

REACTIONS AT EQUILIBRIUM

chapter 10

- One of the most important information in chemistry is whether a reaction will run in one direction or another.
- The composition of equilibrium can be specified in terms of a single quantity, equilibrium constant.

It is possible to predict how the position of equilibrium responds to changes in the conditions

• It is possible to make quantitative predictions

A chemical reaction is at *equilibrium* when the composition is stationary and has no further tendency to react

- $2H_2$ + $2O_2$ \Leftrightarrow $2H_2O$
- When hydrogen and oxygen are induced to react (by a spark),
- they go completely to the product

Dynamic equilibrium

- A mixture of nitrogen and hydrogen reacts and forms ammonia:
- N_2 + $3H_2$ \Leftrightarrow $2NH_3$

- Ammonia synthesis settled down to to a stationary composition
- consisting of a mixture of nitrogen, hydrogen, and ammonia.

- Chemical equilibria are dynamic equilibria
- *when* the forward and backward reactions continue, but there is no net change.
- Rates of movement in either direction are equal.

• This can be proved by isotopic studies:

• N_2 + $3H_2$ \Leftrightarrow $2NH_3$

 N^2H_3 deuterium

HH NHH₂

Esterification of ethanoic acid

 $CH_{3}COOH(1) + C_{2}H_{5}OH(1) \Leftrightarrow CH_{3}COOC_{2}H_{5}(1) + H_{2}O(1)$

ethanoic acid + ethanol ⇔ ester + water

The equilibrium composition of a reaction is characterized by the *equilibrium constant*

$$K_{c} = \left\{ \frac{[CH_{3}COOC_{2}H_{5}][H_{2}O]}{[CH_{3}COOH][C_{2}H_{5}OH]} \right\}_{eq} = in equilibrium
+ K_{c} is constant for given temperature$$

Esterification of ethanoic acid at 100 °C

$$\kappa_{c} = \left\{ \begin{array}{c|c} CH_{3}COOC_{2}H_{5} & H_{2}O \\ \hline CH_{3}COOH & C_{2}H_{5}OH \end{array} \right\}_{eq} \bullet \begin{array}{c} K_{c} \text{ is constant for} \\ given temperature \\ \hline \end{array}$$

 $CH_{3}COOH(l) + C_{2}H_{5}OH(l) \Leftrightarrow CH_{3}COOC_{2}H_{5}(l) + H_{2}O(l)$

 $K_c = 0.171 \cdot 0.171 / (1-0.171) (0.18-0.171)$

$CH_{3}COOH(l) + C_{2}H_{5}OH(l) \Leftrightarrow CH_{3}COOC_{2}H_{5}(l) + H_{2}O(l)$

mol at start		mol at equilibrium		
acid	alcohol	ester	water	Kc
1	0.18	0.71	0.171	3.9
1	1	0.667	0.667	4
1	8	0.966	0.966	3.9

$$\mathbf{K}_{\mathbf{c}} = \left\{ \begin{array}{c} \mathbf{C}\mathbf{H}_{3}\mathbf{C}\mathbf{O}\mathbf{O}\mathbf{C}_{2}\mathbf{H}_{5} \\ \hline \mathbf{C}\mathbf{H}_{3}\mathbf{C}\mathbf{O}\mathbf{O}\mathbf{H} \\ \hline \mathbf{C}_{2}\mathbf{H}_{5}\mathbf{O}\mathbf{H} \\ \end{array} \right\}_{eq}$$

 $K_c = 0.667 \cdot 0.667 / (1-0.667) (1-0.667) = 4$

 $K_c = 0.966 \cdot 0.966 / (1-0.966) (8-0.966) = 3.9$

Figure 17.2 The range of equilibrium constants. A, A system that reaches equilibrium with very little product has a small *K*. For this reaction, $K = \frac{1}{49} = 0.020$. **B**, A system that reaches equilibrium with nearly all product has a large *K*. For this reaction, $K = \frac{49}{1} = 49$. **C**, A system that reaches equilibrium with significant concentrations of reactant and product has an intermediate *K*. For this reaction,

 $K = \frac{25}{25} = 1.0.$

o 丰 🥚

$CH_{3}COOH(1) + C_{2}H_{5}OH(1) \Leftrightarrow CH_{3}COOC_{2}H_{5}(1) + H_{2}O(1)$

- $N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g)$
- $K_p = p^2 N H_3 / (p N_2 \cdot p^3 H_2)$

 at 400 K the value of this equilibrium constant is 53 bar⁻² How equilibria respond to changes of concentration?

$CH_{3}COOH(l) + C_{2}H_{5}OH(l) \Leftrightarrow CH_{3}COOC_{2}H_{5}(l) + H_{2}O(l)$

mol at start		mol at equilibria		
acid	alcohol	ester	water	
1	0,18	0,171	0,171	
1	1	0,667	0,667	

Henri L. le Chatlier 1850-1936. Adapted thermodynamics to equilibria; formulated the principle known by his name.

Le Chatelier's principle: when a reaction at equilibrium is subjected to a change of conditions,

the composition adjusts so as to minimize the change.

$CH_{3}COOH(l) + C_{2}H_{5}OH(l) \Leftrightarrow CH_{3}COOC_{2}H_{5}(l) + H_{2}O(l)$

mol at start		mol at equilibria		
acid	alcohol	ester	water	
1	0,18	0,171	0,171	
1	1	0,667	0,667	

If a reaction involving gases is subjected to an *increase in* pressure the reaction adjusts the composition so as to reduce the number of gas-phase molecules (and thereby to minimize the increase in pressure)

Is this reaction sensitive to pressure change?

$CH_4(g) + 2O_2(g) \hat{U} CO_2(g) + 2H_2O(g)$

An *increase of temperature,* in the case of endothermic reactions, shifts the position of equilibrium in favour of products

and in favour of reactants for exothermic reactions.

 $N_2O_4 \Leftrightarrow NO_2$ $\Delta H = +$ $N_2 + 3H_2 \Leftrightarrow 2NH_3$ $\Delta H = -92 \text{ kJmol}^{-1} \text{ at } 25 \text{ °C}$ $2NH_3 \Leftrightarrow N_2 + 3H_2$ $\Delta H = ?$

Le Chatelier: when a reaction at equilibrium is subjected to a change of conditions, the composition adjusts so as to minimize the change. $2NH_3 \Leftrightarrow N_2 + 3H_2$

 $\Delta H = + 92 \text{ kJ mol}^{-1} \text{ at } 25 \text{ °C}$

 $K = [N_2][H_2]^3 / [NH_3]^2$ $2NH_3 \Leftrightarrow N_2 + 3H_2 \qquad K_1 (25 \circ C)$ $2NH_3 \Leftrightarrow N_2 + 3H_2 \qquad K_2 (100 \circ C)$

a) $K_2 > K_1$ b) $K_2 = K_1$ c) $K_2 < K_1$

ance is attained.

The Universality of Le Châtelier's Principle In *homogeneous reactions* all the species are in the same phase;

 $CH_{3}COOH(l) + C_{2}H_{5}OH(l) \Leftrightarrow CH_{3}COOC_{2}H_{5}(l) + H_{2}O(l)$ $aA(g) + bB(g) \rightleftharpoons cC(g) + dD(g); \qquad K_{p} = \left\{\frac{p_{c}^{c}p_{D}^{d}}{p_{A}^{a}p_{B}^{b}}\right\}_{eq}$

- in *heterogeneous reactions* the species are in more than one phase.
- Corresponding equilibria are called homogeneous equilibria and heterogeneous equilibria, respectively.

Heterogeneous equilibria

 $CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$ $K = \{ [CaO]pCO_2 / [CaCO_3] \}_{eq} \}$

The concentrations of pure solids are constant, and may be absorbed into the definition of the equilibrium constant for a heterogenous reaction.

K={pCO₂}_{eq} = 24.4 kPa at 800 °C

 $j(CO_2) = 0.0003; p(CO_2) = 0.03 kPa$

$CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$ $K = \{ [CaO]pCO_2 / [CaCO_3] \}_{eq} \}$

$$K = \{pCO_2\}_{eq} = 24.4 \text{ kPa}$$

Partition equilibria

	Distribution coefficients at 25 °C between water (1) i another solvent (2):		
Solute B	solvent (2)	$K_{dist} = \{ [B]_1 / [B]_2 \} eq$	
Cl ₂	CCI ₄	0,1 /1	

CH₃COOH C₆H₆ 16

2.-4. Washing process

with moving phase = elution

peak:

- 1. Formaldehid
- 2. Etil-metanoat
- 3. Etil-acetat
- 4. Methanol

x = Elution time

At the end of statement write YES or NO

During reaction toward products $CH_4(g) + 2O_2(g) \iff CO_2(g) + 2H_2O(g)$ $\Delta_cH= -890 \text{ kJmol}^{-1}$ the heat is released YES

Increase of temperature will result in increased concentration of NO_2 in reaction:

 $N_{2(g)} + 2 O_{2(g)} \iff 2 NO_{2(g)} \Delta_r H = -33.2 \text{ kJ/mol}$ NO

At the end of statement write YES or NO

For the reaction $CH_4(g) + 2O_2(g) \Leftrightarrow CO_2(g) + 2H_2O(g) \quad \Delta_r H = -890 \text{ kJmol}^{-1}$ it is correct the statement: increased total pressure will move reaction more towards products NO

During reaction toward products $CH_4(g) + 2O_2(g) \iff CO_2(g) + 2H_2O(g)$ $\Delta_cH = -890 \text{ kJmol}^{-1}$ the heat is released YES Write the ratio (K_{dist}) between concentration of $CH_2CICOOH$ in C_6H_6 and concentration of $CH_2CICOOH$ in water

based on the data for distribution coefficients between water
 (1) and another solvent (2)

Solute B	Solvent 2	$K_{dist} = \{ [B]_1 / [B]_2 \}_{eq}$	
	C ₆ H ₆	28	
CH ₃ COOH	C_6H_6	16	