2	lodine reacts with concentrated nitric acid to produce nitrogen dioxide (NO ₂).
(a) (i)	Give the oxidation state of iodine in each of the following.
	l ₂
	HIO ₃ (2 marks)
(a) (ii)	Complete the balancing of the following equation.
	I_2 + 10HNO ₃ \longrightarrow HIO ₃ +NO ₂ +H ₂ O (1 mark)
(b)	In industry, iodine is produced from the NalO ₃ that remains after sodium nitrate has been crystallised from the mineral Chile saltpetre. The final stage involves the reaction between NalO ₃ and Nal in acidic solution. Half-equations for the redox processes are given below.
	IO_3^- + 5e ⁻ + 6H ⁺ \longrightarrow 3H ₂ O + $\frac{1}{2}I_2$
	$I^- \longrightarrow \frac{1}{2}I_2 + e^-$
	Use these half-equations to deduce an overall ionic equation for the production of iodine by this process. Identify the oxidising agent.
	Overall ionic equation
	The oxidising agent

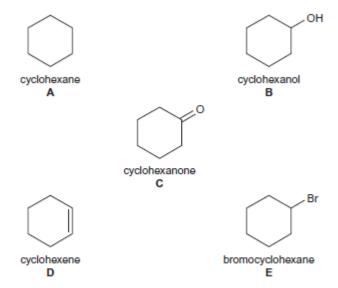
1	(c)	State and explain the general trend in the first ionisation energies of the Periodelements sodium to chlorine.	od 3
		Trend	
		Explanation	
		(Extra space)	(3 marks)
1	(d)	State how the element sulfur deviates from the general trend in first ionisatio across Period 3. Explain your answer.	
		How sulfur deviates from the trend	
		Explanation	
			(3 marks)
		(Extra space)	
1	(e)	A general trend exists in the first ionisation energies of the Period 2 elements to fluorine. Identify one element which deviates from this general trend.	lithium
			(1 mark)
	(c)	When concentrated sulfuric acid is added to potassium iodide, solid sulfur and solid are formed.	a black
	(c) (i)	Identify the black solid.	
	/-\ /::\	Deduce the half equation for the formation of suffer from accomplished suffering	(1 mark)
	(C) (II)	Deduce the half-equation for the formation of sulfur from concentrated sulfurio	acid.
			(1 mark)
	(d)	When iodide ions react with concentrated sulfuric acid in a different redox react oxidation state of sulfur changes from +6 to -2. The reduction product of this is a poisonous gas that has an unpleasant smell. Identify this gas.	
			(1 mark)
			(i iiiairk)

(e)	A yellow precipitate is formed when silver nitrate solution, acidified with dilute racid, is added to an aqueous solution containing iodide ions.	nitric
(e) (i)	Write the simplest ionic equation for the formation of the yellow precipitate.	
		(1 mark)
(e) (ii)	State what is observed when concentrated ammonia solution is added to this precipitate.	
		(1 mark)
(e) (iii)	State why the silver nitrate is acidified when testing for iodide ions.	
		(1 mark
		ci mark

(f)	Consider the following reaction in which iodide ions behave as reducing agents.	
	$Cl_2(aq)$ + $2l^-(aq)$ \longrightarrow $l_2(aq)$ + $2Cl^-(aq)$	
(f) (i)	In terms of electrons, state the meaning of the term reducing agent.	
(D (II)	(1 ma	rk)
(T) (II)	Write a half-equation for the conversion of chlorine into chloride ions.	
	(1 ma	
(f) (iii)	Suggest why iodide ions are stronger reducing agents than chloride ions.	
	(2 mar	
	(Extra space)	

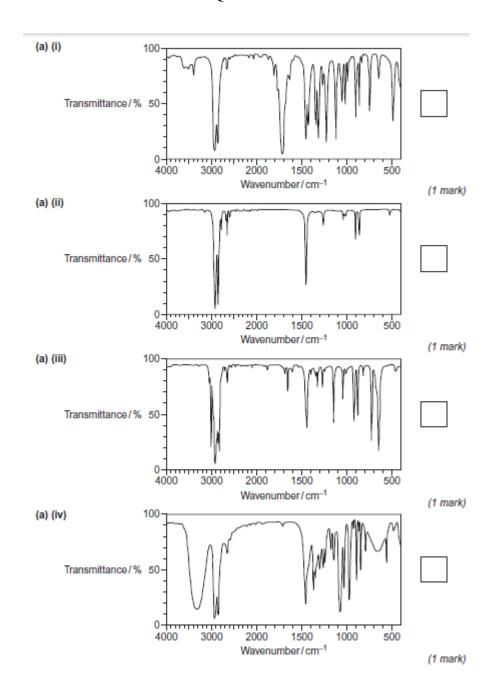
The table shows the structures and names of three compounds with $M_{\rm f}$ = 72.0

Compound	Formula	Name
1	CH₃CH₂CH2CHO	butanal
2	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	pentane
3	CH₃CH₂COCH₃	butanone


(a)	Explain why $\it M_{\rm f}$ values, measured to five decimal places, cannot distinguish between compounds 1 and 3 but can distinguish between compounds 1 and 2.
	(2 marks
(b)	A simple chemical test, using either Fehling's solution or Tollens' reagent, can be used to distinguish between compound 1 and compound 3. Choose one of these two reagents and state what you would observe with each of compound 1 and compound 3.
	Chosen reagent
	Observation with compound 1
	Observation with compound 3
	(2 marks

4		Group 2 elements and their compounds have a wide range of uses.					
	(a)	For parts (a)(i) to (a)(iii), draw a ring around the correct answer to complete easentence.		ach			
	(a) (i)	From Mg(OH) ₂ to Ba(OH) ₂ , the solu	bility in 1	water	decreases. increases. stays the same	10.	(1 mark)
	(a) (ii)	From Mg to Ba, the first ionisation e	nergy	decrea increas stays t			(1 mark)
	(a) (iii)	From Mg to Ba, the atomic radius	decrea increas stays t		э.		(1 mark)
	(b)	Explain why calcium has a higher m					
		(Extra space)					(2 marks)
	(c) (i)	Acidified barium chloride solution is State why sulfuric acid should not b	e used	to acidif	y the barium o	chloride.	
	(c) (ii)	Write the simplest ionic equation f chloride solution is added to a solut	or the re	eaction t			(1 mark)
							(1 mark)

5	It is possible to convert but-1-ene into its structural isomer but-2-ene.
(a)	State the type of structural isomerism shown by but-1-ene and but-2-ene.
	(1 mark)
(b)	The first stage in this conversion involves the reaction of hydrogen bromide with but-1-ene.
	$CH_3CH_2CH = CH_2 + HBr \longrightarrow CH_3CH_2CHBrCH_3$
	Outline a mechanism for this reaction.
	(4 marks)
(c)	The second stage is to convert 2-bromobutane into but-2-ene.
	$\text{CH}_3\text{CH}_2\text{CHBrCH}_3$ + KOH \longrightarrow CH $_3\text{CH}=\text{CHCH}_3$ + KBr + H $_2\text{O}$
	Outline a mechanism for this reaction.
	(3 marks)
6	Three different ways of producing ethanol are shown below.
	$ \begin{array}{c} C_8H_{12}O_6 \\ \text{glucose} \end{array} \xrightarrow{\begin{array}{c} \text{Reaction 1} \\ \text{ethanol} \end{array}} \begin{array}{c} \text{Reaction 2} \\ \text{CH}_3\text{CH}_2\text{Br} \\ \text{bromoethane} \end{array} $
(a)	Reaction 1 produces a 15% aqueous solution of ethanol. It is claimed that the ethanol produced in this way is a carbon-neutral biofuel.
	Write an equation for Reaction 1 and name the process.
	Write an equation for the complete combustion of ethanol.
	Explain why the ethanol produced by this process may not be a <i>carbon-neutral</i> biofuel.
	(5 marks)
	(Fytra snace)


(b)	Give a reagent and conditions for Reaction 2.
	$\begin{array}{ccc} & \text{Reaction 2} \\ \text{CH}_3\text{CH}_2\text{Br} & \longrightarrow & \text{CH}_3\text{CH}_2\text{OH} \end{array}$
	Name and outline a mechanism for Reaction 2.
	Suggest one reason, other than safety, why this method is not used in industry to make ethanol.
	(6 marks)
(c)	Reaction 3 is used in industry.
	$H_2C = CH_2 \xrightarrow{\text{Reaction 3}} CH_3CH_2OH$
	Identify a suitable catalyst for Reaction 3.
	Identify the type of reaction.
	Give two conditions, in addition to the presence of a catalyst, necessary for Reaction 3 to produce a high yield of ethanol.
	(A marks)

7 Consider the five cyclic compounds, A, B, C, D and E.

(a) The infrared spectra of compounds A, B, C and D are shown opposite.

Write the correct letter, A, B, C or D, in the box next to each spectrum. You may find it helpful to refer to Table 1 on the Data Sheet.

(b)	A simple chemical test can be used to distinguish between cyclohexane (A) and cyclohexene (D). Give a reagent for this test and state what you would observe with each compound.
	(3 marks
	(Extra space)
(c)	Cyclohexanol (B) can be converted into cyclohexanone (C).
	Give a reagent or combination of reagents that can be used for this reaction and state the type of reaction.
	State the class of alcohols to which cyclohexanol belongs.
	(3 marks
(d)	Cyclohexane (A) can be converted into bromocyclohexane (E) by a reaction that is similar to the reaction of methane either with chlorine or with bromine.
	Name and outline a mechanism for the reaction of methane (CH ₄) with bromine to form bromomethane (CH ₃ Br). Give one condition for this reaction to occur. Write an equation for each step in your mechanism.
	(5 marks)