Question 1: N/A Question 2: N/A

3	Esters are produced by the reaction of alcohols with other esters and by the reaction of
	alcohols with carboxylic acids.

- **3 (a)** The esters which make up biodiesel are produced industrially from the esters in vegetable oils.
- 3 (a) (i) Complete the equation for this formation of biodiesel.

$$\begin{array}{c} C_{17}H_{35}COOCH_{3}\\ \\ CH_{2}OOCC_{17}H_{35}\\ \\ CH_{2}OOCC_{17}H_{31} & + & \rightleftharpoons C_{17}H_{31}COOCH_{3} & + \\ \\ CH_{2}OOCC_{17}H_{29} & & & \\ \\ C_{17}H_{29}COOCH_{3} & & \\ \\ \end{array}$$

3 (a) (ii) Write an equation for the complete combustion of C₁₇H₃₅COOCH₃

	(2 mark	(S)

3 (b) The ester commonly known as diethyl malonate (**DEM**) occurs in strawberries and grapes. It can be prepared from acid **A** according to the following equilibrium.

COOH
$$H_{2}C + 2C_{2}H_{5}OH \Longrightarrow H_{2}C + 2H_{2}O$$

$$COOC_{2}H_{5} + 2H_{2}O$$

$$COOC_{2}H_{5}$$

$$DEM$$

3 (b) (i) A mixture of 2.50 mol of A and 10.0 mol of ethanol was left to reach equilibrium in an inert solvent in the presence of a small amount of concentrated sulfuric acid. The equilibrium mixture formed contained 1.80 mol of DEM in a total volume, Vdm³, of solution.

Calculate the amount (in moles) of **A**, of ethanol and of water in this equilibrium mixture.

Moles of A	
------------	--

Moles of ethanol

Moles of water.....

2

(3 marks)

3 (b) (ii)	The total volume of the mixture in part (b) (i) was doubled by the addition of more of the inert solvent.
	State and explain the effect of this addition on the equilibrium yield of DEM .
	Effect
	Explanation
	(2 marks)
3 (b) (iii)	Using A to represent the acid and DEM to represent the ester, write an expression for the equilibrium constant K_c for the reaction.
	(1 mark)
3 (b) (iv)	In a second experiment, the equilibrium mixture was found to contain 0.85 mol of A , 7.2 mol of ethanol, 2.1 mol of DEM and 3.4 mol of water.
	Calculate a value of K_c for the reaction and deduce its units.
	Calculation
	Units.
	(3 marks)

13

4 (a) The tripeptide shown is formed from the amino acids alanine, threonine and lysine.

- 4 (a) (i) Draw a separate circle around each of the asymmetric carbon atoms in the tripeptide. (1 mark)
- 4 (a) (ii) Draw the zwitterion of alanine.

(1 mark)

4 (a) (iii) Give the IUPAC name of threonine.

(1 mark)

4 (a) (iv) Draw the species formed by lysine at low pH.

(1 mark)

Question 4 continues on the next page

4 ((b)	The repeating	unit shown	represents a	polvester.
- '	\~ <i>,</i>	ino repeating	GITTLE GITTE	. op. ooonico a	po., oo.o

$$\begin{array}{c} {\rm O} & {\rm O} \\ \parallel & \parallel \\ -{\rm O}-{\rm CH_2}-{\rm CH_2}-{\rm CH_2}-{\rm C}-{\rm C}-{\rm CH_2}-{\rm CH_2}-{\rm C}+{\rm C}- \end{array}$$

4 (b) (i) Name this type of polymer.

(1 mari

4 (b) (ii) Give the IUPAC name for the alcohol used to prepare this polyester.

(1 mark)

4 (c) The repeating unit shown represents a polyalkene co-polymer. This co-polymer is made from two different alkene monomers.

4 (c) (i) Name the type of polymerisation occurring in the formation of this co-polymer.

	•
(1 mar	k

4 (c) (ii) Draw the structure of each alkene monomer.

Alkene monomer 1

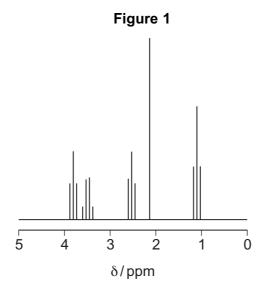
Alkene monomer 2

(2 marks)

		box
4 (d)	One of the three compounds shown in parts (a), (b) and (c) cannot be broken down by hydrolysis.	
	Write the letter (a), (b) or (c) to identify this compound and explain why hydrolysis of this compound does not occur.	
	Compound	
	Explanation	
	(2 marks)	
		1
	Turn over for the next question	

5	This question concerns isomers of C ₆ H ₁₂ O ₂ and how they can be distinguished using
	n.m.r. spectroscopy.

- 5 (a) The non-toxic, inert substance TMS is used as a standard in recording both ¹H and ¹³C n.m.r. spectra.
- **5** (a) (i) Give **two** other reasons why TMS is used as a standard in recording n.m.r. spectra.


Reason 1	 	 		 	
	 	 	• • • • • • • • • • • • • • • • • • • •	 	

Reason 2

5 (a) (ii) Give the structural formula of TMS.

(1 mark)

5 (b) The proton n.m.r. spectrum of compound $P(C_6H_{12}O_2)$ is represented in Figure 1.

The integration trace gave information about the five peaks as shown in Figure 2.

Figure 2

δ/ ppm	3.8	3.5	2.6	2.2	1.2
Integration ratio	2	2	2	3	3

5 (b) (i)	Use Table 2 on the Data Sheet, Figure 1 and Figure 2 to deduce the structural fragment that leads to the peak at $\delta2.2$	
5 (b) (ii)	Use Table 2 on the Data Sheet, Figure 1 and Figure 2 to deduce the structural fragment that leads to the peaks at δ 3.5 and 1.2	()
5 (b) (iii)	Use Table 2 on the Data Sheet, Figure 1 and Figure 2 to deduce the structural fragment that leads to the peaks at δ 3.8 and 2.6	()
5 (b) (iv)	Deduce the structure of P .	c)
	(1 mark	()

5 (c)	These questions are about different isomers of ${\bf P}$ (C ₆ H ₁₂ O ₂).		
5 (c) (i)	Draw the structures of the two esters that both have only two peaks in their pronuncial numbers. These peaks both have an integration ratio of 3:1	oton	
	Ester 1		
	Ester 2		
		(2 marks)	
5 (c) (ii)	Draw the structure of an optically active carboxylic acid with five peaks in its ¹³ C n.m.r. spectrum.		
	O m.m.i. spectrum.		
5 (c) (iii)	Draw the structure of a cyclic compound that has only two peaks in its ^{13}C n.m.r. spectrum and has no absorption for C = O in its infrared spectrum.	(1 mark)	
		(1 mark)	1

6	Describe how you could distinguish between the compounds in the following pairs
	using one simple test-tube reaction in each case.

For each pair, identify a reagent and state what you would observe when both compounds are tested separately with this reagent.

6 (a)

$$\begin{array}{cccc} \mathsf{CH_3} & & \mathsf{CH_3} \\ \mathsf{H_3C-C-CH_2OH} & & \mathsf{H_3C-C-CH_2CH_3} \\ \mathsf{CH_3} & & \mathsf{OH} \\ & & \mathsf{R} & & \mathsf{S} \end{array}$$

Reagent	
Observation with R	
Observation with S	
	(3 marks

6 (b)

$$O=C$$
 $O=C$
 $O=C$

Reagent
Observation with T
Observation with U

(3 marks)

6 (c)	$H_3C-C-CH_2-C-CH_3$ 0 0	H-C-CH ₂ -C-H	
	Reagent Observation with V		
	Observation with W		
		(3 m	narks)

Turn over for the next question

Section B

Answer **all** questions in the spaces provided.

- 7 Each of the following conversions involves reduction of the starting material.
- 7 (a) Consider the following conversion.

$$O_2N$$
 \longrightarrow H_2N \longrightarrow NH_2

Identify a reducing agent for this conversion.

Write a balanced equation for the reaction using molecular formulae for the nitrogen-containing compounds and [H] for the reducing agent.

Draw the repeating unit of the polymer formed by the product of this reaction with benzene-1,4-dicarboxylic acid.
(5 marks)
(Extra space)

7 (b)	Consider the following conversion.
	$\qquad \longrightarrow \qquad \bigcirc$
	Identify a reducing agent for this conversion.
	State the empirical formula of the product.
	State the bond angle between the carbon atoms in the starting material and the bond angle between the carbon atoms in the product.
	(4 marks)
	Question 7 continues on the next page

7 (c)	(c) The reducing agent in the following conversion is NaBH ₄	
	$H_3C-C-CH_2CH_3 \longrightarrow H_3C-CH-CH_2CH_3$ O OH	
7 (c) (i)	Name and outline a mechanism for the reaction.	
	Name of mechanism	
	Mechanism	
	(5 marks)	
7 (c) (ii)	By considering the mechanism of this reaction, explain why the product formed is optically inactive.	
	(3 marks)	

8	Acyl chlorides such as CH ₃ COCl are useful compounds in synthesis.	
8 (a)	The acyl chloride CH ₃ COCl reacts with benzene.	
8 (a) (i)	Write an equation for this reaction and name the organic product.	
	Identify a catalyst for the reaction.	
	Write an equation to show how this catalyst reacts with CH ₃ COCl to produce a intermediate.	a reactive
		(4 marks)
8 (a) (ii)	Name and outline a mechanism for the reaction of benzene with the reactive intermediate in part (a) (i).	
	Name of mechanism	
	Mechanism	
		(4 marks)

0 (1)		
8 (b)	Nucleophiles such as alcohols can react with CH_3COCl The ion CH_3COO^- can act as a nucleophile in a similar way.	
	State the meaning of the term <i>nucleophile</i> .	
	Draw the structure of the organic product formed by the reaction of CH ₃ COO ⁻ with	
	CH ₃ COCl	
	Name the functional group produced in this reaction.	
	(3 marks)	
	(3 marks)	11
Quest	ion 9: N/A	11
Quest		11

Section B

	Answer all questions in the spaces provided.		
10	The reactions of molecules containing the chlorine atom are often affected by other functional groups in the molecule.		
	Consider the reaction of CH ₃ CH ₂ COCl and of CH ₃ CH ₂ CH ₂ Cl with ammonia.		
10 (a)	For the reaction of CH ₃ CH ₂ COCl with ammonia, name and outline the mechanism and name the organic product.		
	(0,,)		
	(6 marks) (Extra space)		

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER 29

Do not write outside the box

10 (b)	For the reaction of $\mathrm{CH_3CH_2CH_2Cl}$ with an excess of ammonia, name and outline the mechanism and name the organic product.
	(6 marks)
	(Extra space)
	Question 10 continues on the next page

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER 29

Do not write outside the box

10 (c)	Suggest one reason why chlorobenzene (C_6H_5Cl) does not react with ammonia under normal conditions.	
	(1 mark)	
	(Extra space)	13