1 (a) The following diagram shows the arrangement of some of the water molecules in a crystal of ice. With reference to the structure shown above give one reason why ice is less dense than water. (1 mark) 1 (b) Water and methane have similar relative molecular masses and both contain the element hydrogen. The table below gives some information about water and methane. H_2O CH₄ 18.0 16.0 Melting point / K 273 91 1 (b) (i) State the strongest type of intermolecular force holding the water molecules together in the ice crystal. (1 mark)

1 (b) (ii) State the strongest type of intermolecular force in methane.

(1 mark)

(b) (iii)	Give one reason why the melting point of ice is higher than the melting point of methane.	of		
		(1 mark)		
(c)	A molecule of H_2O can react with an H^{\ast} ion to form an H_3O^{\ast} ion.			
(c) (i)	Draw and name the shape of the $\mbox{H}_3\mbox{O}^{\scriptscriptstyle +}$ ion. Include any lone pairs of electrons.			
	Shape of the H ₃ O ⁺ ion			
	Name of shape	(2 marks)		
(c) (ii)		,,		
(-) (-)				
		(1 mark)		
(c) (iii)				
	elections and the same shape as the H ₃ O lon.			
		(1 mark)		
(d)	Water can also form the hydroxide ion.			
	State the number of lone pairs of electrons in the hydroxide ion.			
		(1 mark)		
	(c) (c) (i)	methane. (c) A molecule of H ₂ O can react with an H ⁺ ion to form an H ₃ O ⁺ ion. (c) (i) Draw and name the shape of the H ₃ O ⁺ ion. Include any lone pairs of electror Shape of the H ₃ O ⁺ ion Name of shape		

2		Indium is in Group 3 in the Periodic Table and exists as a mixture of the isotopes ¹¹³ In and ¹¹⁵ In.	
2	(a)	Use your understanding of the Periodic Table to complete the electron configuration of indium. 1s ² 2s ⁶ 3s ⁶ 3s ⁶ 3s ⁶ 3d ¹⁰ 4p ⁶	
		1s- 2s- 2p- 3s- 3p- 4s- 3d- 4p	(1 mark)
2	(b)	A sample of indium must be ionised before it can be analysed in a mass spec	trometer.
2	(b) (i)	State what is used to ionise a sample of indium in a mass spectrometer.	
			(1 mark)
2	(b) (ii)	Write an equation, including state symbols, for the ionisation of indium that retthe minimum energy.	(
			(1 mark)
2	(b) (iii)	State why more than the minimum energy is not used to ionise the sample of indium.	
			(1 mark)
2	(b) (iv)	Give two reasons why the sample of indium must be ionised.	(Time any
		Reason 1	
		Reason 2	
			(2 marks)

2 (c)	A mass spectrum of a sample of indium showed two peaks at $m/z = 113$ and $m/z = 115$. The relative atomic mass of this sample of indium is 114.5	
2 (c) (i)	Give the meaning of the term relative atomic mass.	
	(2 mark	
2 (c) (ii)	Use these data to calculate the ratio of the relative abundances of the two isotopes.	
	(2 mark	s)
2 (d)	State and explain the difference, if any, between the chemical properties of the isotopes $^{113}\mbox{In}$ and $^{115}\mbox{In}$	
	Difference in chemical properties	
	Explanation	
	(2 mark	
2 (e)	Indium forms a compound X with hydrogen and oxygen. Compound X contains 69.2% indium and 1.8% hydrogen by mass. Calculate the empirical formula of compound X .	
		-
		-
	(3 marks	

3 (a)	An unknown metal carbonate reacts with hydrochloric acid according to the following equation.
	$M_2CO_3(aq) + 2HCl(aq) \longrightarrow 2MCl(aq) + CO_2(g) + H_2O(l)$
	A 3.44 g sample of M_2CO_3 was dissolved in distilled water to make 250 cm ³ of solution. A 25.0 cm ³ portion of this solution required 33.2 cm ³ of 0.150 mol dm ⁻³ hydrochloric acid for complete reaction.
3 (a) (i)	Calculate the amount, in moles, of HCl in $33.2\mathrm{cm^3}$ of $0.150\mathrm{mol}\;\mathrm{dm^{-3}}$ hydrochloric acid. Give your answer to 3 significant figures.
	(1 mark)
3 (a) (ii)	Calculate the amount, in moles, of $\rm M_2CO_3$ that reacted with this amount of HCl. Give your answer to 3 significant figures.
	(1 mark)
3 (a) (iii)	Calculate the amount, in moles, of $\rm M_2CO_3$ in the 3.44 g sample. Give your answer to 3 significant figures.
	(1 mark)
3 (a) (iv)	Calculate the relative formula mass, $M_{\rm r}$, of ${\rm M_2CO_3}$ Give your answer to 1 decimal place.
	(1 mark)
3 (a) (v)	Hence determine the relative atomic mass, $A_{\rm f}$, of the metal M and deduce its identity.
	A _r of M
	Identity of M(2 marks)
3 (b)	In another experiment, $0.658\mathrm{mol}$ of $\mathrm{CO_2}$ was produced. This gas occupied a volume of $0.0220\mathrm{m^3}$ at a pressure of $100\mathrm{kPa}$. Calculate the temperature of this $\mathrm{CO_2}$ and state the units. (The gas constant $R=8.31\mathrm{J~K^{-1}~mol^{-1}}$)
	(3 marks)

3 (c)		est one possible da ed flask.	anger w	/hen a r	netal ca	rbonate	e is rea	cted with an	acid in a
			•••••				••••••		
									(1 mari
3 (d)		different experiment ric acid. The follow				carbor	nate we	re added to	an excess of
		MgCO	3 + H ₂	2SO ₄	\rightarrow	MgSO	4 + C	O ₂ + H ₂ O	
3 (d) (i)	Calcu	ulate the amount, in	moles	, of Mg(CO ₃ in 6	3.27 g o	f magn	esium carbo	nate.
									(2 mark
3 (d) (ii)	Calcu	ulate the mass of M	lgSO ₄ p	oroduce	d in this	reaction	n assu	ming a 95%	yield.
									(3 mark
4 T	he follo	wing table gives the	e meltir	ng point	s of sor	ne elen	nents in	Period 3.	
		Element	Na	Al	Si	Р	s	1	
		Melting point / K	371	933	1680	317	392		
-\ 0					-1-1-5		<u> </u>	J	
		e type of structure s why the melting poi							
		•••••							
									(3 marks)
(1	±xtra sį	oace)							

(b)	State the type of structure shown by crystals of sulfur and phosphorus. Explain why the melting point of sulfur is higher than the melting point of phosphorus.
	(3 marks)
	(Extra space)
(0)	Draw a diagram to show how the particles are arranged in aluminium and explain
(c)	why aluminium is malleable.
	(You should show a minimum of six aluminium particles arranged in two dimensions.)
	(Extra space)(3 marks)
	(Land space)
(d)	Explain why the melting point of aluminium is higher than the melting point of sodium.
,	
	(3 marks)
	(Extra space)

5	A sample of nitrogen dioxide gas (NO ₂) was prepared by the reaction of copper with concentrated nitric acid.
5 (a) (i)	Balance the equation for the reaction of copper with concentrated nitric acid.
	Cu + $HNO_3 \longrightarrow Cu(NO_3)_2 + NO_2 + H_2O$
	(1 mark)
5 (a) (ii	Give the oxidation state of nitrogen in each of the following compounds.
	HNO ₃
	NO ₂
	(2 marks)
5 (a) (ii	 Deduce the half-equation for the conversion of HNO₃ into NO₂ in this reaction.
	(1 mark)
5 (b)	The following equilibrium is established between colourless dinitrogen tetraoxide gas (N_2O_4) and dark brown nitrogen dioxide gas.
	$N_2O_4(g) \implies 2NO_2(g)$ $\Delta H = +58 \text{ kJ mol}^{-1}$
5 (b) (i)	Give two features of a reaction at equilibrium.
	Feature 1
	Feature 2
	(2 marks)

5 (b) (II)	use Le Chateller's principle to explain why the mixture of gases becomes darker in colour when the mixture is heated at constant pressure.
	(2 marks)
5 (b) (iii)	
5 (b) (iii)	(2 marks) Use Le Chatelier's principle to explain why the amount of NO ₂ decreases when the
5 (b) (iii)	(2 marks) Use Le Chatelier's principle to explain why the amount of NO ₂ decreases when the
5 (b) (iii)	(2 marks) Use Le Chatelier's principle to explain why the amount of NO ₂ decreases when the
5 (b) (iii)	(2 marks) Use Le Chatelier's principle to explain why the amount of NO ₂ decreases when the
5 (b) (iii)	(2 marks) Use Le Chatelier's principle to explain why the amount of NO ₂ decreases when the

6	Metals can be extracted by different methods.
(a)	Give ${\bf one}$ reason why titanium cannot be extracted directly from titanium(IV) oxide using carbon.
	(1 mark)
(b)	Titanium steel is an alloy of titanium and iron. Titanium steel is extracted from the mineral ilmenite ($FeTiO_3$) in a two-stage process. Purified $FeTiO_3$ is first converted into a mixture of two metal chlorides. These two metal chlorides are then reduced simultaneously using sodium.
(b) (i)	Write an equation for the reaction of FeTiO ₃ with chlorine and carbon to produce iron(III) chloride (FeCl ₃), titanium(IV) chloride and carbon monoxide.
	(1 mark)
(b) (ii)	Write an equation for the simultaneous reduction of the mixture of iron(III) chloride and titanium(IV) chloride to iron and titanium using sodium.
	(1 mark)
(c)	Scrap iron is used to extract copper from dilute aqueous solutions containing copper(II) ions. Explain, in terms of redox, what happens to the copper(II) ions in this extraction.
	(2 marks)
(d)	Aluminium is an expensive metal because it is extracted from molten aluminium oxide using electrolysis. Write the half-equation for the reaction that occurs at the positive electrode during this extraction.
	(1 mark)