletion	Partial gene deletion	May result in premature termination with loss of function or expression
		Whole gene deletion	Loss of expression
Insertion	Multiple of 3 (codon)		In-frame insertion of one or more amino acid(s)—may affect protein function or stability
	Not multiple of 3	Frameshift	Likely to result in premature termination with loss of function or expression
	Large insertion	Partial gene duplication	May result in premature termination with loss of function or expression
		Whole gene duplication	May have an effect because of increased gene dosage
	Expansion of trinucleotide repeat	Dynamic mutation	Altered gene expression or altered protein stability or function 40

Frequency of different types of mutation

Type of Mutation	Percentage of Total
Missense or nonsense	56
Splicing	10
Regulatory	2
Small deletions, insertions, or indels*	24
Gross deletions or insertions	7
Other (complex rearrangements or repeat variations)	<1

Mutations lead to... (classification by the effect on function)

- 1) Loss-of-function
- Less gene product
- Complete loss of gene product

- 2) Gain-of-function
- More gene product
- New gene product

Possible faults

Chromosomal Abnormalities

- Numerical
 - Aneuploidy
 - Monosomy
 - Trisomy
 - Tetrasomy
 - Polyploidy
 - Triploidy
 - Tetraploidy
- Different Cell Lines (Mixoploidy)
 - Mosaicism
 - Chimerism

- Structural
 - Translocations
 - Reciprocal
 - Robertsonian
 - Deletions
 - Insertions
 - Inversions
 - Paracentric
 - Pericentric
 - Rings
 - Isochromosomes

Structural chromosomal aberrations

Normal	A B C D E F G H
Duplication	A B C D D D E F G H
Deletion	A B C G H
Insertion	A B C D I E F G H
Inversion	A B C G F E D H
Translocation	A B C D E f g h a b c d e F G H Homologous chromosomes

Translocations

Reciprocal translocations

Robertsonian translocation

Numerical Abnormalities

- Aneuploidy the loss or gain of one or more chromosomes
- Polyploidy the addition of one or more complete haploid complements
- Monosomy sex chromosomes (45,X)
- Trisomy Down syndrome (21), Patau syndrome (13), Edwards syndrome (18), additinal sex chromosome (47,XXX; 47,XXY; 47,XYY)

Segregation of meiosis

Disomic gamete

Chromosomal Abnormalities

- Numerical
 - Aneuploidy
 - Monosomy
 - Trisomy
 - Tetrasomy
 - Polyploidy
 - Triploidy
 - Tetraploidy
- Different Cell Lines (Mixoploidy)
 - Mosaicism
 - Chimerism

- Structural
 - Translocations
 - Reciprocal
 - Robertsonian
 - Deletions
 - Insertions
 - Inversions
 - Paracentric
 - Pericentric
 - Rings
 - Isochromosomes

For the practicals (P6), please, bring your LAB COAT!

LAB COAT STYLES

WWW. PHDCOMICS. COM