GCE

Chemistry B (Salters)

Unit H033/01: Foundations of chemistry
Advanced Subsidiary GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations

Annotation	Meaning
	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
$\overline{\text { RE }}$	Contradiction
$\overline{S F}$	Rounding error
ECF	Error in number of significant figures
NBOD	Error carried forward
SEEN	Benefit of doubt not given
I	Noted but no credit given
BP	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{l}	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Answers that can be accepted
ALLOW	Words which are not essential to gain credit
()	Error carried forward
ECF	Alternative wording
ARA	Or reverse argument
ORA	

SECTION A

Question	Answer	Marks	AO element
1	C	1	1.1
2	B	1	1.1
3	C	1	1.2
4	B	1	2.5
5	C	1	1.1
6	A	1	1.1
7	B	1	1.1
8	D	1	1.2
9	B	1	1.2
10	D	1	2.5
11	A	1	2.4
12	D	1	2.5
13	C	1	2.1
14	D	1	2.4
15	D	1	2.1
16	C	1	1.2
17	D	1	2.7
18	D	1	2.2
19	C	1	2.4
20	B	1	1.1

Question			Answer	Marks	AO element	Guidance
21	(a)		mass number 56 protons 28 neutrons 28	1	2.2	
	(b)		$\begin{aligned} & (28 \times 92.17)+(29 \times 4.71)+(30 \times 3.12) \\ & / 100=28.1(095) \vee \\ & 28.11(2 \mathrm{dp}) \sqrt{ }) \end{aligned}$	2	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	NO ecf 28.11 alone on the answer line scores 1 mark without some evidence of working. Answers to other dp without working score zero.
	(c)	(i)	1. (Add NiCO_{3} to $\mathrm{H}_{2} \mathrm{SO}_{4}$) until fizzing/reaction stops/all sulfuric acid has reacted $\sqrt{ }$ 2. filter (prior to crystallisation) $\sqrt{ }$ 3. (partially) evaporate $\sqrt{ }$ 4. Filter the crystals/pick out the crystals/leave crystals to dry/fully evaporate to produce crystals $\sqrt{ }$	4	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 1.2 \\ & 1.2 \end{aligned}$	2. IGNORE what is being filtered but NOT nickel sulfate 3. ALLOW a word derived from evaporate e.g.evaporation 4. boiling to dryness CON pt 4, ALLOW products/ $\mathrm{NiSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ for "crystals" fully evaporate to produce crystals scores pts $3 \& 4$
		(ii)	A no - this would have resulted in a higher mass/yield $\sqrt{ }$ B no - nickel carbonate is added in excess AW/moles of sulphuric acid are the limiting factor/(excess)nickel carbonate is removed $\sqrt{ }$ C yes - loss of water would reduce mass (AW) $\sqrt{ }$	3	$\begin{aligned} & 3.1 \\ & 3.1 \\ & 3.1 \end{aligned}$	for each mark, 'yes' or 'no' (or 'correct'/'incorrect') must be stated (or implied) and the reason given. ALLOW weight for mass
				10		

Question			Answer	Marks	AO element	Guidance
22	(a)		(2-)methylpropene	1	1.2	IGNORE dashes, commas and gaps ALLOWprop-1-ene ALLOW minor spelling errors
	(b)			1	2.5	ALLOW any unambiguous representation of the structure but NOT C for CH_{3} IGNORE name
	(c)	(i)	water/steam AND phosphoric/ concentrated sulfuric acid	1	1.2	ALLOW names of acids (including oxidation states) or formulae (c. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I}), \mathrm{H}_{3} \mathrm{PO}_{4}$) but if name AND formula present both must be correct. IGNORE isobutylene/2-methylpropene
	(c)	(ii)	tertiary AND OH/functional group attached/bonded to C that has... no H atoms or $3 \mathrm{C} /$ methyl/alkyl/R (groups)	1	1.1	IGNORE 'it' for 'OH' ALLOW Alcohol/hydroxyl group attached to C. NOT hydroxide
		(iii)	(heat with) acidified dichromate(VI) $\sqrt{ }$ A/tertiary has no reaction/stays orange /doesn't change colour. Others/primary/secondary go green/change colour $\sqrt{ }$	2	$\begin{aligned} & 3.4 \\ & 3.4 \end{aligned}$	Mark separately ALLOW correct formulae ALLOW sulfuric acid or sulfuric(VI) acid as replacement for acidified. IGNORE formulae if names correct ALLOW dichromate without 'VI' as long as no other number is there
		(iv)	forms the weakest/smallest/ fewest instantaneous (dipole) induced dipole bonds/forces $\sqrt{ }$ smallest surface area OR non-linear molecules are unable to get closer together/align AW $\sqrt{ }$	2	2.1 1.2	Mark separately IGNORE references to other intermolecular bonding ALLOW weaker/smaller/fewer ALLOW Van der Waal's forces or London forces DO NOT ALLOW id-id in first instance ALLOW minor spelling errors ALLOW 'less contact between molecules'
	(d)	(i)	Ether/alkoxy/methoxy	1	1.2	
		(ii)	$\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{CH}_{4} \mathrm{O} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	1	2.6	must be molecular formulae as shown ALLOW element symbols in any order IGNORE state symbols
				10		

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
24	(a)	(i)	atom/molecule/species/ion with unpaired electron(s) $\sqrt{ }$ formed from chloroalkanes/ R-CI/ haloalkanes/ chlorine compounds/ CFCs/ C-Cl by high-energy/ high frequency $\sqrt{ }$ uv $\sqrt{ }$ homolytic (fission) $\sqrt{ }$	5	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	IGNORE 'single' 'lone’ ALLOW 'it' for 'atom/molecule/species/ ion' ALLOW equation showing formation of radicals Mention of breakdown of Cl_{2} CONS 2 nd marking point IGNORE UVA for third marking point UVB and/or C covers both 3rd and 4th marking points. ALLOW homolysis
		(ii)	$\begin{aligned} & \mathrm{Cl}+\mathrm{O}_{3}---->\mathrm{ClO}+\mathrm{O}_{2} \\ & \mathrm{ClO}+\mathrm{O}---\mathrm{Cl}+\mathrm{O}_{2} \sqrt{ } \\ & \mathrm{O}_{3}+\mathrm{O}---\mathrm{-} 2 \mathrm{O}_{2} \sqrt{ } \text { V } \end{aligned}$	2	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	Mark separately IGNORE dots $\mathrm{Cl}+\mathrm{O}_{3}----\mathrm{ClO}+\mathrm{O}_{2}$ $\mathrm{ClO}+\mathrm{O}_{3}---->\mathrm{Cl}+2 \mathrm{O}_{2}$ and hence $2 \mathrm{O}_{3}$----> $3 \mathrm{O}_{2}$ scores $2^{\text {nd }}$ marking point only
	(b)	(i)	Y axis (concentration) correctly labelled with units and standard form $\sqrt{ }$ X axis (time) correctly labelled with units $\sqrt{ }$ Points plotted utilising over half of each axis $\sqrt{ }$	3		Linear scale labelled with conc(entration) of ozone $/ \mathrm{O}_{3}$ NOT $\left[\mathrm{O}_{3}\right.$] AND units (molecules cm^{-3}). 10^{12} or 10^{-12} mentioned somewhere. Linear scale labelled with "Time" AND units. X and y axes swapped but otherwise correct scores only one of the first two marks. Exact position of points does not need checking. Line of best fit not essential but point to point or curved line is CON
		(ii)	4.979-4.983 $\times 10^{12}$ molecules cm^{-3}	1	2.6	Minimum of 4 sf required
		(iii)	it remains constant (AW) AND the gradient is constant/straight line graph (AW)	1	2.7	NOT almost/fairly/nearly constant IGNORE references to negative rate

Quest	Answer	Marks	AO element	Guidance
(d)	Choice of method: EITHER Calculate the energy of 1 mole of photons and compare with bond enthalpy. Calculate energy of one photon $\left(9.5 \times 10^{14} \times 6.63 \times 10^{-34}\right.$ OR 6.30×10^{-19}) $\sqrt{ }$ Multiply up for 1 mole and convert to kJ (photon energy x $\left.6.02 \times 10^{23} / 1000\right)$ V Evaluate (379) and state whether bond will be broken. OR Compare the energy of one photon with one bond Calculate energy of one photon $\left(9.5 \times 10^{14} \times 6.63 \times 10^{-34}\right.$ OR 6.30×10^{-19}) $\sqrt{ }$ Calculate energy of one bond $\left(302 \times 1000 / 6.02 \times 10^{23}\right) \sqrt{ }$ Evaluate both $\left(6.30 \times 10^{-19}\right.$ and $\left.5.02 \times 10^{-19}\right)$ and state whether bond will be broken. OR Calculate minimum frequency needed to break bond Calculate energy required per molecule (302000/6.02 x 10^{23}) V Calculate required frequency of radiation (energy/6.63 x 10^{-34}) V Evaluate $\left(7.57 \times 10^{14}\right)$ and state whether bond will be broken. $\sqrt{ }$	3	$\begin{aligned} & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & \\ & 3.2 \\ & 3.2 \\ & 3.2 \end{aligned}$	The $3^{\text {rd }}$ marking point can only be scored if the first 2 marks are scored OR if the only error is in conversion between J and kJ i.e. failure to convert or incorrect conversion
			19	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

