Question			Answer	Mark	Guidance
1	(a)	(i)	$0 \checkmark,+2 \checkmark$	2	NOT 2+
1	(a)	(ii)	nitrogen(IV) oxide \checkmark	1	ACCEPT nitrogen dioxide (or with no gap between words) or nitrogen(IV) dioxide (with or without gaps) ALLOW nitrogen (IV) oxide ALLOW without brackets round 'IV'
1	(b)		brown (gas) (formed) \checkmark	1	IGNORE 'colourless' as starting colour
1	(c)		advantage: nitrogen is fixed OR it (enters the soil and) benefits plants (AW) \checkmark disadvantage: Acid rain OR an effect of acid rain eg buildings corroded / increasing acidity of soil / kills trees, increasing acidity of lakes (or rivers) / kills fish OR toxic OR causes respiratory problems OR (tropospheric) ozone formed OR contributes to photochemical smog \checkmark	2	idea of benefit to plants (eg: needed by plants / help plants grow / fertiliser / provides nutrients to soil, etc) needed for the 'or' version of the mark IGNORE 'harmful'/'polluting' for last two points must have idea of giving rise to ozone or photochemical smog IGNORE 'greenhouse gas'
1	(d)	(i)	$0.2 / 24 \checkmark$ OR $8.3 \times 10^{-3} \times 24=0.2$ AND comment that this is the fraction of oxygen in air $0.033(2)$ or 0.033333 (to 2 or more sf) [or standard form]	2	Numbers 0.2 (or 1/5) and divided by 24 must be there OR 1/120 OR 2/240 8.3×10^{-3} alone obviously does not score ie do not accept '0.03’ Answer alone scores the mark. Working alone does not score ALLOW standard form eg 3.3×10^{-2} ACCEPT recurring decimal NOT rounding errors watch out for 3.3×10^{-3} (incorrect)
1	(d)	(ii)	$\left[\mathrm{NO}_{2}\right]^{2} /\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]^{2} \checkmark$	1	MUST have square brackets NOT ' p ' (even if with square brackets) ALLOW $\left[\mathrm{N}_{2}\right] \times\left[\mathrm{O}_{2}\right]^{2}$ or $\left[\mathrm{N}_{2}\right] \cdot\left[\mathrm{O}_{2}\right]^{2}$ NOT $\left[\mathrm{N}_{2}\right]+\left[\mathrm{O}_{2}\right]^{2}$ ALLOW ' (g) ' as state symbols. Others are CON

Question			Answer	Mark	Guidance
1	(d)	(iii)	$\sqrt{ }\left(\left\{\right.\right.$ ans for $\left[\mathrm{N}_{2}\right]$ from d(i) $\left.) \times\left(8.3 \times 10^{-3}\right)^{2} \times 4 \times 10^{-19}\right) \checkmark$ OR $\sqrt{ }\left(\left[\mathrm{N}_{2}\right] \times\left[\mathrm{O}_{2}\right]^{2} \times K_{(c)}\right)$ OR part numbers part symbols evaluation (eg $\left[\mathrm{N}_{2}\right]=0.033$ gives $9.5(4) \times 10^{-13}$) \checkmark (0.0332 gives $9.56 / 9.6 \times 10^{-13}$) one sig fig $\left(e g 1 \times 10^{-12}\right) \checkmark$	3	correct evaluation of correct expression (even if expression is not written down) scores 2 No ecf from d(ii); no ecf for evaluating an incorrect expression, except that omission of the square root and then correctly evaluated (eg $\left.9(.1) \times 10^{-25}\right)$ or omission of square on $\mathrm{O}_{2}\left(\mathrm{eg} 1(.1) \times 10^{-11}\right)$ score one mark. A spreadsheet is available for other answers from (d)(i) Mark sf separately, awarding the mark for any number to one sf. So proceed as follows: - check for the three possible answers (with ecf if necessary using spreadsheet) One is worth two, others are worth one - If no matching answer is present, look for square root expression and award 1 if it is correct - Award sf mark if relevant
1	(d)	(iv)	K_{c} larger \checkmark (Forward) reaction endothermic OR right is endothermic direction ORA \checkmark Equilibrium position moves to right/towards products \checkmark	3	Mark separately No ecf from second marking point incorrect IGNORE references to rates must mention 'position' in connection with equilibrium
1	(d)	(v)	Equilibrium (position) moves to right/products More molecules/moles on left-hand side/reactants ORA	2	Incorrect effects on K_{c} are CON of first mark (IGNORE 'no effect') ALLOW 'it' for 'equilibrium position' IGNORE 'favours the right-hand side' ALLOW 'particles' instead of 'molecules' IGNORE 'more reactants than products' (ie without mention of moles etc) Mark separately
1	(e)	(i)	```\(\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}\) or \(\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-}\) \(\checkmark\) for correct species \(\checkmark\) for correct species with arrow (not equm sign)```	2	IGNORE state symbols ALLOW $\mathrm{HNO}_{3}+\mathrm{aq} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}{ }^{-}$ $\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-}$scores 1 overall Correct species in square brackets can just score the arrow mark

Question			Answer		Mark	Guidance
1	(e)	(ii)	$-\log (0.015) \checkmark=1.82(391) \checkmark$		2	ALLOW 1.8 or more sf. ALLOW 'Ig' Answer alone scores 2 marks No ecf from first mark
1	(f)	(i)	$\begin{aligned} & \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-} \\ & \mathrm{NO}_{2}^{+} \checkmark \text { rest correct } \checkmark \end{aligned}$		2	$\text { ALLOW } 2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}$ 'rest correct' means all other species correct with ' NO_{2} ' (incorrect sign or no sign) IGNORE state symbols
1	(f)	(ii)	hydrogensulfate(VI) \checkmark		1	Mark separately from f(i) IGNORE formula ALLOW 'hydrogen sulfate' and 'hydrogensulfate’ (i.e. no '(VI)') ALLOW ‘sulphate' replacing 'sulfate’
1	(f)	(iii)	nitration OR nitrating (benzene/aromatics) OR making nitrobenzene \checkmark		1	ALLOW 'electrophilic substitution of arene'
				Total	25	

Question			Answer	Mark	Guidance
2	(a)	(i)	$\mathrm{CO}_{2} /$ carbon dioxide \checkmark	1	
2	(a)	(ii)	2-hydroxypropanoic acid \checkmark	1	ALLOW errors in gaps, commas, dashes ALLOW '2-hydroxylpropanoic acid
2	(b)	(i)	one correct 3d representation shown two correct mirror images of 3d structures and either line between them or the words 'mirror images'	2	ALLOW groups on any carbons ambiguous attachments (eg COOH connected through O) structures drawn as (but where two lines in the plane are shown (eg left-hand diagram here), they must not be at 90 or 180 degrees to each other) ALLOW .."-י"'lll for \qquad ALLOW skeletal (or mixed) formulae ALLOW structures breaking the 'two lines in the plane' rule above for second mark NOT flat structures
2	(b)	(ii)	1/ one \checkmark	1	
2	(c)	(i)	it has two: (carboxylic) acid / carboxyl groups / COOH groups \checkmark	1	ALLOW 'dicarboxylic' and 'diprotic'
2	(c)	(ii)	lactic acid/it has a higher pK_{a} value / lower $K_{\mathrm{a}} / 3.86$ is higher (ORA for malic acid) higher pH / lower concentration (or fewer) $\underline{\underline{H}}^{ \pm}$ions / less dissociation into $\underline{H}^{ \pm}$ORA \checkmark	2	Mark separately IGNORE references to 5.13/larger value for malic acid IGNORE 'less acidic' (which is in the stem) must refer to H^{+}or pH

Question			Answer	Mark	Guidance
2	(d)	(i)	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3} \rightleftharpoons \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}+\mathrm{H}^{+} \checkmark$	1	ALLOW $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ $\mathrm{ORC}_{3} \mathrm{H}_{6} \mathrm{O}_{3}+\mathrm{aq}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}+\mathrm{H}^{+}$ IGNORE lactic acid shown as a structural formula IGNORE state symbols watch out for incorrect anion formula
2	(d)	(ii)	$\begin{aligned} & K_{\mathrm{a}}=10^{-3.86} / \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}} \\ & \mathrm{OR}-\log 1.4 \times 10^{-4}=3.86 \end{aligned}$	1	No marks obviously for 1.4×10^{-4} ALLOW 'inv(erse) $\log -3.86$ ' or ${ }^{\prime} \log ^{-1}(-3.86)$ ' ALLOW ' Ig ' for 'log'
2	(d)	(iii)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(1.4 \times 10^{-4} \times 0.1\right)\left(=3.74 \times 10^{-3}\right)^{\checkmark}} \\ & \mathrm{pH}=2.43 \checkmark \end{aligned}$	2	First mark is for working* or correct evaluation Allow ecf for second mark* (if $\left[\mathrm{H}^{+}\right]$is smaller than 1×10^{-2}) ALLOW 2.4 or more sf Correct pH value alone scores two marks * provided working shows ' $\mathrm{H}^{+}=. .$. ' or ' $\left[\mathrm{H}^{+}\right]=. .$. '
2	(d)	(iv)	$\begin{aligned} & {[\text { salt }] /[\text { acid }]=K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]} \\ & \text {OR [salt] }][\text { acid }]=1.4 \times 10^{-4} /(1 \mathrm{x}) 10^{-3} \checkmark \\ & =1.4 \times 10^{-4} / 1 \times 10^{-3}=0.14 \checkmark \end{aligned}$	2	Correct answer (to 2 or more sf) scores both marks without working. Allow ecf for second mark for inverse only (7.1429 [to 2 or more sf] or $50 / 7$). This scores one mark even if no working. ALLOW 1/7.1 OR 7/50
2	(e)		C=O present in ester \checkmark no $\mathrm{OH} /$ alcohol (groups) / no alkene \checkmark	3	Both $\mathrm{C}=\mathrm{O}$ and ester must be mentioned IGNORE references to other groups any unambiguous indication of the structure scores Any additional incorrect structures are CON NOT $\mathrm{CH}_{2}=\mathrm{CHCOOCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$ since alkene $\mathrm{C}-\mathrm{H}$ is 3000 up NOT ring with ether and anhydride as it is not an ester

Question			Answer	Mark	Guidance
2	(f)		 acid anhydride \checkmark rest \checkmark	2	Any unambiguous indication of the structure scores marks Any additional incorrect structures are CON ALLOW any acid anhydride or just the anhydride group for the first mark ALLOW (-)CO-O-CO(-) for anhydride part of formula
2	(g)	(i)	ethanal \checkmark	1	
2	(g)	(ii)		1	Any unambiguous representation of structure scores mark allow ambiguous attachment of any group ALLOW anion formed at OH group $/ \mathrm{O}^{-} \mathrm{Na}^{+}$(or any Group I cation)
2	(g)	(iii)	nucleophilic \checkmark addition \checkmark	2	ALLOW any unambiguous indication of the words (eg circling) Mark separately Any extra words CON correct answers
2	(g)	(iv)	ammonium ion / NH4 ${ }^{+} \checkmark \checkmark$	2	ammonia/ NH_{3} scores one mark
2	(h)	(i)	orange/yellow to blue/green \checkmark $\mathrm{CH}_{3} \mathrm{COOH} \checkmark$	2	ALLOW any combinations of these colours but no others should be mentioned ALLOW a more displayed or skeletal formula
2	(h)	(ii)	$\mathrm{OH} /$ (secondary) alcohol / hydroxyl (group) (in lactic acid) (lactic acid) reacts with reagent/acidified (potassium) dichromate gives same reaction / same colour change / same result / can be oxidised \checkmark	2	'primary/tertiary alcohol' is CON to first mark mark separately ALLOW 'both have a colour change'
			Total	29	

Question			Answer	Mark	Guidance
3	(a)		propane-1,2-diol \checkmark	1	ALLOW errors in dashes, gaps and commas ACCEPT propan-1,2-diol
3	(b)	(i)	co-product is formed in the reaction that produces the (main) product OR co-product is another substance (AW) that appears in the main reaction/equation \checkmark by-product is formed by side/other/unwanted reactions \checkmark	2	must imply that co-product is another product of the reaction IGNORE 'process' (instead of 'reaction') IGNORE usefulness in either mark
3	(b)	(ii)	hydrolysis \checkmark	1	ALLOW ‘saponification’
3	(c)		water is only (other) product / water and no other product OR glycerin is made from a renewable/carbon-neutral/ sustainable substance OR no toxic products \checkmark	1	must imply that it is only water IGNORE 'as a by-product' ALLOW 'high atom economy' (but IGNORE 100\%) IGNORE references to energy consumption IGNORE harmful/ 'no pollutants'
3	(d)		increases rate of reaction / faster reaction (AW) \checkmark more frequent collisions (AW) \checkmark	2	IGNORE references to equilibrium IGNORE what is colliding NOT just 'more collisions' IGNORE 'chance of collisions'
3	(e)	(i)		1	Arrow must start and end on bonds (or do so if the lines are continued with the same curvature) Any other arrows on the glycerin structure are 'CON'

Question			Answer	Mark	Guidance
3	(e)	(ii)	elimination \checkmark	1	
3	(e)	(iii)	(primary) alcohol / hydroxyl \checkmark ketone / carbonyl \checkmark	2	'secondary' or 'tertiary' CON the alcohol mark Any extra groups CON a correct answer
3	(e)	(iv)	a IR: acetol has peak at $1705-1725 \checkmark$ b $\mathrm{C}=\mathrm{O} /$ ketone \checkmark c NMR: acetol has peaks of height/area/ratio 3:2:1 (any order) OR acetol has a peak at $2.0-2.7$ OR two from the following: - acetol has 3 peaks - glycerin has 4 peaks - glycerin has a doublet or triplet at 3.3-4.8 \checkmark d linking no. of peaks with proton/hydrogen environments in either compound \checkmark e all singlets/single peaks/unsplit/splitting of $1 \checkmark$ f the neighbouring carbons have no hydrogens/protons	6	Please place ticks where points scored check it is the correct numerical range IGNORE references to other peaks c must mention peaks for this mark. IGNORE any extra material even if wrong d (QWC mark linking environments with no. of peaks) ALLOW if hydrogen environments described rather than number given (eg acetol has $\mathrm{CH}_{3}, \mathrm{CH}_{2}$ and OH) Number of peaks must be stated for either compound and be the same as the number of environments for this mark to be awarded e must imply all peaks are unsplit f must actually say 'no hydrogens' not just state the rule references to any split peaks loses e but \mathbf{f} can be scored if it is made for any peak
3	(f)	(i)	$+3 \checkmark$	1	NOT 3+

Question			Answer	Mark	Guidance
3	(f)	(ii)	no effect \checkmark catalyst affects the rate of/speeds up forward and back reactions (equally) OR affects/speeds up rate of attainment of equilibrium (AW) \checkmark	2	ALLOW 'only temperature affects K_{c} ' ALLOW 'provides a route of lower activation enthalpy/energy' IGNORE 'affects rate' without qualification mark separately
3	(g)		$\begin{aligned} & \text { calculation of both } M_{r} \text { values correctly } \checkmark \text { (glycerin } 92 \text {, } \\ & \text { prop glycol } 76) \\ & \%=(9 / 76) \times(92 / 15) \times 100=73 \% \checkmark \end{aligned}$	2	ALLOW 92.0 and 76.0 Answer on its own scores marks without reference to working ALLOW two or more sig figs allow any answer between 72 and 73 (intermediate rounding) ALLOW ecf from incorrect M_{r} values (if clearly indicated as such or by working)
			Total	22	

Question			Answer				Mark	Guidance
4	(a)	(i)					2	ALLOW - CH_{3} ALLOW H atoms on benzene carbons IGNORE anything written over arrow
4	(a)	(ii)	ethanoyl chloride \checkmark				1	ALLOW without gap between words
4	(a)	(iii)	electrophilic \checkmark substitution \checkmark				2	Mark separately ALLOW mis-spellings that sound like 'electrophilic' IGNORE 'acylation / acetylation / ethanoylation Other words are CON to correct marks
4	(b)		Aluminium (compounds) are toxic $\mathbf{O R ~ H C l}$ is a toxic/corrosive/acidic (gas) / lowers pH of rivers/lakes (etc) \checkmark				1	must name a product to score ALLOW aluminium chloride giving HCl with consequences of this
4	(c)		$\begin{array}{\|l} \hline\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~N}^{+} \\ \hline \mathrm{PF}_{6}^{-} \\ \hline \checkmark \checkmark \text { for eac } \\ \hline \end{array}$	4 6	tetrahedral octahedral correct, one if	$\begin{aligned} & 107-110 \\ & 90 \\ & \hline \end{aligned}$ one error	4	No ecf ALLOW 'tetrahedron' and/or 'octahedron'
4	(c)	(ii)	small/weak (AW): electrostatic attraction / attraction between ions / force between ions / ion-ion bonds/ionic bonds \checkmark small amount of energy required: to separate (ions) / break/overcome forces of attraction (or bonds) \checkmark				2	IGNORE 'intermolecular', named imb, 'ion-dipole’ for first mark IGNORE answers that discuss removing electrons from ions first mark is for describing bonds between ions and implying they are weak ALLOW breaking of any imb for second mark, provided energy is mentioned. second mark is for saying that little energy is required to break attraction/bonds AW mark separately

Question			Answer	Mark	Guidance
4	(d)	(i)	CHCl_{3} or more displayed \checkmark	1	ALLOW CHBr_{3} ALLOW triphenylmethane structure with one or two benzene rings replaced by Cl or $\mathrm{Br}\left(\mathrm{eg} \mathrm{CHCl}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right.$ or $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Cl}$ or $\left.\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Cl}_{2}\right)$
4	(d)	(ii)	a electrons excited/move up \checkmark b to (higher) energy level \checkmark electron movement c difference in levels related to frequency / $\Delta \mathrm{E}=\mathrm{hv} \checkmark$ relation between energy and frequency d Δ E/energy gap or frequency is lower the greater the delocalisation / larger the chromophore ORA OR comparison of size of energy gap (eg 'bigger gap for benzene' or 'big gap for benzene and small gap for dye') \checkmark comparison of benzene and dyes in terms of ΔE e more delocalisation/larger chromophore for dyes than benzene ORA \checkmark reason: difference in delocalisation f uv has: high frequency/low wavelength/more energy (than visible) ORA OR benzene absorbs higher frequency than visible ORA \checkmark difference between uv and visible	6	Please place ticks where points scored 'electrons move to higher energy levels' scores both \mathbf{a} and \mathbf{b} QWC: only award point \mathbf{b} if marking point \mathbf{a} has been scored IGNORE references to d-orbitals and ligands c ALLOW $E=$ hv but only in context of energy gaps ALLOW ' f ' for ' v ' in $E=h v$ d ALLOW in terms of excitation energies (eg 'it takes more energy to excite benzene's electrons') ALLOW 'conjugated system' for 'chromophore/delocalisation' in d and e e ALLOW comment just for benzene or dyes, provided it is a comparison (eg 'benzene has less delocalisation'). Award for eg 'dyes big delocalisation, benzene small' in different parts of answer If electrons dropping down and emission of light mentioned, max 2 out of 6 Please place cross where 'emission' (AW) is mentioned

Question		Answer	Mark	Guidance
4	(e)	\mathbf{a} (Kekule structure would form) $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Br}_{2}$ or $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Br}_{4}$ or $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Br}_{6}$ or their structures b (Actual product is) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$ or its structure c substitution AND addition mentioned correctly d benzene/delocalised structure is stable / addition removes stability \checkmark e benzene has delocalisation/ has delocalised electrons \checkmark	5	Please place ticks where points scored a and b ACCEPT structures without specific reference to where they come from ALLOW skeletal structures ALLOW correct names (1,2-dibromocyclohexa-(3,5)-diene, (1,2,3,4,5,6-)hexabromocyclohexane; bromobenzene) but IGNORE names if structures given ALLOW full descriptions (eg 'one bromine added on each end of one double bond') c IGNORE type of addition/substitution e 'delocalisation'/'delocalised' must be spelled correctly at least once (QWC)
		Total	24	

Question			Answer	Mark	Guidance
5	(a)		$3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} \checkmark$	1	ALLOW either order ALLOW upper case letters but numbers must be superscripts
5	(b)	(i)	$\mathrm{Zn}^{2+}(\mathrm{g}) \rightarrow \mathrm{Zn}^{3+}(\mathrm{g})+\mathrm{e}^{(-)} \checkmark$	1	IGNORE any state symbol on the electron ALLOW $\mathrm{Zn}^{2+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Zn}^{3+}(\mathrm{g})$ Zn symbol must be correct to score
5	(b)	(ii)	$\mathrm{d}^{10} /$ full (3)d \checkmark	1	'd' must be stated
5	(b)	(iii)	$\mathrm{ZnSO}_{4}{ }^{\checkmark}$	1	
5	(c)		$\mathrm{ZnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{ZnCl}(\mathrm{OH})+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	IGNORE state symbols ALLOW $\mathrm{Zn}(\mathrm{OH}) \mathrm{Cl}$ or either without brackets (but must be OH not HO) ALLOW the zinc salt product hydrated with one water (correctly represented as ' $\mathrm{H}_{2} \mathrm{O}$ ') eg ' $\mathrm{ZnCl}(\mathrm{OH}) \cdot \mathrm{H}_{2} \mathrm{O}$ ' ALLOW $\mathrm{ZnCl}^{+}+\mathrm{OH}^{-}$for salt
5	(d)	(i)	lattice enthalpy/energy (of zinc chloride) \checkmark	1	ALLOW 'lattice formation energy/enthalpy' ALLOW 'enthalpy change of lattice (energy/enthalpy)', 'lattic' for 'lattice' IGNORE $\Delta H_{\text {LE }}$ etc IGNORE signs
5	(d)	(ii)	(Sum of enthalpy changes of hydration) $=-2772$ Expression: (Sum of enthalpy changes of hydration) $+2734 \checkmark$ evaluation of answer (-38) (with ecf) \checkmark	3	correctly evaluated look to see if marked on diagram expression or correct evaluation ALLOW -(-2734) -38 scores three overall*; (+)38 scores two overall* +325 scores two overall* -5506 scores two overall** +685 scores two overall* 325 or -325 score one overall* * whether any working shown or not

Question			Answer	Mark	Guidance
5	(d)	(iii)	broken: hydrogen bonds (in water) ionic bonds / electrostatic forces / ion-ion bonds (in lattice) made: ion-(permanent) dipole bonds/forces \checkmark	3	Extra wrong bonds mentioned are CON to correct bonds IGNORE the species linked by the bonds (eg 'Zn and Cl')
5	(e)		a Entropy is a measure of disorder OR entropy (implies) more ways of arrangement OR entropy measures number of ways of arrangement b (Particles in) solution (often) more disordered / have more ways of arrangement (than solids) c Ca ions: have large numbers of/more water molecules clustered round/ OR attract large numbers of/more water molecules OR are greatly/strongly hydrated OR have strong attraction to water molecules \checkmark d Entropy loss of water / more order in water \checkmark	4	Please place ticks where points scored a If 'disorder' or 'ways of arrangement' are qualified it must be by plural 'particles', 'ions', 'molecules', or '(quanta of) energy' NOT singular 'particle' etc, 'compound', 'atoms' or 'element' which CON correct words IGNORE 'substance’ b IGNORE 'liquid' for 'solution'; must imply dissolving ALLOW 'molecules' or 'ions' or 'solute' for 'particles' NOT just 'higher entropy' c 'Ca' can be implied eg 'small highly charged ions' must say 'many' water molecules or 'strongly' hydrated d must refer to water
5	(f)		a (Solubility) increase b $\Delta \mathrm{S}_{\text {tot }}=\Delta \mathrm{S}_{\text {sys }}-\Delta \mathrm{H} / \mathrm{T} \checkmark$ c $\Delta \mathrm{H} / \mathrm{T}$ gets smaller as T gets bigger (AW) \checkmark d $\Delta \mathrm{S}_{\text {tot }}$ gets more positive / less negative / increases \checkmark	4	Please place ticks where points scored b ALLOW $\Delta \mathrm{S}_{\text {tot }}=\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {surr }}$ and $\Delta \mathrm{S}_{\text {surr }}=-\Delta \mathrm{H} / T$ look out for this in any part of the answer c ALLOW ' $-\Delta H / T / \Delta S_{\text {surr }}$ gets less negative'/ ' $\Delta \mathrm{S}_{\text {surr }}$ increases'/ ' $-\Delta \mathrm{S}_{\text {surr }}$ decreases' IGNORE ' $\Delta \mathrm{S}_{\text {surr }}$ decreases' ' $-\Delta \mathrm{H} / \mathrm{T}$ decreases' d ALLOW 'total entropy gets...' IGNORE just 'entropy gets...'
			Total	20	

