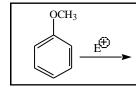
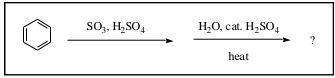

1. The following ¹H-NMR spectrum was most likely obtained from which of the compounds listed below?


A)

B)

C)

D)


2. Considering the intermediate formed upon addition of an electrophile to this aromatic ring, which of the following is **not** a correct resonance structure:

- A) OCH₃
- B) ⊕OCH3 E
- C) OCH₃
- D) OCH3
- E) All of these are correct.
- 3. How many signals will be present in a decoupled ¹³C NMR spectrum for the molecule below?

- A) 9
- B) 7
- C) 10
- D) 8
- E) none of the above

- 4. What functional group would be indicated by an IR absorption at 2150 cm⁻¹?
 - A) NH
 - B) C=O
 - C) C=C
 - D) $C \equiv C$
 - E) OH
- 5. What is/are the product(s) from the following reaction?

A)

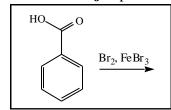
B)

C)

D)

6. What is/are the major product(s) in the following reaction?

$$CH_3$$
 $CH_2(CH_2)_2CH_2CI$
 $AICl_3$
?


A)

B) No Reaction


C)

D) Both A and C

7. Predict the **major** product of the following reaction:

A)

B)

C)

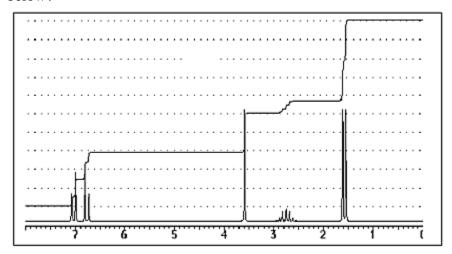
D)

E) none of these

- 8. Which of the following structures will give **three** signals (not counting TMS) in the proton decoupled ¹³C NMR?
 - A)

B)

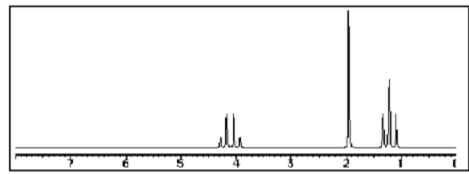
C)



D)

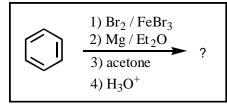
9. The following ¹H-NMR was most likely obtained from which of the compounds listed below?

A)

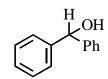

B)

C)

D)


$$H_3C$$
 \bigcirc \bigcirc \bigcirc

10. Which compound most likely exhibits the following proton NMR?



- A) \sim CH₂CH₃
- B) O
- C) O
- $\begin{array}{c} \text{D)} \\ \text{H} \\ \text{H} \end{array}$
- E) O
- 11. A compound which shows a molecular ion at m/z 84 could plausibly have what formula?
 - A) C₅H₁₀O
 - B) C₅H₁₀N
 - C) C₅H₂₄
 - D) C₄H₂₀O
 - E) C_6H_{12}

12. What would be the expected product of the following reactions?

A)

B)

C)

D)

13. What would be the **major** product from the following reaction sequence?

OCH₃

$$\frac{SO_3}{H_2SO_4} \longrightarrow \frac{Br_2}{FeBr_3} \longrightarrow \frac{H^+, H_2O, \Delta}{PeBr_3}$$
A)

D)
$$OCH_3$$
 HO_3S Br

14. Describe the splitting that would be observed by H_a in the proton NMR spectrum, assuming H_a is coupled to all its neighboring protons in an equivalent manner.

- A) H_a will be split into a sextet.
- B) H_a will be split into a septet.
- C) Ha will be split into an octet.
- D) H_a will be split into a pentet
- E) none of the above
- 15. For the compound below give the spin-spin splitting that would be observed for each of the protons sets in the ¹H NMR spectrum.

- A) $H_a = \text{triplet } H_b = \text{quartet}, H_c = \text{singlet}$
- B) $H_a = \text{singlet } H_b = \text{pentet}, H_c = \text{quartet}$
- C) $H_a = \text{triplet } H_b = \text{doublet}, H_c = \text{quartet}$
- D) $H_a = singlet H_b = quartet, H_c = triplet$
- E) none of the above

16. The following spectra data was most likely obtained from which compound?

IR Bands (cm ⁻¹)	proton NMR	
3000	Chemical shift (ppm)	Multiplicity
1740	3.85	Singlet
1695	2.70	Triplet
	2.25	Triplet

Carbon-13 NMR		
Chemical shift (ppm)		
200		
170		
70		
35		
30		

A)

B)

$$\bigcup_{OCH_3}^{O}$$

$$OCH_3$$

C)

D)

17. What is/are the product(s) in the following Friedel-Crafts Reaction?

$$+ H_3C \xrightarrow{CH_3} Br FeBr_3 ?$$

A)

B)

C)

$$\begin{array}{c} \text{CH}(\text{CH}_3)_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{and} \\ \text{CH}_2 \\ \text$$

- D) both A and B
- E) all of the above

18. Predict the major organic product of the following reaction.

A)

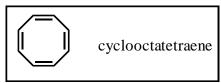
$$CH_3O \longrightarrow NO_2$$

$$NO_2$$

B)

$$CH_3O \longrightarrow NO_2 \\ NO_2$$

C)


$$\begin{array}{c} \text{Br} \\ \\ \text{CH}_3\text{O} \\ \end{array} \begin{array}{c} \text{NO}_2 \\ \\ \text{NO}_2 \\ \end{array}$$

D)

$$\begin{array}{c|c} O & Br \\ \hline \\ CH_3O & \\ \hline \\ NO_2 \\ \end{array}$$

$$CH_3O \xrightarrow{Br OH NO_2} NO_2$$

19. Which of the following best describes the electronic nature of cyclooctatetraene?

- A) Not all of the carbon atoms possess the π -orbital required for conjugation.
- B) This compound is non-planar and non-aromatic.
- C) This compound is predicted to be aromatic.
- D) This compound is anti-aromatic and very unstable.
- E) None of these are true.
- 20. For the compound below give the integration ratio that would be observed for each of the protons sets in the ¹H NMR spectrum.

- A) $H_a = 1 H_b = 1, H_c = 1$
- B) $H_a = 3$, $H_b = 2$, $H_c = 1$
- C) $H_a = 1 H_b = 2, H_c = 1$
- D) $H_a = 3 H_b = 2, H_c = 3$
- E) none of the above
- 21. Arrange each of the following labeled hydrogens in the order of increasing chemical shift.

- A) $H_b < H_c < H_a < H_d$
- B) $H_b < H_a < H_c < H_d$
- C) $H_a < H_b < H_c < H_d$
- D) $H_b < H_a < H_d < H_c$
- E) $H_d < H_c < H_a < H_b$

Answer Key

- 1. A
- 2. E
- 3. A
- 4. D
- 5. B
- 6. D
- 7. D
- 8. C
- 9. C
- 10. B
- 11. E
- 12. B
- 13. B
- 14. C
- 15. D
- 16. D
- 17. D
- 18. C
- 19. B
- 20. D
- 21. B