## L8

## REACTIONS AT EQUILIBRIUM

## chapter 10

- One of the most important information in chemistry is whether a reaction will run in one direction or another.
- The composition of equilibrium can be specified in terms of a single quantity, equilibrium constant.
- It is possible to predict how the position of equilibrium responds to changes in the conditions
- It is possible to make quantitative predictions


## A chemical reaction is at equilibrium when the composition is stationary and has no further tendency to react

- $2 \mathrm{H}_{2}+2 \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}$
- When hydrogen and oxygen are induced to react (by a spark),
- they go completely to the product


## Dynamic equilibrium

- A mixture of nitrogen and hydrogen reacts and forms ammonia:
- $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$
- Ammonia synthesis settled down to to a stationary composition
- consisting of a mixture of nitrogen, hydrogen, and ammonia.
- Chemical equilibria are dynamic equilibria
- when the forward and backward reactions continue, but there is no net change.
- Rates of movement in either direction are equal.
- This can be proved by isotopic studies:
- $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$
$\mathcal{N}^{2} \mathcal{H}_{3}{ }_{\text {deuterium }}$
$\mathcal{H H}$
$\mathfrak{N} \mathcal{H H}_{2}$



## Esterification of ethanoic acid

$\mathrm{CH}_{3} \mathrm{COOH}$ (l) $+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}$ (1) ethanoic acid + ethanol $\Leftrightarrow$ ester + water

The equilibrium composition of a reaction is characterized by the equilibrium constant

$$
\begin{array}{r}
\mathrm{K}_{\mathrm{c}}=\left\{\frac{\left|\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right|\left|\mathrm{H}_{2} \mathrm{O}\right|}{\left.\mid \mathrm{CH}_{3} \mathrm{COOH}\right]\left|\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right|}\right\}_{\mathrm{eq}}= \\
=\text { in equilibrium }
\end{array}
$$

- $\mathrm{K}_{\mathrm{c}}$ is constant for given temperature


## Esterification of ethanoic acid at $100^{\circ} \mathrm{C}$

$$
\mathrm{K}_{\mathrm{c}}=\left\{\frac{\left|\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right|\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}\right\}_{\text {eq }} \quad \begin{gathered}
\text { • } \\
\begin{array}{l}
\mathrm{K}_{\mathrm{c}} \text { is constant for } \\
\text { given temperature }
\end{array}
\end{gathered}
$$

mol at start mol at equilibrium

| acid |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  | alcohol | ester | water | Kc |
| 1 | 0.18 | 0.171 | 0.171 | 3.9 |

## $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

| mol at start mol at equilibrium |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| acid | alcohol | ester | water | Kc |
| 1 | 0.18 | 0.71 | 0.171 | 3.9 |
| 1 | $\boxed{\square} 1$ | 0.667 | 0.667 | 4 |
| 1 | 8 | 0.966 | 0.966 | 3.9 |

$$
\begin{aligned}
& K_{c}=\left\{\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5} \mathrm{~T} / \mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}\right\}_{\mathrm{eq}} \\
& \mathrm{~K}_{\mathrm{c}}=0.667 \cdot 0.667 /(1-0.667)(1-0.667)=4 \\
& \mathrm{~K}_{\mathrm{c}}=0.966 \cdot 0.966 /(1-0.966)(8-0.966)=3.9
\end{aligned}
$$

Figure 17.2 The range of equilibrium constants. A, A system that reaches equilibrium with very little product has a small $K$. For this reaction, $K=\frac{1}{49}=0.020$. B, A system that reaches equilibrium with nearly all product has a large $K$. For this reaction, $K=\frac{49}{1}=49$. C, A system that reaches equilibrium with significant concentrations of reactant and product has an intermediate $K$. For this reaction, $K=\frac{25}{25}=1.0$.




## $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

- $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
- $K_{p}=p^{2} \mathrm{NH}_{3} /\left(\mathrm{pN}_{2} \cdot \mathrm{p}^{3} \mathrm{H}_{2}\right)$
- at 400 K the value of this equilibrium constant is $53 \mathrm{bar}^{-2}$


## How equilibria respond to changes of concentration?

## $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

mol at start

| acid | alcohol | ester |  | water |
| ---: | ---: | ---: | ---: | ---: |
|  | 1 | 0,18 | 0,171 | 0,171 |
|  | 1 | -1 |  | 0,667 |
|  |  |  |  |  |



$$
\begin{aligned}
& \text { Henri L. le Chatlier } \\
& \text { 1850-1936. } \\
& \text { Adapted thermodynamics to } \\
& \text { equilibria; formulated the } \\
& \text { principle known by his name. }
\end{aligned}
$$

Le Chatelier's principle: when a reaction at equilibrium is subjected to a change of conditions,
the composition adjusts so as to minimize the change.

## $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

mol at start

| acid | alcohol | ester |  | water |
| ---: | ---: | ---: | ---: | ---: |
|  | 1 | 0,18 | 0,171 | 0,171 |
|  | 1 | -1 |  | 0,667 |
|  |  |  |  |  |

If a reaction involving gases is subjected to an increase in pressure the reaction adjusts the composition so as to reduce the number of gas-phase molecules (and thereby to minimize the increase in pressure)


## Is this reaction sensitive to pressure change?

## $\mathrm{CH}_{4}(\mathrm{~g})+\mathbf{2 O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

An increase of temperature, in the case of endothermic reactions, shifts the position of equilibrium in favour of products
and in favour of reactants for exothermic reactions.

$$
\begin{aligned}
\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow \mathrm{NO}_{2} & \Delta \mathrm{H}=+ \\
\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3} & \Delta \mathrm{H}=-92 \mathrm{~kJ} \mathrm{~mol} \\
& -1 \text { at } 25^{\circ} \mathrm{C} \\
2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2} & \Delta \mathrm{H}=?
\end{aligned}
$$

Le Chatelier: when a reaction at equilibrium is subjected to a change of conditions, the composition adjusts so as to minimize the change.

$$
2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}
$$

$$
\Delta \mathrm{H}=+92 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { at } 25^{\circ} \mathrm{C}
$$

$$
\mathrm{K}=\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3} /\left[\mathrm{NH}_{3}\right]^{2}
$$

$$
\begin{array}{ll}
2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2} & \mathrm{~K}_{1}\left(25^{\circ} \mathrm{C}\right) \\
2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2} & \mathrm{~K}_{2}\left(100^{\circ} \mathrm{C}\right)
\end{array}
$$

a) $\mathrm{K}_{2}>\mathrm{K}_{1} \square$
b) $K_{2}=K_{1}$
c) $\mathrm{K}_{2}<\mathrm{K}_{1}$

## The Universality of Le

 Chatelier's Principleance is attained.

- In homogeneous reactions all the species are in the same phase;
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$a \mathrm{~A}(\mathrm{~g})+b \mathrm{~B}(\mathrm{~g}) \rightleftharpoons c \mathrm{C}(\mathrm{g})+d \mathrm{D}(\mathrm{g}) ;$ $K_{p}=\left\{\frac{p_{C}^{c} p_{D}^{d}}{p_{A}^{d} p_{B}^{b}}\right\}_{c q}$
- in heterogeneous reactions the species are in more than one phase.
- Corresponding equilibria are called homogeneous equilibria and heterogeneous equilibria, respectively.


## Heterogeneous equilibria

$\left.\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{K}=\{\mathrm{CaO}] p \mathrm{CO}_{2} /\left[\mathrm{CaCO}_{3}\right]\right]_{\mathrm{eq}}$

The concentrations of pure solids are constant, and may be absorbed into the definition of the equilibrium constant for a heterogenous reaction.

$$
\mathrm{K}=\left\{\mathrm{pCO}_{2}\right\}_{\mathrm{eq}}=\mathbf{2 4 . 4} \mathbf{~ k P a} \text { at } 800^{\circ} \mathrm{C}
$$

$$
\varphi\left(\mathbf{C O}_{2}\right)=0.0003 ; \mathbf{p}\left(\mathbf{C O}_{2}\right)=0.03 \mathrm{kPa}
$$

## $\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{K}=\left\{[\mathrm{CaO}] p \mathrm{CO}_{2} /\left[\mathrm{CaCO}_{3}\right]\right\}_{\mathrm{eq}}$

$$
\left.\mathrm{K}=\{\mathrm{pCO}\}_{2}\right\}_{\mathrm{eq}}=24.4 \mathrm{kPa}
$$

## Partition equilibria



$$
\left.\mathrm{K}_{\mathrm{dist}}=\{\mathrm{BB}]_{1} /[\mathrm{B}]_{2}\right\}_{\mathrm{eq}}
$$

Distribution coefficients at $25^{\circ} \mathrm{C}$ between water (1) i another solvent (2):

$$
K_{\mathrm{dist}}=\left\{[B]_{1} /[B]_{2}\right\} \mathrm{eq}
$$

$\mathrm{Cl}_{2}$
$\mathrm{CCl}_{4}$
0,1
$\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{C}_{6} \mathrm{H}_{6}$
16

2.-4. Washing process
with moving phase $=$ elution

## Gas-liquid chromatography

If whiskey is analysed, which
fraction will appear fisrt at detector: water or alcohol?


Plinsko•tekućinska kromatografija

peak:


1. Formaldehid
2. Etil-metanoat
3. Etil-acetat
4. Methanol

## At the end of statement write YES or NO

During reaction toward products
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta_{\mathrm{c}} \mathrm{H}=-890 \mathrm{kJmol}^{-1}$ the heat is released
YES

Increase of temperature will result in increased concentration of $\mathrm{NO}_{2}$ in reaction:

$$
\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})} \quad \Delta_{\mathrm{r}} \mathrm{H}=-33.2 \mathrm{~kJ} / \mathrm{mol}
$$

NO

## At the end of statement write YES or NO

For the reaction $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta_{r} \mathrm{H}=-890 \mathrm{kJmol}^{-1}$ it is correct the statement:
increased total pressure will move reaction more towards products NO

During reaction toward products
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta_{\mathrm{c}} \mathrm{H}=-890 \mathrm{kJmol}^{-1}$ heat is released
YES

## Write the ratio ( $\mathbf{K}_{\text {dist }}$ ) between concentration of $\mathrm{CH}_{2} \mathrm{ClCOOH}$ in $\mathbf{C}_{6} \mathbf{H}_{6}$ and concentration of $\mathrm{CH}_{2} \mathrm{ClCOOH}$ in water

- based on the data for distribution coefficients between water (1) and another solvent (2)

Solute B Solvent $2 \quad \mathrm{~K}_{\text {dist }}=\left\{[\mathrm{B}]_{1} /[\mathrm{B}]_{2}\right\}_{\text {eq }}$
$\mathrm{CH}_{2} \mathrm{ClCOOH}$ $\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{C}_{6} \mathrm{H}_{6}$
$\mathrm{C}_{6} \mathrm{H}_{6}$28

16

