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Abstract:  Since 2000, more than thirty-fi ve states have or are developing 
comprehensive plans to mitigate greenhouse gas (GHG) emissions and to 
achieve related public policy goals.  Most State Climate Action Plans include 
detailed micro-level analyses of the mitigation policy options focusing on 
the direct costs/savings associated with the implementation of the options.  
Estimation of the macroeconomic impacts of a policy on future employment 
and income typically requires the use of sophisticated modeling tools, 
whose application is often costly and time-consuming, and thus is often 
prohibitive at an early phase of the policy evaluation process.  In this paper, 
we develop reduced form statistical models that can be used to quickly and 
relatively inexpensively predict the likely macroeconomic impacts of various 
climate mitigation options.  The regression models are built based on the 
macroeconomic modeling results of 92 GHG mitigation policy options 
across four major states in the U.S.

Keywords:  Climate action plans, GHG mitigation options, macroeconomic impacts, 
reduced-form model

1 Introduction

Given the lack of signifi cant progress in comprehensive climate policy formation 
at the federal level, major climate initiatives have been undertaken at sub-national 
levels of government in the U.S. in the past decade. Since 2000, more than thirty-
fi ve states and several hundred municipalities have or are developing compre-
hensive plans to mitigate greenhouse gas (GHG) emissions and to achieve related 
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public policy goals, such as health, energy, and economic improvement. Although 
the process used in formulating climate action plans (CAPs) varied to some extent 
from state to state, most engaged in a comprehensive, multi-objective, stakeholder-
based planning process that developed and analyzed a range of sector-specifi c 
policy actions and mechanisms. 

The analysis and evaluation of the GHG mitigation and sequestration policy 
options in the state CAPs are usually grouped into four broad sectoral categories: 
1) Energy Supply (ES), which focuses on fossil fuel extraction, processing and 
transportation, and electricity generation, transmission, and distribution (major 
options include renewable portfolio standards, combined heat and power, power 
plant effi ciency improvements); 2) Residential, Commercial, and Industrial 
(RCI), which focuses on emissions from stationary sources such as industrial 
processes and fuel and electricity use in residential and commercial buildings 
(major options include demand-side management, building codes, appliance 
standards, customer-sited renewable energy); 3) Transportation and Land Use 
(TLU), which focuses on mobile sources of GHG emissions and related drivers 
associated with land use (e.g., alternative fuel strategies, alternative vehicles, 
transit, land use); 4) Agriculture, Forestry and Waste Management (AFW) that 
examines emissions and carbon sequestration opportunities in AFW manage-
ment (e.g., soil carbon management, on-farm energy effi ciency and renewable, 
afforestation/reforestation).1 

In most of the state CAPs, microeconomic impacts of individual policy 
options or bundles, such as GHG reduction potentials and direct net costs, are 
quantifi ed in a Delphi-type process (expert elicitation) by a group of experts 
comprising a Technical Working Group (TWG) for each of the four sectoral 
groupings associated with mitigation as mentioned above. The analysis of the 
options are based on the policy-specifi c defi nition of the baseline, the techni-
cal policy design in terms of level of effort, timing, coverage of parties, and 
the choices of data sources, methods, key assumptions, and uncertainty tech-
niques throughout the planning process that is led by the TWGs with high level 
engagement of stakeholders [1–4].

However, all of the micro-level analyses of these policy options focus on the 
direct (on-site) costs or savings associated with the implementation of the options. 
When policymakers and stakeholders consider the impacts of potential options 
to mitigate GHG emissions or sequester carbon, a major question often asked is: 
“how will these options affect the local, state, or national economy?” Calculation 
of the microeconomic (direct) costs or cost savings of policy options is a generally 

1 Other than the above widely adopted options, some were less commonly recommended but were 
carefully evaluated in some states depending on the economic structure, energy production and con-
sumption mix, and other special features and policy priorities. Examples include carbon capture and 
sequestration, power distribution system upgrades, industrial process incentives, active transportation 
programs that encourage bike/walk trips, and others.
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straightforward application of accounting and cost-engineering. However, the 
analysis of the macroeconomic impacts of a policy—the effects of the policy on 
future employment and income, for example—typically requires the application 
of sophisticated modeling tools. Moreover, the cost and time involved in perform-
ing a full macroeconomic study is often prohibitive at an earlier phase of the policy 
evaluation process. The objective of this study is to develop reduced form statisti-
cal models that can be used to quickly and relatively inexpensively predict the 
likely macroeconomic impacts of various climate mitigation options. To the extent 
that most of these options are related to energy, the models can also be used to 
evaluate some major aspects of energy policy. 

The models we have developed are based on multivariate analyses of the rela-
tionships between macroeconomic impacts and various microeconomic costs, 
structural linkages within the economy, and the characteristics of the mitigation 
options evaluated. We accomplish this by utilizing the results of the application 
of a macroeconomic modeling approach that has been widely used to analyze the 
broader economic impacts of CAPs. This is the Regional Economic Models, Inc. 
Policy Insight Plus (REMI PI+) Model [5]. We regress the results of the applica-
tions of the model in 4 major US states against several explanatory variables. This 
is not the typical application of regression analysis to explain variations in random 
processes. Rather, it is more of a curve-fi tting approach to develop an expedient 
model that can provide rapid and inexpensive estimates of the macroeconomic 
impacts of various GHG mitigation options, in contrast to having to run a com-
plicated and expensive model. The model will yield crude estimates of macroeco-
nomic impacts, but does provide insight into their margin of error. The “reduced 
form” model is intended for use at the early scoping, or screening stages of the 
CAP process to identify individual mitigation options for further study with more 
advanced models. Note that the analysis is not intended as an assessment of the 
REMI model results themselves, or a vindication of the REMI model in general 
but simply to develop a quick turn-around and inexpensive tool to facilitate the 
Climate Action Planning process.

The REMI Model is well-documented [6–8] and widely used at the state and 
local level for policy analysis [9]. The reduced form modeling approach is well-
documented for understanding, testing, and simplifying the results of large-scale 
economic models, including REMI [10–13].The paper is structured as follows. 
Section 2 introduces the basic data we use in the regression analyses. The devel-
opment and summary results of regression models for GDP and employment 
impacts are described in Sections 3 and 4, respectively. Section 5 briefl y summa-
rizes the strengths and weaknesses of these regression models, describes how they 
might be applied to results of the evaluation of direct costs of mitigation options 
to prepare estimates of the macroeconomic impacts of those options, and identi-
fi es key “next steps” in the development of these “reduced form” macroeconomic 
modeling tools.
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2 Basic Data

The basic data utilized for the regression analyses are taken from a set of macro-
economic analyses undertaken by the authors in conjunction with the Center for 
Climate Strategies2 for the states of Florida, Pennsylvania, Michigan, and New 
York. These state-based analyses evaluated the macroeconomic impacts of a com-
prehensive set of GHG emission mitigation options, the critical features of which 
were specifi ed in each respective state’s CAP [14–17]. Appendix A presents the list 
of major GHG mitigation and sequestration policy options that are recommended 
in the CAPs in the four states. The variables analyzed by the regression tool spec-
ifi ed below are the estimated microeconomic and macroeconomic impacts of a 
pooled cross-section of mitigation options. The mitigation options were identifi ed 
and the microeconomic impacts were analyzed by sets of sector-specifi c technical 
working groups (TWGs) in each state, with each group comprised of a broad set 
of stakeholders [1,15,18,19].The dependent variables to be explained by the statis-
tical regression analyses are the Net Present Value (NPV) of Gross State Product 
(GSP) impacts (in million 2005$) and employment impacts (in thousand person-
years) of each individual mitigation option. Estimates of these impacts are derived 
from the results generated by the REMI PI+ macroeconometric model [5,7]. These 
results in turn are shaped by the values and interactions of many independent 
variables, the most relevant of which are carried over in the reduced form model 
[12]. Given the diversity of the four states from which modeling results were 
taken, there is also a great deal of variation in the macroeconomic impacts across 
the states. For this reason, the data analyzed here are “noisy,” and some adjust-
ments must be made in order for the analysis to attain the required inferential 
asymptotic qualities (i.e., to be able to provide mathematically reliable results). 
The planning horizon used for Florida and Michigan was 17 years (from 2009 to 
2025), for New York 20 years (from 2011 to 2030) and for Pennsylvania 12 years 
(from 2009 to 2020). Given the differences in planning horizons, and nonlinearities 
presented in the macroeconomic impacts across years (e.g., some policy options 
may have relatively more long-run benefi ts), in the regression model for GSP 
impacts, our dependent variable considers GSP impacts on an annualized basis; 
i.e., the NPV of GSP impacts across a planning horizon is divided by the number 
of years of its planning horizon. In the regression model for employment impacts, 
the annualized employment impact is used. We fi rst compute the total employ-
ment impact in terms of person-years of a policy option as the simple sum of each 
year’s employment impacts over the planning horizon. The average employment 
impact is then computed by dividing the total employment impact by the number 
of years in each state’s planning horizon.

2 The Center for Climate Strategies (CCS) is a non-profi t organization headquartered in Washington, 
DC. Since 2000, CCS has facilitated the comprehensive, multi-objective, stakeholder-based climate 
action planning process for 22 states. 
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The two main explanatory variables are the NPV of the direct net cost (“DNC”) 
of a GHG mitigation option over the entire planning horizon and the NPV of the 
investment requirements (“INV”) over the same time period, which are obtained 
from the microeconomic analyses of the individual policy options in the respective 
state CAPs. Analogous to the dependent variable, the annualized direct net cost 
and investment requirements are calculated by dividing the NPVs of the direct 
net cost and investment requirements, respectively, by the number of years in the 
planning horizon. For the direct net cost variable, a positive value indicates that 
the option has been estimated to be cost incurring, and a negative value indicates 
that the direct effect of the option will be cost saving. 

The regression model also includes eight binary (“categorical”) variables to 
help explain the option-specifi c characteristics. The variables ES, RCI, TLU, and 
AFW indicate the sector in which the mitigation policy is implemented (Energy 
Supply; Residential, Commercial and Industrial; Transportation and Land Use; 
and Agriculture, Forestry and Waste Management Sectors, respectively). These 
variables have a value of 1 when the policy option is applied to the respective sec-
tor, and zero when the option is applied to other sectors. These sectoral dummy 
variables are also used in interaction terms in some regression models to assign 
the direct costs (or net savings) and the investment requirements of each option to 
the sector that implements the option. “Construction” (CONST) is a binary vari-
able that indicates whether or not the mitigation option involves a capital invest-
ment in construction (e.g., building a new power plant). “Manufacturing” (MFG) 
is a binary variable that indicates that the option involves a capital investment in 
equipment or appliance manufacturing. “Government Subsidy” (GS) is a binary 
variable indicating whether or not the mitigation option receives state govern-
ment aid. And fi nally, “Consumption Reallocation” (CR) indicates that the mitiga-
tion option results in a shift in the composition of consumer expenditures, such as 
reducing spending on electricity, gas, and other fuels, and increasing consumption 
in energy-effi cient appliances and other consumption categories.

Table 1 provides the descriptive statistics of all of the independent variables 
used in our regression models. Here statistics for interaction terms, such as “DNC* 
TLU” or “INV*TLU”, describe the annualized NPV of the direct net cost (or invest-
ment requirement) of policy options in each sector. The references to Model 1 
through 4 in Table 1 pertain to the different regression models discussed below.

3 Regression Model for GSP Impacts

The functional form of the regression model for the GSP impacts is given by equa-
tion 1. The fi rst four terms of the model are the interaction terms of sectoral binary 
variables and the direct net cost of an option. These interaction terms describe 
the direct net cost impacts of the options applied to different sectors on GSP. The 
following four terms are the interaction terms of sectoral binary variables and 
the investment requirement associated with an option. These interaction terms 
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Table 1 Descriptive Statistics

Mean Standard 
Deviation

Minimum 
Value

Maximum 
Value

D.V.: Annual Gross State 
Product Impact (y)
(in Models 1 and 2)

-23.30 194.39 -886.00 532.74

D.V.: Annual 
Employment Impact 
(y)(in Models 3 and 4)

2.20 4.81 -5.57 22.59

Direct Net Cost (DNC) 60.13 165.53 -279.12 1,075.39

Investment Requirement 
(INV)

114.97 233.51 0.00 1,420.13

DNC ¥ ES -0.21 65.55 -528.23 259.59

DNC ¥ RCI -22.41 81.99 -488.34 79.46

DNC ¥ TLU -15.06 150.40 -886.00 532.74

DNC ¥ AFW 14.39 61.23 -30.39 423.38

INV ¥ ES 44.64 158.59 0.00 1,268.71

INV ¥ RCI 26.42 151.41 0.00 1,420.13

INV ¥ TLU 24.35 98.85 0.00 666.98

INV ¥ AFW 19.55 79.58 0.00 541.28

ES 0.17 0.38 0 1

RCI 0.24 0.43 0 1

TLU 0.24 0.43 0 1

AFW 0.35 0.48 0 1

CONST 0.38 0.49 0 1

MFG 0.57 0.50 0 1

GS 0.22 0.41 0 1

CR 0.35 0.48 0 1

describe the impact of investment requirement of the options coming from differ-
ent sectors on GSP. The next four terms describe sectoral impacts (we assume that 
options from different sectors have inherent differences in addition to the direct 
net cost and investment requirement impacts captured by the interaction terms) 
of the policy option on GSP. The fi nal four terms describe the GSP impacts of the 
option related to whether or not the option involves construction investment, 
manufacturing investment, government subsidies, and consumption reallocation. 
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y = DNC ES+ DNC RCI + DNC TLU + DNC AFW +

INV ES+ INV RCI + INV TLU + INV AFW

ES+ RCI + TLU AFW + CONST MFG + GS CR

b b b b
b b b b
b b b b b b b b e

∗ ∗ ∗
∗ ∗ ∗ +

+ + + +

  
 

(1)

where

y: Annualized NPV of the GSP impacts of a policy option

DNC: Annualized NPV of the direct net cost of a policy option

INV: Annualized NPV of investment requirement of a policy option

ES: Energy Supply policy option binary variable

RCI: Residential, Commercial, Industrial policy option binary variable

TLU: Transportation and Land Use policy option binary variable

AFW: Agriculture, Forestry, and Waste Management policy option 
binary variable

CONST: Capital investment on building constructions, which has stimulus 
impacts to the construction sector (binary variable)

MFG: Capital investment on equipment, which has stimulus impacts 
to the machinery and equipment manufacturing sectors (binary 
variable)

GS: Policy option that receives state government subsidy (assuming 
government spending decreases by the same amount elsewhere) 
(binary variable)

CR: Policy option that results in consumer consumption realloca-
tion and increased purchasing power of the consumers (binary 
variable) 

b1 to b16: Regression coeffi cients

e: Stochastic error term

Tables 2 and 3 provide the results of our multivariate statistical analysis. We ran 
both a basic model (Model 1) and an interactive model (Model 2), which includes 
interaction terms to evaluate the individual sectoral impacts of the direct net costs 
and investment requirements associated with GHG mitigation policy options. The 
functional form of the regression model, as specifi ed in equation 1, provides the 
full interactive model. 

In each model the intercept term is suppressed. This is warranted on theoreti-
cal grounds, due to the fact that in the absence of a policy change there would 
be no incremental change in the GSP of a state economy. This also enables us to 
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explicitly display the effects of our four binary sectoral variables.3 Our analysis 
also implicitly assumes that the extant economies, as described by the coeffi cients 
and equations in the REMI models for each state, are in equilibrium. To account 
for potential heteroskedasticity (a violation of one of the basic regression model-
ing assumptions, which requires that the modeling errors have a constant variance 
across the observations), we used the White’s robust standard errors [20], which 
provides a correction that penalizes the model for any heteroskedasticity [21].

Both models 1 and 2 have strong fi tness and summary statistics, as indicated 
by a statistically signifi cant F-statistic and the R-squared values. These measures 
indicate that the model fi ts the data relatively strongly and that more than half 
(almost three fourths) of the error variance is explained by model 1 (and model 2). 
Given that the sample size is relatively small compared to other large sample 
analyses (N=92), the relatively strong fi tness measures indicate that the sample 
is large enough to have predictive power and thus remain externally valid. We 
also conducted tests to ensure that the explanatory variables were not correlated 
(i.e., multicollinearity). These tests indicate that the only collinearity present in the 
models that would infl ate the variance comes from sectoral indicator variables 

3 Inclusion of the intercept would force us to exclude one sectoral category from the regression model 
to use it as the reference sector for the other sectoral binary variables, and in such a case, the coeffi cients 
of the sectoral binary variables included in the regression model need to be interpreted as the differen-
tial impact of the modeled sector with respect to the reference sector).

Table 2 Results of the Regression Analysis for GSP Impact – Model 1 

Coeffi cient Robust Std. Error

Direct Net Cost (DNC) –0.51*** 0.15

Investment Requirement (INV) 0.31*** 0.08

ES –15.27 38.26

RCI –18.64 45.62

TLU –45.66 36.25

AFW 6.83 20.97

Construction Inv. (CONST) 40.91 30.38

Manufacturing Inv. (MFG) 25.13 25.34

Government Subsidy (GS) 21.59 34.99

Consumption Reallocation (CR) –17.49 38.01

N 92

R-squared 0.52

F-Statistic 4.13***

Ordinary Least Squares (OLS) Regression with White’s Robust Standard Errors. 
*** p<0.01, **p<0.05, *p<0.1.
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Table 3 Results of the Regression Analysis for GSP Impact – Model 2

Coeffi cient Robust Std. Error

DNC ¥ ES –1.35*** 0.25

DNC ¥ RCI –0.42** 0.20

DNC ¥ TLU –0.32*** 0.07

DNC ¥ AFW –0.56* 0.29

INV ¥ ES 0.57*** 0.09

INV ¥ RCI 0.22*** 0.07

INV ¥ TLU 0.12* 0.05

INV ¥ AFW 0.63* 0.36

ES –67.18** 32.44

RCI –10.09 44.22

TLU –27.19 26.21

AFW –19.65 21.14

Construction Inv. (CONST) 39.41 25.61

Manufacturing Inv. (MFG) 42.31 26.07

Government Subsidy (GS) 27.22 39.57

Consumption Reallocation (CR) –9.34 32.11

N 92

R-squared 0.71

F-Statistic 11.07***

Ordinary Least Squares (OLS) Regression with White’s Robust Standard Errors. 
*** p<0.01, **p<0.05, *p<0.1.

(i.e., dummies), which does not present a problem, as policy options cannot simul-
taneously be in two sectors. Furthermore, a moderately high degree of collinearity 
exists between Government Subsidy and Manufacturing Investment (rho = -0.49). 
However, as only 2 of the 20 policy options that receive a government subsidy are 
in the manufacturing sector, we do not believe that the degree of collinearity is 
high enough to justify exclusion from the models.

Model 1 indicates that the direct costs of mitigation options constitute a sig-
nifi cant determinant of the overall macroeconomic impacts on GSP. Based on th e 
results of Model 1, when the other variables are held constant at their mean values, 
when the annualized direct net cost of an average mitigation option decreases by 
one million dollars, the annualized GSP impact is expected to increase by about 
$0.51 million. 
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Looking at the sectoral decomposition of the direct cost effects, the coeffi cients 
of the interaction terms of direct net cost with the four sector dummy variables (in 
Model 2) are all negative, which indicates that options with higher direct net cost 
are expected to result in less favorable GSP impacts. All of the interaction terms 
with respect to direct net cost are statistically signifi cant in Model 2. Based on the 
results of Model 2, when all the other variables are held constant at their mean val-
ues, a one million dollar decrease in direct net costs for average mitigation options 
in the ES, RCI, TLU, and AFW sectors is expected to increase the annualized GSP 
impact by $1.35, $0.42, $0.32, and $0.56 million, respectively. 

Model 1 also indicates the statistically signifi cant role of a policy option’s 
investment requirement on GSP. If all of the other variables are held constant at 
their mean values, when the annualized investment requirement of an average 
mitigation option is increased by one million dollars, the annualized GSP impact 
is expected to increase by about $0.31 million. All of the interaction terms related 
to investment requirement are statistically signifi cant in Model 2. If we hold all of 
the other variables constant at their mean values, a one million dollar increase in 
investment requirements for an average mitigation option in the ES, RCI, TLU, 
and AFW sectors is expected to increase the annualized GSP impact by $0.57, 
$0.22, $0.12, and $0.63 million, respectively.

The sectoral binary variables, which try to capture the inherent difference (other 
than direct net cost and investment requirements) of options from different sectors, 
however, lack statistical signifi cance across the board in both Model 1 and Model 
2, except for the Energy Supply sector. It is important to control for differences in 
each sector’s mitigation options, but our models show there to be no statistically 
signifi cant difference between sectors (other than the impacts of direct net cost 
and investment requirement that are captured in the interaction terms). The only 
exception is the ES sector. Holding all of the other variables constant at their mean, 
an average ES option tends to have a lower stimulus effect on GSP compared with 
an average option from the other sectors. 

The coeffi cient estimate of the variable pertaining to the capital investment to 
the construction sector is positive and just shy of signifi cant in Model 2. The posi-
tive sign of the coeffi cient means that those mitigation options that involve a capi-
tal investment expenditure in the construction sector (for example, investments 
in building industrial plants, electricity generation facilities, highways, or other 
infrastructure) have an overall positive impact on a state’s macroeconomy. Based 
on the results of Model 2, holding all the other variables fi xed at their mean values, 
if a mitigation option involves capital investment in construction (i.e., the value of 
the CONST dummy variable changes from zero to one), the overall impact on the 
annualized GSP is expected to be an increase of $39 million. Simulating the macro-
economic impact of construction capital investment increases in the REMI Model 
results in two types of effects: 1) increases in capital costs in the sectors that under-
take the mitigation actions, and 2) increases in the fi nal demand for goods and ser-
vices in the construction sector. In general, the former yields negative impacts on 
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the economy, while the latter yields positive impacts. The positive sign of the con-
struction investment binary variable indicates that the positive effects are expected 
to exceed the negative effects in the four states to which the model was applied. 

The coeffi cient estimate of the variable pertaining to the capital investment in 
the equipment manufacturing sector is positive as well, but just shy of signifi cance 
due to the variability of impacts of those policy options. The positive sign of the 
coeffi cient means that at the mean, those mitigation options that involve invest-
ments in manufactured equipment also tend to have a strong positive infl uence on 
a state’s overall macroeconomy. Based on the results of Model 2, holding all the 
other variables fi xed, if a mitigation option involves capital investment in equip-
ment and machinery (for example, energy-effi cient appliances, vehicles, equip-
ment, and other manufactured devices), that is, the value of the MFG dummy 
variable changes from zero to one, the overall average impact on the annualized 
GSP is expected to be an increase of $42 million. 

Those options that include subsidies from a state government have an overall 
positive, but insignifi cant, effect on GSP. In REMI, the state government subsidy 
is simulated in two ways: 1) stimulus effects arise from increased spending by 
households or increased investment in sectors that receive the subsidies, 2) while 
dampening effects stem from the decrease of the same amount of government 
spending elsewhere. The positive sign of this variable indicates it is expected that 
the stimulus effects of directing government subsidies to mitigation options, in 
general, can more than offset the dampening effects associated with decreased 
government spending in other areas. 

Mitigation options that include consumption reallocation have only a minimal 
infl uence on a state’s GSP, on the average. Whereas some mitigation options that 
include a consumption reallocation have overall positive effects on a state’s GSP 
and others have overall negative effects, based on the results of Model 2, an aver-
age mitigation option that includes a consumption reallocation has a $9 million 
lower positive effect on GSP if all the other variables are held constant at their 
mean values. Again, however, this relationship is not statistically signifi cant.

4 Regression Model for Employment Impacts

We developed similar regression models to that shown in equation 1, to estimate 
the employment impacts of climate mitigation options. The dependent variable in 
this case is the annualized employment impact over the entire planning horizon 
in terms of person-years. All of the explanatory variables included in the employ-
ment impact regression models are the same as those included in the correspond-
ing GSP impact regression models. 

Tables 4 and 5 provide the results of the regression analyses for employment 
impacts. Similar to the modeling of GSP impacts, we ran both a basic model 
(Model 3) and an interactive model (Model 4). The former model includes one 
independent variable each pertaining to the direct net costs and investment 
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Table 4 Results of the Regression Analysis for Employment Impact -- Model 3

Coeffi cient Robust Std. Error

Direct Net Cost (DNC) –0.0080*** 0.00

Investment Requirement (INV) 0.0126*** 0.00

ES –0.2187 1.17

RCI –1.7634* 1.04

TLU –2.4386*** 0.80

AFW 0.2195 0.57

Construction Inv. (CONST) 1.7896** 0.79

Manufacturing Inv. (MFG) 0.5216 0.67

Government Subsidy (GS) 1.5744 1.10

Consumption Reallocation (CR) 0.6010 0.89

N 92

R-squared 0.57

F-Statistic 9.32***

Ordinary Least Squares (OLS) Regression with White’s Robust Standard Errors. ***p<0.01, **p<0.05, 
*p<0.1. Additional decimal places provided for coeffi cients due to the magnitude of employment 
impacts.

requirements, respectively, associated with the implementation of the GHG miti-
gation options, while in the latter model we include interaction terms to evaluate 
the individual sectoral impacts of the direct net costs and of investment require-
ments associated with the options implemented in respective sectors. 

The direct net cost of an option provides a signifi cant determinant of the overall 
employment impact of this option. Based on the results of Model 3, holding all of 
the other variables constant at their mean values, decreasing the annualized direct 
net cost of an average mitigation option by one million dollars yields an annual-
ized employment impact increase of about 8.0 person-years. 

Model 4, which includes the interaction terms of direct net costs in each sector 
with sectoral dummy variables, provides a sectoral decomposition of the effects 
stemming from changes in direct net cost. The coeffi cients of the four interaction 
terms of direct net cost with the four sector dummies are all negative, which indi-
cate that options with higher direct net cost are expected to result in less favorable 
employment impacts. According to Model 4, the coeffi cient estimates show that 
the most statistically signifi cant variation across the direct cost variable occurs in 
the ES, RCI, and TLU sectors. Holding the non-sectoral binary variables constant 
at their mean values, a decrease of one million dollars in direct net cost of an aver-
age mitigation option in the ES, RCI, and TLU sector is expected to increase the 
annualized employment impacts by 6.9, 13.9, and 6.8 person-years, respectively.
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Table 5 Results of the Regression Analysis for Employment Impact – Model 4

Coeffi cient Robust Std. Error

DNC ¥ ES –0.0069* 0.00

DNC ¥ RCI –0.0139** 0.01

DNC ¥ TLU –0.0068*** 0.00

DNC ¥ AFW –0.0004 0.01

INV ¥ ES 0.0344*** 0.00

INV ¥ RCI 0.0065*** 0.00

INV ¥ TLU 0.0056*** 0.00

INV ¥ AFW 0.0312*** 0.01

ES –2.4217** 0.93

RCI –0.1769 0.94

TLU –0.2919 0.61

AFW –0.1210 0.43

Construction Inv. (CONST) 1.0762* 0.60

Manufacturing Inv. (MFG) 0.3516 0.57

Government Subsidy (GS) –0.2325 0.67

Consumption Reallocation (CR) –0.2268 0.77

N 92

R-squared 0.02

F-Statistic 16.78***

Ordinary Least Squares (OLS) Regression with White’s Robust Standard Errors. ***p<0.01, **p<0.05, 
*p<0.1. Additional decimal places provided for coeffi cients due to the magnitude of employment 
impacts.

Model 3 also indicates that the impact of a policy option’s investment require-
ment on employment is statistically signifi cant. If all the other variables are held 
constant at their mean values, when the annualized investment requirement of 
an average mitigation option is increased by one million dollars, the annualized 
employment impact is expected to increase by about 12.6 person-years. In Model 
4, all of the sector-specifi c interaction terms for investment requirement are sta-
tistically signifi cant at the signifi cance level of 0.01. If we hold all the other vari-
ables constant at their means, an increase of one million dollars in the investment 
requirement for average mitigation options in each of the ES, RCI, TLU, and AFW 
sectors is expected to increase the annualized employment impacts by 34.3, 6.5, 
5.6, and 31.2 person-years, respectively.

Based on the results of Model 4, the sectoral binary variables again lack sta-
tistical signifi cance except for the ES sector. That means, across our sample, the 



Dan Wei et al.: Macroeconomics of GHG Mitigation

390  J. Sustainable Energy Eng., Vol. 2, No. 4, April 2015  © 2015 Scrivener Publishing LLC

DOI: 10.7569/JSEE.2015.629503

sectoral impact has no statistically discernible difference (other than the impacts 
of direct net cost and investment requirement that are captured in the interaction 
terms) on employment impacts results except for the ES sector mitigation options. 
Holding all the other variables constant, an average ES option tends to have lower 
stimulus effects to the economy in terms of employment impact compared with an 
average option from other sectors.

The coeffi cient estimate of the variable pertaining to capital investment in miti-
gation options directed to the construction sector is positive and signifi cant in both 
models. This means that, holding all the other variables constant at their mean 
values, those mitigation options that involve a capital investment expenditure 
in the construction sector are expected to result in more employment gains than 
those options that do not. The coeffi cient of the binary variable pertaining to the 
capital investment in equipment is also positive but not statistically signifi cant. 
The positive sign of the coeffi cient means those mitigation options that involve 
investments in equipment are also expected to lead to a stronger positive effects on 
job creation. The higher value of the coeffi cient of CONST (the construction sector 
investment binary variable) than the coeffi cient of MFG (the equipment manu-
facturing sector investment binary variable) comes about for two reasons. First, 
in most states, the construction sector has a higher Regional Purchase Coeffi cient 
(RPC) than the equipment manufacturing sector. This indicates that, dollar for dol-
lar, capital investments in the construction sector are more stimulating to the in-
state job market than investments in equipment manufacturing, whose demand is 
satisfi ed by a greater proportion of imports of equipment and related items from 
out of state. Second, compared with the equipment manufacturing sectors, the 
construction sector is relatively more labor-intensive.

The coeffi cients of the binary variables pertaining to the state government sub-
sidy and consumption reallocation are positive in Model 3, but negative in Model 
4. These two variables, however, are not statistically signifi cant in either model. 

5 Model Applications and “Next Steps” in Model Development

In response to the need for an affordable and rapid use policy screening tool to 
evaluate the likely macroeconomic impacts of GHG mitigation policy options 
at an earlier phase of their design process, we developed reduced-form statisti-
cal  models that can be used to quickly predict the likely GDP and employment 
impacts of these various climate mitigation options. The reduced-form models are 
developed based on microeconomic impact assessment results from state stake-
holder processes and REMI macroeconometric modeling results of climate action 
plans for four states (Florida, Pennsylvania, Michigan, and New York), which 
include the analyses of 92 mitigation policy options across these states. 

The reduced-form models presented above have been developed based on 
REMI modeling results of 92 individual GHG mitigation options at the state level. 
Therefore, the direct application of the regression models should be for individual 
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options at the state level in order to appropriately capture the impacts of the 
dummy variables included in the models. If these regression models are applied 
to evaluate the likely macroeconomic impacts of policy options at different scales, 
such as policy bundles that aggregate options from one sector together, or miti-
gation options implemented at different geographical levels, the direct net cost 
and investment requirement values of the options need to be scaled-up or scaled-
down to the individual option level, as well as to the appropriate geographic 
level, before applying the regression equations. For example, when we apply the 
models to evaluate the potential macroeconomic impacts of mitigation options at 
the national level, the estimated direct net cost and investment requirement of 
an option both need to be fi rst divided by a factor of 25 to scale down from the 
national level to the state level before applying the regression models to the input 
data. (Note that a factor of 25 rather than a factor of 50—as in 50 states––is used 
for the national-state scale-down is because the four states from which microeco-
nomic and macroeconomic results were used as the basis for the reduced-form 
regression models are larger, in terms of the size of their economies, than average 
states in the U.S.). Then the regression application results need to be multiplied by 
25 to get back to the national level estimations of GDP and employment impacts. 
To the extent that the reduced-form model is applied to regions, states, or sub-state 
areas that have economies different in size from the average of the four states upon 
which model results are based, macroeconomic results pertaining to the average 
impacts of individual options may need to be scaled up or down to account for 
those size differences. Similarly, the macroeconomic impacts of options depend to 
some extent on the particular, locale-specifi c design of the option, including how 
aggressive the option’s goals are, relative to those of the average option by sector 
among the 92 options now used as the basis for the reduced-form models. These 
issues of model scale and option design need to be considered when interpreting 
the results of the reduced-form model in particular applications. 

The key next step to further refi ne the reduced-form modeling tool is to expand 
the underlying database as more REMI macroeconomic impact analyses on miti-
gation options for additional states and regions are performed. As the underlying 
database expands, specifi c regression models that are tailored to specifi c types of 
economies or are designed for specifi c sectors in the economy can be developed 
as well. We also plan to develop a documented, easily-applied spreadsheet-based 
version of the reduced-form model that is convenient for application in the early 
option screening phase. The function of the spreadsheet-based application would 
include functions such as scale-up/down factors based on state GSP/employ-
ment, and key drivers of policy stringency for at least some key policies. 

Note also that the results pertain to conditions in which we assume that all 
investment in mitigation options does not displace investment in ordinary plant 
and equipment. This requires that additional investment funds become avail-
able by attracting investors from outside the state, attracting federal subsidies, or 
using in-region business retained earnings. State governments can take actions to 
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promote the fi rst two of these conditions, while the third is likely in times other 
than economic recession years. As such, the estimates yielded by our reduced form 
equations should be considered reasonable upper bounds in terms of the availabil-
ity of additional investment funds to support the GHG mitigation actions.
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Appendix A. List of Major GHG Mitigation Policy Options

Table A1 lists the major GHG mitigation options that are recommended in the four 
state CAPs (those that are capable of reducing emissions by more than 1% of base-
line in at least one of the four states analyzed). Overall they represent two-thirds 
of the options and around 93% of total emission reductions across the four states.
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