

CHEM 8410_6410_4410 - Organic Synthesis

THE	UNIV	ERS	ITY	OF
T	T	177		0
1	DL	L.	U	U
	1	872		

Quiz #4 of 5

10 PTS

Instructor: Prof. Andreana
Room #: BO 2059

Your Name: _____ Student Number:

1) The following transformation is actually quite well-known. Show the mechanism in its entirety. Also rationalize, using an intermediate structure, the major diastereoselective outcome. What you should do is put the starting material in a half-chair, which will help explain the outcome. Please use the proper "formula" to denote which half-chair you draw. **4 PTS**

$$OAc$$
 RCO_3H
 OAc
 ECO_3H
 OAc
 ECO_3H
 ECO_3H

Answer:

H₃

H₃

H₃

A-face (bottom)

Both to Acce (bottom)

R b/c +0Ac blocks

B-face (top)

TOLEDO

2) What controls the stereochemistry of this product? You are advised to draw a mechanism first and then consider the stereochemistry. Use knowledge gained in Question 1 to answer this question. You should be able to draw the half-chair to convince yourself of the noted stereochemical outcome. Label which half-chair you will have drawn. 4 PTS

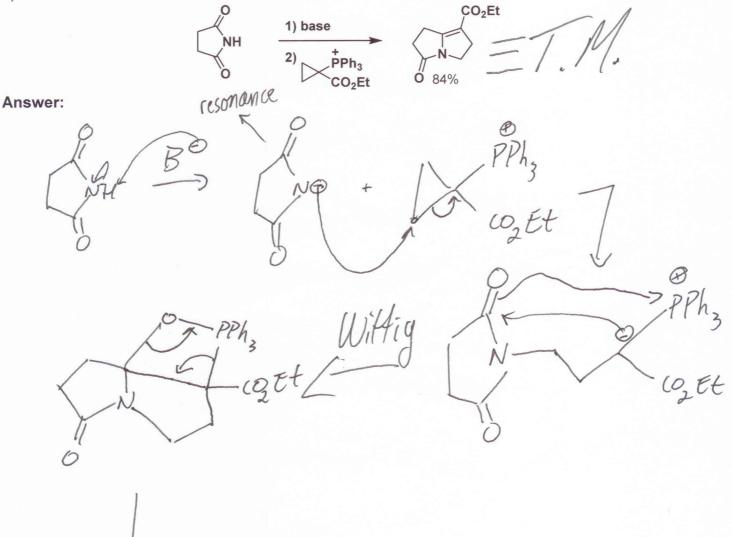
Answer:

$$Co_{2}Et$$
 $Co_{2}Et$
 $Co_{2}E$

Why?

Why?

Why?


Why?

b/c big, bulky

Ho of the prefers equatorial

b-face attack prefers equatorial

3) Draw a mechanism for the illustrated reaction transformation. 2 PTS

TM