Cherry Hill Tuition At Were hemistry OCR B Salters. Paper 13 Mark Scheme Page 1 of 17

GCE

Chemistry B (Salters)

Mark Scheme

Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 13 Mark Scheme Page 1 of 17

Cherry Hill Tuition A Level Chemistry OCR B Salters, Paper 13 Mark Scheme Page 2 of 17

Question			Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 13 M		0		
		-	Answer	Marks	Guidance		
1	(a)	(i)	$H \xrightarrow{x} S \xrightarrow{x} H$ All correct for one mark \checkmark	1	 Any two different symbols can be used to represent the electrons. Candidate does not have to draw circles for electron shells. It MUST be clear that a pair of electrons is being shared between the S and each H. IGNORE bonds shown as lines. 		
1	(a)	(ii)	Bent / v–shaped / non-linear ✓ Four pairs of electrons OR 2 bonding pairs and 2 lone pairs (around S) ✓	4	 DO NOT ALLOW ecf here for an incorrect diagram in (i) showing no lone pairs. ALLOW first marking point for correct diagram IGNORE tetrahedral. ALLOW 'areas/groups/regions of electron density' 		
			electron (pairs): repel to get as far apart as possible OR repel as much as possible OR position themselves so they minimise repulsion OR repel to produce a tetrahedral arrangement ✓ 109° ✓		Must have both repel and distance idea for the mark. NOT just 'lone pairs repel' / 'atoms repel' / 'bonds repel'. ALLOW bond angle in the range: 104 – 110° Mark separately. No ecf from earlier marking points.		

	Cherry Hill Tuition	A Level Chemistry C	CR B Salters	Paper 13 Mark Scheme	Page 3 of 17
--	---------------------	---------------------	--------------	----------------------	--------------

			Cherry Hill Tuition A Level Chemistry OCR B Salters.			
Question		on	Answer	Marks	Guidance	
1	(b)		The H–S bonds are (slightly) polar OR S and H have different electronegativities OR H is less electronegative / ∂ + OR S is more electronegative / ∂ - \checkmark	2	NOT full charges. Can be from a labelled diagram.	
			(The molecule is) polar because: the charges or dipoles do not balance		Must have both polar and a reason.	
			OR centres of negative and positive charges do not coincide OR electrons/charges are not evenly distributed OR has a positive and a negative side $AW \checkmark$		Mark separately.	
1	(c)		In $H_2S: -2 \checkmark$ In $H_2SO_4: +6 \checkmark$	2	Answer must have sign before number to score both. ALLOW one mark for 2– AND 6+	
1	(d)		Oxygen / O₂ ✓	2		
			Oxidation state or number has decreased / changed from 0 to $-2 \checkmark$		DO NOT ALLOW second mark if incorrect oxidation states are given. ALLOW gains electrons. Second mark depends on first.	
1	(e)	(i)	Burette ✓	1	ALLOW minor errors in spelling e.g.: burrete (but not biuret)	
1	(e)	(ii)	$26.4 \times 0.050/1000 = 0.00132 / 1.32 \times 10^{-3} \checkmark$	1	ALLOW 0.0013	
1	(e)	(iii)	Answer to (ii) / 2 (= 0.00066 / 6.6 x 10 ⁻⁴) ✓	1		
1	(e)	(iv)	Answer to (iii) / 20.0 ✓ x 1000 and evaluate (= 0.033 OR 3.3 x 10 ⁻²) ✓	2	Check that candidates have carried out both ÷ 20 and x 1000 before awarding 2 marks.	

Cherry Hill Tuition A	Level Chemistry	OCR B Salters	Paper 13 Mark Scheme	Page 4 of 17

Question		on	Answer N		Guidance		
1	(e)	 (e) (v) Answer to (iv) x 250 /10 (=0.825) ✓ 0.825 to 3 s.f. ✓ 		2	ALLOW s.f. mark for any 3 sig fig answer that follows from any correctly evaluated calculation. A completely correct answer on its own scores both marks, including the s.f. mark.		
			Total	18			

Question		on	Cherry Hill Tuition A Level Chemistry OCR B Salters. Pa Answer		Mark Scheme Page 5 of 17 Guidance
2	(a)		Alcohol ✓ Alkene ✓	2	ALLOW hydroxyl / hydroxy ALLOW C=C OR 'carbon–carbon double bond' Additional incorrect answers negate one correct answer.
2	(b)		C₅H ₁₀ O ✓	1	ALLOW elements in any order Do NOT allow C_5H_9OH
2	(c)	(i)	(Colour change from) brown/orange/yellow ✓	2	IGNORE red in the first answer Any combination of these colours but no other should be mentioned (red/brown scores mark)
			to colourless ✓		IGNORE 'clear' for the second answer Mark separately.
2	(c)	(ii)	answer to (b) + Br ₂ \rightarrow answerBr ₂ (e.g.: C ₅ H ₁₀ O + Br ₂ \rightarrow C ₅ H ₁₀ OBr ₂) \checkmark	1	ALLOW elements in any order Answer just Br ₂ added anywhere on to structure from (b), no further 'expanding' of formula.
2	(c)	(iii)	Electrophilic ✓ Addition ✓	2	ALLOW answers indicated in other ways, such as circling. Each additional underline CON s a mark.
2	(d)	(i)	e ✓ OH	1	Candidate can draw structural formula instead of skeletal. ALLOW 'C ₂ H ₅ ' (for 'H ₃ C–CH ₂ ') and 'CH ₂ OH' BOTH structure and ' <i>E</i> ' for one mark ALLOW ambiguous attachments
2	(d)	(ii)	Rotation not possible around the C=C bond OR C=C restricts twisting \checkmark two different groups on each carbon of the C=C \checkmark	2	Mark separately IGNORE 'each side / end of C=C'

Cherry Hill Tuition A Level Chemistry OCR B Salters, Paper 13 Mark Scheme Page 5 of 17

Q	Question		Answer M		Guidance	
2	(e)		$H_{3}C \qquad Cl \qquad H_{2}CH_{2} \qquad H_{2} \qquad H_{2} \qquad H_{2} \qquad H_{3}C \qquad Cl \qquad H_{3}C \qquad Cl \qquad H_{3}C \qquad Cl \qquad I \qquad $	2	Candidate can draw skeletal formula instead of structural. ALLOW 'C ₂ H ₅ ' (for 'H ₃ C–CH ₂ ') and 'CH ₂ Cl' IGNORE missing hydrogen atoms on structural formulae ALLOW ambiguous attachments. Marks are for diagrams of 1,2-dichloropentane and 1,3- dichloropentane.	
2	(f)	(i)		1	Candidate can draw skeletal formula instead of structural but 'end' bonds must be shown ALLOW 'C ₂ H ₅ ' (for 'H ₃ C–CH ₂ ') and 'CH ₂ OH' IGNORE brackets and 'n' ALLOW ambiguous attachments	

Cherry Hill Tuition A Level Chemistry OCR B Salters, Paper 13 Mark Scheme Page 6 of 17

Q	Question		Answer		Guidance
2	(f)	(ii)	Lone pair on oxygen OR oxygen small and electronegative ✓	3	Please use annotations in the answer in appropriate places. Can refer to intermolecular forces rather than intermolecular bonds. NOT lone pair on oxygen molecule.
			hydrogen with δ+ charge OR H polarised in O–H bond ✓		ALLOW H polarised in N-H OR F-H bond for second mp ALLOW any of mp 1-3 from a labelled diagram, but QWC can only be scored if there is also a written description.
			Polymer can also form <u>hydrogen bonds</u> with water \checkmark		
			QWC for reason why polymer can form hydrogen bonds with water – as it has OH OR alcohol groups ✓	1	Please indicate QWC using green tick or red cross on the right on the pencil icon on the answer screen.

Cherry Hill Tuition A Level Chemistry OCR B Salters, Paper 13 Mark Scheme Page 7 of 17

	Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 13 Mark Scheme Page 8 of 17								
Q	uesti	on	Answer	Marks	Guidance				
2	(g)	(i)	(Potassium / sodium) dichromate / chromate / K ₂ Cr ₂ O ₇ / Na ₂ Cr ₂ O ₇ / Cr ₂ O ₇ / Cr ₂ O ₇ ^{2−} ✓	2	IGNORE dichromate oxidation state if dichromate written in words (ALLOW minor spelling error). IGNORE formula if correct name is given.				
			Acidified / (sulfuric) acid / H₂SO₄ / H⁺ ✓		 ALLOW hydrochloric acid / HCl / nitric acid / HNO₃ for second mark. DO NOT ALLOW the solution acidified with organic acids. IGNORE 'concentrated'. ALLOW concentrated sulphuric acid with water, but DO NOT give credit for conc. sulphuric acid as the only reagent. Any additional reagent, other than water, negates the dichromate mark, but candidate can still score the acid mark. Mark independently. IGNORE reaction conditions. 				
2	(g)	(ii)	Aldehyde ✓	1	ALLOW carbonyl				
2	(h)	(i)	To <u>boil</u> a liquid ✓ With a <u>vertical / upright</u> condenser OR allowing liquid to drop back into the flask OR without liquid boiling away OR prevent loss of products (and/or reactants) ✓	2	ALLOW 'no gases escape' Can be scored from a diagram showing flask and vertical condenser. NOT prevents evaporating Sealed equipment CONs the second mark.				

Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 13 Mark Scheme Page 8 of 17

Cherry	Hill Tuition A Level Chemist	v OCR B Salters. F	Paper 13 I	Mark Scheme	Page 9 of 17

Question		on	Answer Marks		5	
2	(h)	(ii)		2	ALLOW 'carboxyl', NOT 'carboxylic' without 'acid' DO NOT ALLOW –OH for –O–H in structure but must show a single bond from C atom to the rest of the molecule (which can be shown as R).	
			Total	25		

Cherry	V Hill Tuition A Level Chemistry	v OCR B Salters. Pr	aper 13	Mark Scheme	Page 10 of 17

			Cherry Hill Tuition A Level Chemistry OCR B Salters.		
Q	uestio	on	Answer	Marks	Guidance
3	(a)		SiO_2 : giant covalent / giant structure / network solid / giant lattice / whole structure held together by covalent bonds, e.g.: every silicon atom is bonded to 4 oxygen atoms OR diagram showing at least 2 Si with all surrounding Os \checkmark	3	NOT giant ionic structure IGNORE giant molecule. Reference to 'oxygen molecules' CON s this mark Statements that SiO_2 has any type of intermolecular bond CON s mp1.
			 CO₂: simple molecular / molecules / O=C=O AW ✓ One from: a) weak intermolecular bonds in CO₂ b) little/less energy needed to separate molecules (of CO₂) c) bonds in SiO₂ are stronger than CO₂ intermolecular bonds ✓ 		IGNORE 'covalent'. IGNORE 'intermolecular bonds' in SiO ₂ in mp3. c) Needs to be a comparison.
3	(b)		2 from: Burning fossil fuels / named fossil fuel / hydrocarbons ✓ Production of cement ✓ Making iron/ making steel ✓ Deforestation AW ✓ Fermentation ✓ Oil refining ✓	2	Must refer to the process for the mark (e.g.: not just 'fossil fuels') NOT just burning fuels in vehicles
3	(c)	(i)	 2 from: Burn a fuel from a plant source OR an example, e.g.: wood, charcoal, (bio)ethanol, etc (which are carbon neutral) ✓ Use specified alternative energy source, choosing one from: solar energy / wind turbine / nuclear energy / hydroelectric / hydrothermal / wave / geothermal ✓ Improve the efficiency of the process OR use a catalyst (so that it needs less energy to run) ✓ 	2	NOT just 'alternative fuel that does not produce greenhouse gases' ALLOW 'burn fossil fuels more efficiently' IGNORE references to recycling / capturing CO ₂

Cherry Hill Tuition A Level Chemistry OCR B Salters, Paper 13 Mark Scheme Page 11 of 17

			Cherry Hill Tuition A Level Chemistry OCR B Salters.		5
Q	uesti	on	Answer	Marks	Guidance
3	(c)	(ii)	 (Capture and storage of the gas would need) lots of equipment / energy / compression OR costs would be incurred for: remedying environmental consequences / clearance of land / new or more infrastructure AW / specific equipment / larger workforce / space for storage AW ✓ 	1	IGNORE reference to CO ₂ being gas.
3	(d)	(i)	Infrared (radiation) ✓	1	ALLOW 'IR'
3	(d)	(ii)	Makes their <u>bonds</u> vibrate (more) OR molecules gain or change in <u>vibrational energy</u> ✓	1	
3	(d)	(iii)	 <i>Either:</i> (Vibrational energy) becomes kinetic energy ✓ KE results in increased temp ✓ OR the molecules re—emit (some of the absorbed IR) ✓ in all directions ✓ 	2	Idea of transfer of energy is key here. Mark independently. ALLOW 'heat' or 'warmer' for increased temperature. NOT 'reflect' for re-emit. Second mark dependant on first in second set of marks

Cherry Hill Tuition A Level Chemistry OCR B Salters, Paper 13 Mark Scheme Page 12 of 17	Cherry Hill Tuition	A Level Chemistry	OCR B Salters	Paper 13 Mark Scheme	Page 12 of 17
---	---------------------	-------------------	---------------	----------------------	---------------

~			Cherry Hill Tuition A Level Chemistry OCR B Salters.	Marks	
	uesti	-			Guidance
3	(e)	(i)	Equation 3.1: Equilibrium moves so that more CO ₂ aqueous will be formed OR equilibrium moves to the right \checkmark Equation 3.2: (Increased CO ₂ aqueous) moves equilibrium to the right \checkmark HCO ₃ ⁻ (concentration) increases \checkmark	3	If candidate implies that both equation 3.1 and equation 3.2 move to the right, but do not mention equilibrium, they score 1 of the first two marks. If they state this, and use the term equilibrium correctly at least once, they can score both mp1 and 2. One of mp 1 and 2 can be scored if the candidate states that 'the equilibrium moves to the right', but it is not clear which reaction they are referring to.
3	(e)	(ii)	System is not closed OR CO_2 moves away from the surface OR specific example of input or output of $CO_2 \checkmark$	1	ALLOW 'not a sealed system' or 'it is an open system'.
3	(f)	(i)	$\begin{array}{c} O_2 \rightarrow 20 \textbf{OR} O_2 \rightarrow 0 \ + \ 0 \not \\ O + O_2 \rightarrow O_3 \not \end{array}$	2	IGNORE dots ALLOW multiples
3	(f)	(ii)	High frequency radiation OR high energy radiation OR uv only present in the stratosphere / not in troposphere $AW \checkmark$ (energy is needed for) bonds in O ₂ to be broken OR O radicals are formed OR (photo)dissociation / photolysis / breakdown of O ₂ OR homolytic fission / homolysis of O ₂ \checkmark	2	ALLOW a specific frequency is needed Mark separately
3	(g)	(i)	$O_3 + O \rightarrow 2O_2$ OR $O_3 + O \rightarrow O_2 + O_2 \checkmark$	1	IGNORE state symbols
3	(g)	(ii)	(Catalyst) is in the same phase/state(gases) as the reactants \checkmark NO is not used up in the reaction / NO is reformed / NO is regenerated / NO is recycled / NO is (chemically) unchanged \checkmark	2	ALLOW 'it' for NO. ALLOW 'does not appear in the overall equation' AW.
			Total Cherry Hill Tuition A Level Chemistry OCR B Salters.	23	Mark Scheme Page 12 of 17

Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 13 Mark Scheme Page 12 of 17

Ch OCD R Saltara Danar 12 Mark Schome Page 13 of 17

C	Quest	ion	Answer	Marks	Guidance
4	(a)	(i)	Propagation ✓	1	
4	(a)	(ii)	It filters / screens / absorbs / removes / prevents / shields / blocks (AW) <u>uv</u> ✓ (uv) of high energy OR high frequency / short wavelength ✓	3	IGNORE protects us from uv IGNORE high intensity radiation ALLOW UVC/ UVB/ 10 ¹⁶ Hz/ 200–320nm
			which could otherwise cause <u>skin</u> cancer / damage to DNA / damage to eyes / damage to immune system / cell mutation / affects crops / premature ageing of the <u>skin</u> \checkmark		IGNORE skin damage.
4	(b)		For CCl_2F_2 : low boiling point \checkmark For CCl_2FCClF_2 :	2	
4	(c)	(i)	Iow reactivity OR low boiling point ✓ F radicals not formed (in stratosphere) OR HFCs not broken down (in stratosphere) ✓	2	ALLOW HFCs were already broken down in the troposphere. IGNORE references to being unreactive.
			because of the stronger C–F bond OR C–F needs more energy to break OR uv not high enough frequency to break C-F OR uv not high enough energy to break C–F ✓		IGNORE 'C-F bond is unreactive'.
4	(c)	(ii)	Advantage: Same essential properties to the CFC they are to replace OR they are broken down in the troposphere ✓	2s	
			Disadvantage – one of: (they are also) greenhouse / global warming gases OR expensive (to make) OR form HF (as a breakdown product) ✓		IGNORE less effective

0	Question Answer Marks Guidance		Guidance		
4	(d)	(i)	The F in the molecule has a <u>lone pair</u> of electrons \checkmark that it can donate (to the δ + charged carbon atom) AND forms a (covalent) <u>bond</u> \checkmark	2	ALLOW 'HF' or 'it' for 'F in the molecule' Second mpt must be in the context of an electron pair donated. Mark independently
4	(d)	(ii)	Catalyst provides an alternative pathway ✓ with a lower activation enthalpy ✓	2	
			Total	14	

Cherry Hill Tuition A Level Chemistry OCR B Salters, Paper 13 Mark Scheme Page 14 of 17

Q	uestion	Cherry Hill Tuition A Level Chemistry OCR B Salter Answer	Marks	Mark Scheme Page 15 of 17 Guidance
5	(a)	A particle with an unpaired electron ✓	3	IGNORE 'free' or 'lone' or 'single' electron ALLOW atom / molecule / ion / species for 'particle' OR 'a radical has an unpaired electron' DO NOT ALLOW 'IS an unpaired electron'.
		Homolytic (bond breaking) / homolysis 🗸		
		Example, one from: Oxygen <u>molecule</u> / O₂ / chlorine <u>atom</u> / C1/ ozone / O₃ ✓		 IGNORE radicals that are not in the article. Additional answers that are not radicals CON a correct answer. ALLOW a correct equation showing the formation of a radical from the article.
5	(b)	$2ClO_3^- + 4H^+ + 2Cl^- \rightarrow 2ClO_2 + Cl_2 + 2H_2O \checkmark \checkmark$	2	No other species should be present in the equation. ALLOW $2C_{I}O_{3}^{-} + 4HC_{I} \rightarrow 2C_{I}O_{2} + C_{I_{2}} + 2C_{I}^{-} + 2H_{2}O$ for both marks. One mark can be scored for $C_{I}O_{3}^{-}$ as a reactant.

Charny Hill Tuition A Loval Chamistry OCP R Saltars, Dapar 12 Mark Schama, Daga 15 of 17

Cherry Hill Tuition A Level Chemistry	v OCR B Salters. Pa	aper 13 Mar	rk Scheme Pag	ie 16 of 17

tion)	Answer Chlorine dioxide has polar bonds OR chlorine dioxide is a polar molecule OR chlorine dioxide has a permanent dipole ORA for chlorine \checkmark Oblasize dioxide for chlorine \checkmark	Marks 4	Guidance ALLOW chlorine and oxygen have different electronegativities OR O slightly negative / Cl slightly positive
)	polar molecule OR chlorine dioxide has a permanent dipole ORA for chlorine \checkmark	4	electronegativities OR O slightly negative / Cl slightly
	Oblemine districts (small newspace of (districts)) means and districts		
	Chlorine dioxide forms permanent (dipole)–permanent dipole (bonds) ✓		ALLOW 'forces' for 'bonds'
	Chlorine forms instantaneous (dipole) – induced dipole (bonds) (QWC underlined term must be correctly spelled the first time it appears) \checkmark		ALLOW van der Waals (ignore capitals) forces, but it must be spelled correctly.
	which are much weaker than permanent dipole–permanent dipole bonds OR less energy needed to overcome instantaneous dipole – induced dipole bonds than permanent dipole – permanent dipole bonds <i>ORA</i> ✓		Award this for any indication that imb are stronger in ClO_2 than Cl_2 , even if not named or incorrectly named (e.g.: hydrogen bonds in ClO_2).
) (i)	Propene / propyne (or formulae) \checkmark Because they have a high density of electrons (for the C <i>I</i> O ₂ to attack) OP they are electron risk \checkmark	2	ALLOW prop-1,2-diene / CH ₂ CCH ₂ Mark independently.
	attack) OR they are electron fich v		
) (ii)	It gains electron(s) OR CI changes from +4 to −1 / CI changes from +4 to +3 OR CI oxidation state decreases ✓	1	IGNORE ClO ₂ oxidation number decreases.
)	Available chlorine in CIO_2 is given by: $35.5 / (35.5 + 2 \times 16) (= 0.526)$ OR $35.5 / (67.5) (= 0.526) \checkmark$ Answer x 5 (= 2.63) x 100 to make it a percentage and evaluated (= 262.96 /	2	ALLOW 2 or more sfs, correctly rounded.
)		(bonds) (QWC underlined term must be correctly spelled the first time it appears) \checkmark which are much weaker than permanent dipole-permanent dipole bondsOR less energy needed to overcome instantaneous dipole - induced dipole bonds than permanent dipole - permanent dipole bonds $ORA \checkmark$ (i)Propene / propyne (or formulae) \checkmark Because they have a high density of electrons (for the CIO_2 to attack) OR they are electron rich \checkmark (ii)It gains electron(s) OR C/ changes from +4 to -1 / C/ changes from +4 to +3 OR C/ oxidation state decreases \checkmark Available chlorine in CIO_2 is given by: $35.5 / (35.5 + 2 \times 16) (= 0.526)$ OR $35.5 / (67.5) (= 0.526) \checkmark$ Answer x 5 (= 2.63) x 100 to make it a percentage and evaluated (= 262.96 / $263\%) \checkmark$	(bonds) (QWC underlined term must be correctly spelled the first time it appears) \checkmark which are much weaker than permanent dipole-permanent dipole bondsOR less energy needed to overcome instantaneous dipole – induced dipole bonds than permanent dipole – permanent dipole bonds $ORA \checkmark$ (i)Propene / propyne (or formulae) \checkmark 2Because they have a high density of electrons (for the CIO_2 to attack) OR they are electron rich \checkmark (ii)It gains electron(s) OR C/ changes from +4 to -1 / C/ changes from +4 to +3 OR C/ oxidation state decreases \checkmark Available chlorine in CIO_2 is given by: $35.5 / (35.5 + 2 \times 16) (= 0.526)$ OR $35.5 / (67.5) (= 0.526) \checkmark$ Answer x 5 (= 2.63) x 100 to make it a percentage and evaluated (= 262.96 /

Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 13 Mark Scheme Page 16 of 17

Charny Hill Tuition A Loval Chamistry OCP R Saltars, Dapar 12 Mark Schama, Daga 17 of 17

Question	Cherry Hill Tuition A Level Chemistry OCR B Salters. F Answer	Marks	Guidance
5 (f)	 FIVE from: Less C/O₂ needed (for disinfection) ✓ Chlorine reacts by addition OR substitution reactions ORA ✓ Chlorine forms (potentially) toxic chlorinated products OR (potentially) toxic products with chlorine atoms ORA ✓ Chlorine dioxide is more soluble ORA ✓ Chlorine oxidises organics to aldehydes/ketones ORA ✓ ClO₂ forms fewer (disinfection) by-products / fewer harmful products ✓ 	5	 ALLOW 'active at low concentrations' ALLOW 'more powerful disinfectant' 5. Both oxidising organics and products are needed.
	 7. ClO₂ removes/disinfects bio-films ORA ✓ 8. ClO₂ is more effective against pathogens/anthrax ✓ QWC for inclusion of ONE chemical theory in explanations of the comparisons e.g.: explaining mp1 in terms of greater available chlorine OR electrons transferred OR greater oxidation capacity; linking mp2 with mp3; explain mp 4 with <u>hydrogen</u> bonding to water giving examples of organic compounds (e.g.: alcohols) converted to aldehydes/ketones example of bromide to bromate to go with mpt 6 ✓ 	1	 8. ALLOW viruses, bacteria, protozoa, micro-organisms Please use annotations in the answer in appropriate places. Please indicate QWC using a tick at the appropriate point in the candidate's answer.
	Total	20	