


1 (c) (ii)	In a mass spectrometer, the isotopes of an element are separated. Two measurements for each isotope are recorded on the mass spectrum.
	State the two measurements that are recorded for each isotope.
	Measurement 1
	Measurement 2
1 (d)	A sample of element ${\bf R}$ contains isotopes with mass numbers of 206, 207 and 208 in a 1:1:2 ratio of abundance.
1 (d) (i)	Calculate the relative atomic mass of ${\bf R}.$ Give your answer to one decimal place.
1 (d) (ii)	Identify R.
	(1 mark)
1 (d) (iii)	All the isotopes of R react in the same way with concentrated nitric acid.
	State why isotopes of an element have the same chemical properties.
	(1 mark)

Use your knowledge of electron configuration and ionisation energies to answer this question. The following diagram shows the **second** ionisation energies of some Period 3 2 (a)

elements.

	Second ionisation energy / kJ mol ⁻¹
2 (a) (i)	Draw an 'X' on the diagram to show the second ionisation energy of sulfur. (1 mark)
2 (a) (ii)	Write the full electron configuration of the Al ²⁺ ion.
	(1 mark)
2 (a) (iii)	Write an equation to show the process that occurs when the second ionisation energy of aluminium is measured.
	(1 mark)
2 (a) (iv)	Give one reason why the second ionisation energy of silicon is lower than the second ionisation energy of aluminium.
	(1 mark)

2 (b)	Predict the element in Period 3 that has the highest second ionisation energy. Give a reason for your answer.			
	Element			
	Reason			

2 (c) The following table gives the successive ionisation energies of an element in Period 3.

	First	Second	Third	Fourth	Fifth	Sixth
lonisation energy /kJ mol ⁻¹	786	1580	3230	4360	16 100	19800

Identify this element.

	(4.)	-

(1 mark)

2 (d) Explain why the ionisation energy of every element is endothermic.

(Extra space)	 	 (1 mark)

The following table shows the electronegativity values of the elements from lithium to fluorine.

	Li	Be	В	С	Ν	0	F
Electronegativity	1.0	1.5	2.0	2.5	3.0	3.5	4.0

3 (a) (i) State the meaning of the term electronegativity.

(Extra space)	(2 marks)

3 (a) (ii) Suggest why the electronegativity of the elements increases from lithium to fluorine.

(Extra space)	(2 marks)

3 (b)	State the type of bonding in lithium fluoride. Explain why a lot of energy is needed to melt a sample of solid lithium fluoride.			
	Bonding			
	Explanation			
	(3 marks)			
	(Extra space)			

4)					
		d to make nitric aci occur in this proces		y the Ostwald Proce	SS.
	Reaction 1	4NH ₃ (g) + 5O ₂ (g)	4NO(g) + 6H ₂ O(g	1)
	Reaction 2	2NO(g) + O ₂ (g)	\rightarrow	2NO ₂ (g)	
	Reaction 3	3NO ₂ (g) + H ₂ O(I)>	2HNO ₃ (aq) + NO	(g)
(a)	In one productio 4.31 m ³ at 25°C		rmed in Re	eaction 1 occupied a	total volume of
	Give your answe	nount, in moles, of er to 3 significant fig int <i>R</i> = 8.31 J K ⁻¹ m	jures.	ed.	
					(4 marks)
	(Extra space)				

(b) In another production run, 3.00 kg of ammonia gas were used in Reaction 1 and all of the NO gas produced was used to make NO₂ gas in Reaction 2.

(b) (i)	Calculate	the	amount,	in	moles,	of	ammonia	in	3.00 kg.
---------	-----------	-----	---------	----	--------	----	---------	----	----------

	(2 marks)
(b) (ii)	Calculate the mass of NO ₂ formed from 3.00 kg of ammonia in Reaction 2 assuming an 80.0% yield. Give your answer in kilograms. (If you have been unable to calculate an answer for part (b) (i), you may assume a value of 163 mol. This is not the correct answer.)
	(3 marks)
	(Extra space)

(c)	Consider Reaction 3 in this process.							
	$3NO_2(g) + H_2O(I) \longrightarrow 2HNO_3(aq) + NO(g)$							
	Calculate the concentration of nitric acid produced when 0.543 mol of NO ₂ is reacted with water and the solution is made up to 250cm^3 .							
	(2 marks)							
	(Extra space)							
(d)	Suggest why a leak of NO ₂ gas from the Ostwald Process will cause atmospheric pollution.							
	(1 mark)							
(e)	Give one reason why excess air is used in the Ostwald Process.							
	(1 mark)							
(f)	Ammonia reacts with nitric acid as shown in this equation.							
	$NH_3 + HNO_3 \longrightarrow NH_4NO_3$							
	Deduce the type of reaction occurring.							
	(1 mark)							

- Chlorine can form molecules and ions that contain only chlorine, or that contain chlorine combined with another element.
- (a) Use your understanding of the electron pair repulsion theory to draw the shape of the AsCl₃ molecule and the shape of the Cl₃⁺ ion. Include any lone pairs of electrons that influence the shape.

Name the shape made by the atoms in the AsCl₃ molecule and in the Cl₃⁺ ion.

(4 marks)
(Extra space)
Explain why the \mbox{AsCl}_4^+ ion has a bond angle of 109.5°
(2 marks)
(Extra space)

(b)

б) Сор	per is (extracted from the ore chalcopyrite (CuFeS2) in a three-stage process.					
(a)	In th oxyg	e first stage of this extraction, the chalcopyrite is heated with silicon dioxide and gen.					
(a)	(i)	Balance the following equation for this first stage in which copper(I) sulfide is formed.					
	CuF	$eS_2 + \dots SiO_2 + \dots O_2 \longrightarrow Cu_2S + \dots FeSiO_3 + \dots SO_2$ (1 mark)	k)				
(a)	(ii)	Give one environmental reason why the SO_2 gas formed in this reaction is not allowed to escape into the atmosphere.					
		(1 mari					
(a)	(iii)	State one use for the sulfur dioxide formed in this reaction.					
		(1 mari					
(b)	copp	e second stage of this extraction, the copper(I) sulfide is converted into er(II) oxide. This occurs by roasting the sulfide with oxygen at high temperature e an equation for this reaction.					
		(1 mari	 k)				
(c)		e third stage of this extraction, copper(II) oxide is reduced to copper by its ion with carbon. Write an equation for this reaction.					
		(1 mari	 k)				
(d)		p iron can be used to extract copper from dilute aqueous solutions containing er(II) ions.					
(d)	(i)	Explain why this is a low-cost method of extracting copper.					
		(1 mark	t)				
(d)	(ii)	Write the simplest ionic equation for the reaction of iron with copper(II) ions in aqueous solution.	I				
		(1 mar)	k)				