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Abstract

In this appendix, we provide details about the data construction for all variables used in
the main text. We then present a battery of tests and additional analysis demonstrating the ro-
bustness of the relationship between the real rate and PV St . In addition, we show that roughly
90% of the covariation between the real rate and PV St stems from the fact that the real rate
forecasts future returns on the vol-sorted portfolio. We also relate PVS to objective and sub-
jective measures of expected risk for aggregate macroeconomic variables and the aggregate
stock market, showing that PVS is related to expected risk, and that this connection is most
evident for subjective measures of risk that reflect both public and private firms. Moreover,
we offer complementary VAR and local projection evidence that shocks to risk perceptions, as
measured by PV St , lead to a boom in the real economy. We also document that periods of high
risk perceptions coincide with investor outflows from high-volatility mutual funds. Finally, we
provide proofs for the propositions contained in the model section of the main text.
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A1 Data Construction
In this section we provide details on how we construct our main variables. We then provide details
on the variables used in each table of the main text.

Construction of PV St

Valuation Ratios

Our valuation ratios (book-to-market) derive from the CRSP-COMPUSTAT merged databases. We
augment CRSP-COMPUSTAT with the book value data used in Davis, Fama, and French (2000).
We provide additional details of our variable construction below, but at a high level our procedure
is as follows: for a given firm f on date t, we look for a valid value of book equity in COMPUSTAT
Quarterly, then COMPUSTAT Annual, and finally the book values contained in Davis, Fama, and
French (2000). We assume balance sheet information is known with a one-quarter lag. Finally,
we combine the aforementioned book value with the trailing 6-month average of equity market
capitalization to form a book-to-market ratio for firm f . We have confirmed that our results are not
sensitive to these variable definition choices.

COMPUSTAT Quarterly: From COMPUSTAT Quarterly (COMPQ). Specifically, we obtain in-
formation on all firms (INDFMT = INDL) with a standardized data format (DATAFMT = STD)
that report financial information at a consolidated level (CONSOL = C). In order to avoid the well-
known survival bias in COMPUSTAT, we only include firms once they have at least 2 years of
data.

We define book common equity (BE) according to the standard Fama and French (1993) defi-
nition. Specifically, BE is the COMPUSTAT book value of shareholder equity, plus balance-sheet
deferred taxes and investment tax credit, minus the book value of preferred stock. We use the par
value of preferred stock in COMPQ to estimate the value of preferred stock.

COMPUSTAT Annual: When using COMPUSTAT Annual (COMPA) for balance sheet infor-
mation, we obtain information on all firms (INDFMT = INDL) with a standardized data format
(DATAFMT = STD) that report financial information at a consolidated level (CONSOL = C). In
order to avoid the well-known survival bias in COMPUSTAT, we only include firms once they have
at least 2 years of data. For firms that change fiscal year within a calendar year, we take the last
reported date when extracting financial data. This leaves us with one set of observations for each
firm (gvkey) in each year.

We define book common equity (BE) according to the standard Fama and French (1993) defi-
nition. Specifically, BE is the COMPUSTAT book value of shareholder equity, plus balance-sheet
deferred taxes and investment tax credit, minus the book value of preferred stock. Following Fama
and French (1993), we use the redemption, liquidation, or par value (in that order) to estimate the
value of preferred stock.

Defining Valuation Ratios: We then build book-to-market ratios at end of each quarter t as follows:

• The book equity comes from COMPQ, and we assume this data is known with a 3-month
lag. This means we add three months to the DATADATE field in COMPQ to define the
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“KNOWNDATE”. Then at the end of each quarter, we take the book equity on the last avail-
able KNOWNDATE. For instance, this means that in June of a given year, we are using the
book value of equity from COMPQ as of March in that same year. We prefer this definition
because it uses up-to-date balance sheet information, while still allowing for reasonable lags
to ensure the information was actually known by market participants at each date.

• If COMPQ does not have a valid book value, we obtain book equity from COMPA, again
assuming a one-quarter information lag for balance sheet information. If COMPA also does
not have a valid book value for a firm, we check the book equity values from Davis, Fama,
and French (2000), which we downloaded from Ken French’s website. For the book equity
in Davis, Fama, and French (2000), we use their assumption that book values are known as
of June 30 of the “Last_Moody_Year” variable.

• For the purposes of computing book-to-market ratios, we use the trailing 6-month average
of market capitalization using CRSP Monthly. For instance, in June of a given year we
take the average end-of-month market capitalization from January through June of that year.
We prefer this definition because it smoothes out any high-frequency movements in equity
valuations.

Book-to-market ratios for a given firm then follow naturally. We have also used the Fama and
French (1993) definition of book-to-market ratios and obtain very similar results. Fama and French
(1993) assume a more conservative lag in terms of when balance sheet is known and also use lagged
market capitalization (e.g. in June of a year, use the previous December’s market capitalization).

Volatility Used for Portfolio Sorts

At the end of each quarter, we compute each firm’s stock return volatility as the standard deviation
of ex-dividend returns (variable RETX) using daily data from the previous two months. We exclude
firms that do not have at least 20 observations over this time frame. This approach mirrors the
construction of variance-sorted portfolios on Ken French’s website.1

Computing PVS

At the end of each quarter t, we sort all stocks in the NYSE, AMEX, and NASDAQ into quintiles
based on their total volatility. To be included in the portfolio sorts, stocks must have valid return
data for quarter t+1, meaning they either have three monthly return observations in CRSP monthly
or they have valid delisting returns according to Shumway (1997). We enforce this restriction to
harmonize forecasting regressions that use PV S at time t to predict returns at t+1 on the volatility-
sorted portfolios. Total volatility is computed as described above. We then form equal-weighted
portfolios based on the quintiles of volatility. Our measure of risk perceptions is defined as:

PV St ≡
(

B/M
)

low vol,t
−
(

B/M
)

high vol,t

1Our long-short portfolio effective replicates the one on Ken French’s website. If we regress our portfolio on his,
the point estimate is 0.84, the constant in the regression is statistically indistinguishable from zero, and the R2 is 96%.
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In words, PV St is the average book-to-market ratio of firms in the low-volatility quintile minus the
average book-to-market ratio of firms in the high-volatility quintile. Thus, PV St is high when the
market valuations of high-volatility firms is large relative to low-volatility firms.

Finally, we define the aggregate book-to-market ratio for our universe of firms as the their total
book value divided by their total market capitalization at time t.

A1.1 Table I - Summary Statistics for Volatility-Sorted Portfolios and the
Real Rate

The one-year real interest rate is the one-year constant maturity nominal Treasury rate from the
U.S. Federal Reserve minus the one-year expectation of inflation (GDP deflator) from the Survey
of Professional Forecasters. We linearly detrend the one-year real rate for all of our analysis in the
main text, though we show that our analysis is robust to no detrending and alternative detrending
methods in Section A2 of this appendix.

A1.2 Table II - PVS and Investor Risk Perceptions
This table looks at the contemporaneous correlation between PV St and several measures of ex-
pected risk. Most of the measures are defined in the main text and in the caption in the table. Here,
we elaborate on our risk expectation measures that come from analyst forecasts and option prices.
Note that our portfolio-level risk measures take the difference between high and low volatility
firms.

IBES Based Measures Two of the measures we use derive from analyst forecasts of earnings-
per-share (EPS) that come from Thompson Reuters IBES data. More specifically, we use the unad-
justed summary file from WRDS. Data in IBES is organized by firm i, estimation date d, earnings
announcement date u, and earnings type t. The two earnings types that we consider are annual and
quarterly. We require at least two analyst forecasts for each (i,d,u, t). For this particular cut of
the IBES data, we start the sample in 1989. Prior to 1989, the number of high-volatility firms that
have a match in IBES fluctuates wildly, but steadily increases from 1989 onward.

For each firm i, quarter t, earnings announcement date u, we first select the last estimation date
d that occurs prior to t. We then define the quarter t dispersion of firm i’s earnings at time u > t:

σ
s
i,t(EPSu) =

Range EPS Forecastsi,d(u)
Median EPS Forecastsi,d(u)

.

This is our proxy for analyst time-t expectations of earnings volatility at time u. We exclude firms
where the median EPS forecast is zero. In addition, because σi,t(u) can be large for low median
EPS forecasts, we winsorize it at its 5% and 95% tails.

In the table, we consider two different forecast horizons u. First, for quarterly earnings, we
select u for each firm such that the earnings announcement corresponds to the next fiscal quarter
(fpi = 6). We denote this case by σ s

i,t(EPSu=t+1). For annual earnings, we choose u such that the
earnings announcement corresponds to two fiscal periods from t (fpi = 2). For our annual IBES
measure, the average difference between u and t is five quarters, but it can vary depending on fiscal
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reporting periods and the availability of analyst forecasts. We denote this firm-level measure by
σ s

i,t(EPSu=t+5).
Finally, σt(EPSt+1) is the median σ s

i,t(EPSt+1) for high-volatility firms minus the median for
low-volatility firms. σt(EPSt+5) is assembled the same way from σ s

i,t(EPSt+5) at the firm level.
In all cases, our classification of whether a firm is high or low-volatility at time t matches the
portfolios used to compute PV St .

Option-Based Measure Our options data derives from the Standardized Volatility Surface
from OptionsMetrics on WRDS. For each firm, date, and horizon, the volatility surface contains
at-the-money (ATM) put and call options. We define the expected return volatility on date d
for horizon h as the average of the put and call implied volatilities. We denote this quantity by
σ IV

i,d (Rett,t+h). For this particularly analysis, we use h = 4 quarters. Option-based measures of ex-
pected volatility typically use the entire spectrum of option strike prices (i.e. the VIX). Due to the
relative scarcity of out-of-the-money options, especially for the high-volatility firms in our sample,
we instead use ATM implied volatilities.

For each firm i and quarter t, we find the last available σ IV
i,d (Rett,t+4) from the OptionMetrics

database, requiring that the implied volatility was computed no more than 21 days prior to t. To
aggregate to the portfolio level, we take median σ IV

i,t (Rett,t+4) for high-volatility firms minus the
median of low-volatility firms. The resulting variable is what we define in the table as σt(Rett,t+4).
This measure begins in 1996Q3 because, prior to this date, we do not have any matches in Option-
sMetrics for our high-volatility firms.

Statistical Forecasting Model for “Objective Measure” The variable “Objective σt(Rett,t+1)”
comes from a simple statistical forecasting model. Define the average realized volatility of high-
volatility stocks in the portfolio at time t as rvH,t , where each firm’s volatility is computed as the
daily standard deviation of returns in quarter t. rvL,t is the same object for low-volatility firms and
rvt ≡ rvH,t − rvL,t . We fit an AR(1) process to rvt using the full sample of returns. The estimated
AR(1) coefficient for this series is 0.92, so rvt is relatively persistent. The AR(1) model also fits
the data well in terms of forecasting, as a simple regression of rvt+1 on rvt yields an R2 of 85%.
Finally, the variable Model-Based σt(Rett,t+1) is defined as the Et [rvt+1] that emerges from the
AR(1) model.

A1.3 Table III - The Real Rate and PVS
The caption contains complete details on the variables used in the table.

A1.4 Table IV - Robustness
Panel A

Panel A of Table IV in the main text compares PV St to other measures of financial market con-
ditions. Most of the variables are described in the caption of the table. Here, we focus on our
measure of the time-t expectation of excess aggregate stock market returns from t to t +4, denoted
Et [Mkt-Rft,t+4]. We obtain a statistically optimal measure of expected excess returns following
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the methodology developed in Kelly and Pruitt (2013). Specifically, we use the three-pass regres-
sion filter (3PRF) in Kelly and Pruitt (2013). In particular, we use the entire sample to estimate the
3PRF and assume two latent factors. In our experimentation with the procedure, using two factors
balances the desire to have a good in-sample predictor of market returns against overfitting.2

The variables that we use as the predictors in the Kelly and Pruitt (2013) procedure are five BM
ratios from sorting on each of the following variables: size, BM ratios, cash-flow duration (Weber
(2016)), leverage, cash-flow beta with respect to aggregate cash flows, leverage, beta with respect
to the aggregate market (using a 5-year window and a 10-year window), and total volatility. We
construct BM ratios based on these sorts in the same way we do for PV St . In addition, we include
the aggregate BM ratio, aggregate dividend yield, and CAY from Lettau and Ludvigson (2004).
This gives us a total of 43 predictors that we feed into the 3PRF to forecast annual excess market
returns. The R-squared in the forecasting regression is 14.2%. As a point of comparison, we are
able to nearly double the forecasting power (in-sample) of CAY alone, which gives a forecasting
R-squared of 7.5%. The sample size for this analysis is 180, and is lower than our main sample
(N = 185) because the duration sorted portfolios that we include as predictor variables have a
shorter sample.

Panel B

See the main text and the table caption.

A1.5 Table V - PVS, the Real Rate, and Future Returns
The table uses PV St and the one-year real rate to forecast returns and earnings surprises. Columns
(1) and (2) forecast stock returns on the low-minus-high volatility portfolio. Columns (3) and
(4) forecast this portfolio’s accounting return on equity (ROE), which is defined according to the
clean-surplus accounting formula from Cohen et al. (2003). For each firm i and date t, we compute
future annual ROE based on the next four quarters of financial statements after date t. Financial
statement information is from the COMPUSTAT quarterly file. Because firms have different re-
porting periods, the calendar time over which we compute annual ROE differs across firms. Once
we compute the future annual ROE for each firm i in quarter t, we aggregate to the portfolio level
by taking the equal-weighted averages within each volatility quintile. Columns (5) and (6) uses
PV St and the real rate to forecast excess returns on the CRSP Value-Weighted Index, which we
obtained from Ken French’s website.

A1.6 Table VI - PVS and Real Outcomes
See the main text and the table captions.

A1.7 Table VII - PVS and Good News
We compute the trailing annual ROE (LMH-Vol ROEt−4→t) of the low-minus-high volatility port-
folio in the same manner as described in Section A1.5. The variable Bank Net Chargeoffst is

2We have tried a truly out-of-sample version of the 3PRF and obtain similar conclusions regarding the correlation
with the real rate.
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computed using data from bank call reports. Because banks have a one-year window over which
they can report loan charge-offs, we define Bank Net Chargeoffst as the average of the reported
charge-off rate at time t, t +1, t +2, and t +3, though our results are qualitatively the same if we
just use the reported charge-off rate at time t. All of the other variables in the table are defined in
the caption.

A1.8 Table VIII - PVS and Revisions in Expectations of Risk
Our analysis of revisions in expected risk builds off the variable construction described in Section
A1.2. In row (1), the variable σt+2(EPSt+3)−σt(EPSt+3) proxies for the revision in expected
earnings volatility for earnings at time t+3. Let’s start with how we construct σt(EPSt+3). At time
t and for each firm i, we find the set of IBES forecasts corresponding to earnings that are three fiscal
quarters away (fpi = 9). Again, in calendar time, this ends up corresponding to quarterly earnings
realized at t + 3 for most firms. For this forecast horizon, we then build our dispersion measure,
denoted by σ s

i,t(EPSu=t+3), as in Section A1.2. We also apply the same filters and methodology
as described in that section. For each firm, we then hold fixed the date on which earnings will be
realized and recompute our dispersion measure at time t + 2. This delivers us σ s

i,t+2(EPSt+3)−
σ s

i,t(EPSt+3), which is the news between time t and t+2 about expected earnings volatility at t+3.
Again, our working assumption here is that our dispersion measure is a good proxy for expected
earnings volatility. To aggregate this the portfolio level, we take the median σ s

i,t+2(EPSt+3)−
σ s

i,t(EPSt+3) for high-volatility firms in the portfolio at time t minus the median for low-volatility
firms. The resulting variable is defined as σt+2(EPSt+3)−σt(EPSt+3).

The measure σ IV
t+3(Rett+4)− σ IV

t (Rett+4) comes from options data. At time t and for each
firm i, we define σ IV

i,t (Rett+4) as the implied volatility of stock returns in quarter t + 4. We use
the term structure of option-implied volatilities to compute this measure. Specifically, we take the
implied variance of 365-day options at time t and subtract off the implied variance of 273-day
options at time t, which we then convert to an implied volatility measure.3 This is a valid approach
to estimating the option-implied expected volatility between in quarter t + 4 so long as there is
negligible return autocorrelation at the quarterly frequency. For each firm, σ IV

i,t+3(Rett+4) is the
90-day implied volatility at time t+3. This allows us to construct σ IV

i,t+3(Rett+4)−σ IV
i,t (Rett+4) for

each firm, which we then aggregate to the portfolio level by taking the median across high-volatility
firms minus the median for low-volatility firms.

Finally, the realized risk measure ∆4σt+4(HML-Vol) is constructed as follows. For each firm
in the high-volatility quintile at time t, we take its realized quarterly stock return volatility at time
t +4 and subtract its realized quarterly stock return volatility at time t based on daily stock returns
within each quarter. We then average this difference across high-volatility firms and then repeat the
entire process for low-volatility firms. ∆4σt+4(HML-Vol) is the resulting spread between the two
groups and it measures the average change in volatility for high-volatility firms minus the average
change for low-volatility firms.

3Implied volatilities from OptionMetrics standardized volatility surfaces are annualized, so we first translate them
to annualized implied variances. We take the 365-day implied variance minus 0.75 times the 273-day variance. This
provides an unannualized estimate of return variance between t +3 and t +4, which we then annualize by multiplying
by 4 and then take the square root to arrive at an implied volatility measure.

6



A1.9 Table IX - PVS and Implied Volatility Forecast Errors
See the main text and the table caption. For the time-t implied volatility of returns between t + 3
and t+4, we use the same firm-level measure σ IV

i,t (Rett+4) defined in Section A1.8 of this appendix.

A2 Robustness: PVS and the Real Rate
The purpose of this section is to conduct several robustness tests to ensure that our statistical
inference regarding the relationship between the real rate and PV S is not driven by specific choices
in defining our main variables. We begin by discussing alternative methods of filtering the real
rate (e.g. using a deterministic versus stochastic trend). We then show that our results are largely
unchanged with these alternative filters or if we simply study the raw real rate. We then explore
several ways of adjusting the standard errors in our regressions of the real rate on PV S that account
for the fact that these variables are persistent. The main takeaway of the section is that there is a
robust relationship - both in economic and statistical terms - between the real rate and PV St . We
then explore different variations of our definition of PV St in the data and show that the relationship
with the real rate is robust. Finally, we explore alternative stock characteristics and show that
sorting by volatility is crucial for obtaining a robust relationship between valuation ratios and the
real rate. For the remainder of this appendix, we use Rt to denote the raw, i.e. non-detrended, real
rate.

A2.1 Filtering the Raw Real Rate
The top panel of Figure A.1 plots the raw real rate Rt from 1970Q2 to 2016Q2. The downward
trend in Rt has received recent attention from many macroeconomists who argue that it reflects a
form of economic secular stagnation (e.g. Summers (2015)). In this paper, we do not focus on the
longer-run trend in Rt , but rather the large cyclical variation around this trend. Our goal is to better
understand the determinants of cyclical (i.e., quarterly) movements in the real rate.

To achieve this goal, we need to empirically extract the cyclical component of the real rate. In
the main text, we use a simple linear deterministic trend to do so:

Rt = β0 +β1t + rt (1)

Here, the detrended real rate rt is just the sequence of residuals from the regression. We chose this
approach because it is simple and transparent. Still, it is fair to wonder whether a deterministic
(downward) linear trend is a plausible model of the economy’s real interest rate. No economic
theory would predict the real rate to tend towards negative infinity over the next fifty years. A
natural alternative that we explore now is to allow for a stochastic drift in the real interest rate. In
short, real rates look extremely similar whether we remove a linear or stochastic trend, consistent
with the finding that it is extremely difficult to distinguish between deterministic and stochastic
trends in finite samples (Campbell and Perron (1991)).4

4We think of the stochastic or non-stochastic drift as a simple way of controlling for long-run output growth. For
example, Holston et al. (2016) embed this type of thinking in their statistical model of the natural rate of interest. They
model the natural rate of interest as the sum of two random walks, one of which also drives the stochastic drift of
potential output growth.
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Specifically, we follow Hamilton (2017) to extract the cyclical component of Rt in the presence
of a potentially stochastic drift. For quarterly data, Hamilton (2017) recommends the following
regression to achieve the filter:

Rt = k0 + k1×Rt−8 + k2×Rt−9 + k3×Rt−10 + k4×Rt−11 + r̃t (2)

where the cyclical component of Rt is captured by the regression residuals, denoted here by r̃t .
Importantly, this filtering methodology is relatively agnostic about the underlying trend driving
the series.5 This is particularly useful in our context because, again, we are not interested in
understanding longer-run trends in Rt . Hamilton (2017) also provides an extensive argument for
why regression (2) is superior to the more standard Hodrick-Prescott filter.

The bottom panel of Figure A.1 plots the linearly detrended real rate (rt) and what we call the
Hamilton-filtered real rate (r̃t). A visual inspection shows that rt and r̃t are quite similar. That is,
linearly detrending and using the Hamilton-filter appear to give similar estimates for the cyclical
component of the real rate. A regression of one on the other, run in both levels and first-differences,
confirms this intuition:

r̃t = 0.002 + 0.71 × rt , R2 = 0.56
(0.01) (8.57)

∆r̃t = −0.01 + 0.99 × ∆rt , R2 = 0.85
(−0.29) (40.45)

where Newey-West t-statistics with five lags are listed below point estimates. Both specifications
indicate that the linearly detrended real rate is fairly close to the Hamilton-filtered rate. The con-
stant in both regressions is near zero, the point estimate on rt is near one, and the R-squareds are
pretty large. As a result, we focus on the simpler, linearly detrended real rate in the main text and
repeat our core analysis on the Hamilton-filtered rate now. To be certain that detrending (in any
fashion) is not driving our conclusions, we also show our results using the raw real rate Rt below.

A2.2 Results Using r̃t and the Raw Real Rate
A2.2.1 The Real Rate and PVS

Table A.1 shows regressions of the form:

Yt = a+b×PV St +θ
′
Xt +ξt

where Xt is a vector of control variables and Yt is either the Hamilton-filtered rate r̃t or the raw rate
Rt . In all cases, we standardize PV St to have a mean of zero and variance one. We do the same to
the aggregate book-to-market ratio when it is included as a control variable.

Results with r̃t Columns (1)-(6) run the regression for the Hamilton-filtered real rate, r̃t . The
control variables that we use are the aggregate book-to-market ratio, the output gap, and the infla-
tion rate. For consistency, we extract the cyclical components of these variables using Hamilton

5In fact, Hamilton (2017) argues that it is still a useful method for extracting the cyclical component of a series that
has a deterministic time trend.
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(2017) before including them in the regression. Echoing our results in the main text, the relation-
ship between PV S and r̃t is robust across level and first-difference specifications, and is not altered
much by the addition of our control variables. Column (2) adds the aggregate book-to-market ratio
as a control to the regression, which has very little effect on both the point estimate on PV S, as well
as the R2 in the regression. Indeed, a univariate regression of r̃t on the aggregate book-to-market
yields an R2 of less than 1%. In terms of economic significance, a one-standard deviation move in
PV St impacts r̃t nearly three times as much as a one-standard deviation in the aggregate book-to-
market. Column (3) of Table A.1 adds the output gap and inflation to the level regression of r̃t on
PV S. Again, we include these variables to check whether PV S is just picking up on Taylor (1993)
rule variables. The Hamilton-filtered rate does load positively and significantly on the output gap,
which is what we would expect if the central bank follows some version of a Taylor (1993) rule.
The important thing though is that the inclusion of these variables does not impact the point esti-
mate or statistical significance of PV S in the regression. The results using the Hamilton-filtered
rate also compared favorably to those using the simple linear detrending in the main text.

Results with Rt Columns (7)-(9) repeat the analysis for the raw real rate Rt . Importantly, in
this case, we do also not do any filtering to the control variables – these regressions only use raw
variables. Column (7) runs a univariate regression of the raw real rate on PV S. The regression
coefficient of 1.41 is economically comparable to the point estimate of we get when using the
detrended real rate (see Table III in the main text). The R-squared is also comparable to our
main results at 0.37. Columns (8) and (9) add the aggregate book-to-market and the output gap
and inflation as control variables. While the aggregate book-to-market enters significantly, the
R-squared in columns (7) and (8) is almost the same, indicating that the explanatory power of
PV St for the real rate is much stronger than that of the aggregate book-to-market. A univariate
regression of the raw real rate on the raw aggregate book-to-market ratio delivers an R2 of less than
10%, much less than when using PV St . More importantly, none of our conclusions regarding the
relationship between the real rate and PV S are impacted.

A2.2.2 The Real Rate and the Aggregate Stock Market

In the previous section, there were some specifications where the point estimate on the aggregate
book-to-market ratio was estimated with some measure of statistical precision. Overall though,
there is very little evidence suggesting that the valuation of the aggregate stock market contains
meaningful information about the dynamics of the real interest rate. For one, the aggregate book-
to-market ratio explains a very small amount of variation in the real rate. This is true regardless
of how or whether we detrend these variables. Moreover, the relationship is nonexistent when we
difference the data and when we linearly detrend the real rate and the aggregate BM ratio, as we do
in the main text. In addition, there is ample empirical evidence that variation in the aggregate value
of the stock market is largely disconnected from real rate variation (e.g. Campbell and Ammer
(1993)). In sum, we do not view the evidence in Section A2.2.1 to reveal a robust link between
the real rate and the aggregate BM ratio. In unreported results, we draw similar conclusions if we
instead use Shiller’s CAPE ratio or CAY from Lettau and Ludvigson (2004).

Even if there is a weak relationship between the real rate and the aggregate value of the stock
market in our sample, it is likely unrelated to risk premia. Standard Gordon growth model logic
suggests that the aggregate dividend-yield is driven by the risk-free rate r f , the market risk pre-
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mium E
[
rm− r f

]
, and the growth rate of aggregate dividends g:6

D/P = r f +E
[
rm− r f

]
−g

The simple formula immediately illustrates the mechanical relationship between the risk-free rate
and the dividend-yield. Of course, D/P and r f may also correlate if the risk-free rate is also
related to the market risk premium or aggregate dividend growth. However, Table V in the main
text and Panel A of Table A.2 demonstrate that the real rate contains no forecasting power for
excess market returns. Moreover, in Table A.1, in the cases where the aggregate book-to-market
enters significantly for the real rate, the point estimate is positive. This is the opposite of what we
would expect if risk perceptions drive both the aggregate market and the real risk-free rate. On the
contrary, the positive point estimates are consistent with a simple Gordon growth formula above.

Furthermore, Panel A of Table A.2 also demonstrates that both the Hamilton-filtered and raw
real rate still forecast returns on the low-minus-high volatility portfolio. In Panel B of Table A.2,
we show that the real rate – both the Hamilton-filtered and raw series – has no forecasting power for
aggregate real earnings growth or aggregate real dividend growth. In conclusion, the link between
the aggregate BM ratio and the real rate appears unrelated to risk perceptions, and statistically
unreliable.

A2.3 Time-Series Inference
The AR(1) coefficients of the Hamilton-filtered rate r̃t , the linearly detrended rate rt , and PV St are
0.81, 0.85, and 0.88, respectively. While the persistence of PV St may appear high, it is useful to
keep in mind that it is much less persistent than the aggregate valuation ratios, where persistent
regressor biases have found the most attention in asset pricing (Stambaugh (1999)). While PV St
has a quarterly AR(1) coefficient of 0.88, corresponding to a half-life of about 1.5 years, the
aggregate book-to-market has an AR(1) coefficient of 0.98, corresponding to a much longer half-
life of around 10 years. This simple comparison already suggests that inference problems from
persistent regressors are likely to be much less severe in our setting than for aggregate valuation
ratios.

Nonetheless, we use a battery of approaches to formally establish that the relationship between
the real rate and PV St is not driven by serially correlated regressors. First, we run all our main
results in differences, as shown throughout the main text and the appendix. In this section, we
explore several ways of adjusting standard errors, GLS, and a bootstrap simulation exercise.

Note: For this particular analysis, we leave PV St in its natural units, though for most of the
analysis in the main text and in the rest of the appendix we standardize it to have mean zero and
variance one.

6A similar argument holds for the aggregate book-to-market ratio, but the dividend-price ratio is easier for the
purposes of this illustration. As an empirical matter, the two are 98% (60%) correlated in levels (first-differences) for
our sample.
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A2.3.1 Standard Error Corrections

Our baseline univariate regression of the linearly detrended real rate (rt) on PV S (standardized to
have mean zero and variance one) yields the following estimates:

rt = 0.62 + 3.41 × PV St
(4.97) (11.26)
[2.63] [5.31]

where the parenthesis below the point estimates contain OLS t-statistics and the square brackets
contain Newey-West t-statistics with five lags. The first thing to note from this simple regression is
that Newey-West correction still indicates the point estimate on PV S is statistically significant. The
second thing to note is that the nonparametric Newey-West correction shrinks the OLS t-statistic
by a factor of nearly two. This owes in part to the fact that the regression residuals have a first-order
autocorrelation of 0.76. We address this persistence directly by using a standard parametric cor-
rection based on on the estimated residual autocorrelation. Specifically, we multiply the standard
errors in the regression by a factor of C = (1+ρ)/(1−ρ), where ρ is the autocorrelation of the
regression residuals. ρ = 0.76 means that C ≈ 7.3, thereby implying that the OLS t-statistics need
to be divided by a factor of

√
C = 2.71. The parametric correction therefore shrinks the t-statistic

on PV S from 11.41 to 4.21, so the point estimate is still statistically significant.
For completeness, we repeat the analysis using the Hamilton-filtered real rate r̃t . In this case, a

univariate regression of r̃t on PV St gives:

r̃t = 0.59 + 3.26 × PV St
(5.09) (11.48)
[2.72] [6.52]

The first-order autocorrelation of the residuals for this specification is 0.69, implying that the OLS
t-statistic of 11.48 should be adjusted to 4.92.

The broader takeaway here is that no matter how we adjust our standard errors, we are still able
to comfortably reject the null that the point estimate on PV S is equal to zero.

A2.3.2 Generalized Least Squares (GLS)

For statistically efficiency and to account for the role of outliers, we also estimate the relation-
ship between the linearly detrended real rate and PV S using generalized least squares. This is
just a Prais-Winsten regression, which amounts to quasi-differencing the data before running the
regression. GLS gives the following estimates:

rt = 0.44 + 2.46 × PV St
(1.31) (6.16)

where the GLS t-statistics are listed below point estimates. We also estimate the same system using
the Hamilton-filtered real rate r̃t :

r̃t = 0.49 + 2.57 × PV St
(1.90) (6.34)
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Regardless of the detrending method, the relationship between the real rate and PV S remains eco-
nomically and statistically significant when using GLS.

Moreover, if we run the regression using data up until the financial crisis (pre-2009), we get
fairly similar point estimates on PV S across simple OLS and GLS estimation methods. For ex-
ample, when using the Hamilton-filtered real rate, OLS gives a point estimate on PV S of 3.41 and
GLS gives a point estimate of 3.25.

A2.3.3 Simulation Evidence

Finally, one might be concerned that our results are biased in a Granger-Newbold sense. We use
simulations to show that the standard error and R2 from our baseline regression are not just a result
of regressor persistence. Specifically, we fit independent AR(1)-GARCH(1,1) models to rt and
PV S and simulate these processes mimicking the persistence properties of rt and PV St and with
identical sample length as in the data. In the simulated data, where by construction rt and PV St are
unrelated, we regress rt on PV St , retaining the Newey-West corrected t-statistic (five lags) for PV S
and the R2 in the simulated regression. Figure A.2 presents histograms of the simulated t-statistics
and R2 from this exercise for 10,000 independent simulations. The plot also shows the actual t-
statistic on PV S and the R2 that we estimate in the data. The p-values listed in the plot are just
the proportion of simulations where the t-statistic (or R2) exceed the actual t-statistic we estimate
in the data. For both the t-statistic and R2, less than 0.5% of simulations can match the regression
of the real rate on PV S that we estimate using actual data. Combined with the other analysis in
the paper, this tells us that under the null of no relation between PV St and rt it would be highly
unlikely to observe the t-statistics and R2s that we see in the data. This simulation once again adds
to our evidence that the relation between PV St and rt is a real feature of the data and not just an
erroneous statistical artifact.

A2.4 Subsample Stability
Our main sample runs from 1970Q2 through 2016Q2. In this subsection, we study the sub-sample
stability of the relationship between the real rate and PV St . We start by showing that our results are
not dependent on the period from 1977 to 1987, a time when the U.S. suffered unusually high in-
flation and the Federal Reserve – led by Paul Volcker – tightened monetary policy to regain control
over inflation. In addition, we expand our sample back to 1953Q2 and show the relationship be-
tween PV St and the real rate is equally strong in this longer sample. The beginning of this extended
sample coincides with the beginning of the series for the constant maturity nominal one-year rate
that is available from the St. Louis FRED database. The Survey of Professional Forecasters in-
flation forecasts are not available prior to 1970Q2, so to construct a one-year real rate series from
1953Q2 to 1970Q2, we use the four-quarter moving average of realized inflation as our measure
of expected one-year inflation. This approach for forming expected inflation forecasts is motivated
by the findings of Atkeson and Ohanian (2001).7 To extend PV St back to 1953Q2, we use the ac-
counting data from Davis et al. (2000). Specifically, we look for book values from COMPUSTAT

7There is a large body of research that studies optimal inflation forecasts, with varying conclusions depending
on the subsample of interest. The four-quarter random walk benchmark studied in Atkeson and Ohanian (2001) is
surprisingly successful and we use it here due to its simplicity.
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quarterly, then COMPUSTAT annual, then Davis et al. (2000), in that order and depending on data
availability.

In all cases, we run regressions of the following form, in both levels and first differences:

Real Ratet = a+b×PV St + εt

Table A.3 collects the results of our subsample analysis. For reference, column (1) of the table
presents the level-regression results using the baseline sample in the main text. In column (2), we
find similar results when we exclude the period from 1977 to 1987, providing some comfort that
our results are not dependent on the so-called “Volcker period”. Column (3) runs the regression
over 1953Q2-2016Q2. For this sample, we use the raw real rate because it appears stationary
during this time period.8 Here, we once again see that the correlation between the real rate and
PV St is present in the longer sample. In column (4), we focus on the portion of the longer sample
that precedes the Volcker period, again confirming a strong link between the real rate and PV St .
Columns (5)-(8) indicate that we obtain similar conclusions when running these regressions in
first-differences. Overall, the main takeaway from Table A.3 is that the relationship between PV St
and the real rate is robust across subsamples.

A2.5 Decomposing the Real Rate: Inflation Expectations and the Taylor
Rule

Our construction of the one-year real interest rate is simply the nominal one-year Treasury rate
minus expected one-year inflation from the Survey of Professional Forecasters. Thus, PV St can
correlate with our real rate variable because it correlates with one of these components. To explore
this potential further, we decompose the real rate into its constituent parts and regress both on PV St .
Table A.4 contains the results, and in all regressions, PV St is standardized to have zero mean and
unit variance. For sake of comparison, we present the results of regressing the detrended real rate
and the raw real rate on PV St in rows (1)-(2) of the table, respectively. In rows (3) and (4), we
decompose the raw real rate into the one-year nominal Treasury bill rate and inflation expectations,
so that the difference between the coefficients in row (3) and row (4) equals the coefficient in row
(2). This decomposition shows that the correlation between PV St and the real rate primarily comes
from the nominal rate, not inflation expectations.

In rows (5)-(8), we try to separate movements in the real rate that can be attributed to the Taylor
(1993) rule, which sets the real short-term interest rate as a function of inflation and the output gap.
Specifically, we decompose the real rate into a Taylor (1993) rule component and a residual. We
explore two versions of this decomposition. First, in rows (5) and (6), we use the original monetary
policy coefficients on the output gap and inflation from Taylor (1993). Specifically, we compute

Taylor1993t = 0.5× (Out putGapt)+0.5× (In f lationt−2)+2

where Taylor1993t is the real rate that obtains if the central bank follows the Taylor rule exactly.
We define the residual as the raw real rate minus Taylor1993t . Rows (5) and (6) show that in this
construction the explanatory power of PV St for the real rate comes from its explanatory power for

8For this sample, the augmented Dickey-Fuller test rejects the null of a random walk with no drift at conventional
significance levels.
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Taylor (1993) rule residuals. In rows (7) and (8), we do a second version of the decomposition,
where we estimate the coefficients on the output gap and inflation. Specifically, we run a regres-
sion of the raw real rate on the output gap and inflation and call the fitted value the Taylor rule
component. Rows (7) and (8) show that in this construction, the explanatory power of PV St for
the real rate again comes from its explanatory power for the residuals. These results indicate that
PV St does not simply capture the reaction of monetary policy along a standard Taylor (1993) rule.

A2.6 The Real Rate and Alternative Constructions of PVS
In this subsection, we investigate alternative ways of constructing PV St and whether these alterna-
tives are also correlated with the real rate. For our baseline measure, we prefer to use a 2-month
window to measure volatility because it mirrors the construction of volatility-sorted portfolios on
Ken French’s website, making the returns from the portfolios that comprise PV St directly compa-
rable to his. When computing book-to-market ratios, our approach to averaging market capitaliza-
tions is motivated by our assumption that book values are known with at least a one-quarter lag.
Thus, smoothing market capitalizations over 6-month windows is designed to roughly match the
timing of our accounting data.

Here, we consider the following alternative approaches to constructing PV St :

1. Measure volatility over a trailing 2-month window and use the last available market capital-
ization to compute book-to-market ratios (PV SLast)

2. Measure volatility over a trailing 2-month window and use the median market capitalization
over the same window to compute book-to-market ratios (PV S2M)

3. Use the same measurement windows as in the baseline version of PV St„ but define PV St , as
the market-to-book of high-volatility firms minus the market-to-book of low-volatility firms
(PV SMB)

4. Use the same measurement windows as in the baseline version of PV St , but sort stocks into
terciles based on volatilities instead of quintiles. PV STerc is the average book-to-market ratio
of firms in the low tercile minus the average book-to-market of the high-volatility tercile.

5. Measure volatility over a 2-year trailing window and use the same approach to book-to-
market ratios as in the baseline PV St

Table A.5 shows the correlation of these various PV S measures with each other and with the
one-year real rate (linearly detrended). The table shows the correlations in both levels and first-
differences. The first takeaway is that our baseline construction of PV S is highly correlated with
all of these alternatives, both in levels and first-differences. Moreover, the correlation between the
real rate and PV St is largely the same across the different construction approaches. We therefore
conclude that the informational content of PV St is robust to different construction methods.
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A2.7 The Real Rate and Other Valuation Spreads
A2.7.1 Univariate Analysis

We now explore alternative explanations for the empirical relationship between the real rate and
PV St . Specifically, we examine the possibility that volatility is simply correlated with another
characteristic that is more important for explaining the real rate. We sort stocks along a variety
of dimensions and form book-to-market spreads based on the sorting variable. For instance, when
examining size as a characteristic, we sort stocks in quintiles based on their market capitalization,
then compute the difference between the book-to-market ratio of the smallest (i.e., the lowest quin-
tile of market capitalization) and the largest stocks. Recall that PV St is the book-to-market spread
that emerges when the characteristic Y is trailing 60-day volatility. We then run the following
regression relating the real rate to the spread in book-to-market based on each sort:

Real Ratet = a+b×Yt + εt (3)

where Yt is the book-to-market spread based on sorting on characteristic Y . In all cases, we stan-
dardize Yt to have a mean of zero and a variance of one. For reference, column (1) of Table III
of the main text runs regression (3) with PV St as the explanatory variable. There, we find that a
one standard deviation increase in PV St is associated with a 1.26 percentage point increase in the
one-year real rate and PV St alone explains 41% of real rate variation over our main sample.

The results are displayed in Table A.6. In row (1), we relate the real rate to the spread in
book-to-market sorting stocks based on the expected duration of their cash flows. If high volatility
stocks simply have higher duration cash flows than low duration cash flows, then their valuations
should fall more when real rates rise. This is one sense in which low volatility stocks may be more
“bond-like” than high volatility stocks (e.g., Baker and Wurgler (2012)). In this case, a mechanical
duration effect could explain the relationship between the real rate and PV S. To examine this
possibility, we follow Weber (2016) and construct the expected duration of cash flows for each firm
in our data. We then sort stocks based on this duration measure and calculate the spread in book-
to-market between high and low duration stocks. As row (1) shows, the relationship between this
duration spread and the real rate is negative. However, it is not consistently statistically significant
across specifications and is in general much smaller in magnitude than PV S.

Row (2) displays the same exercise when looking at the relative valuations of low-leverage
versus high-leverage stocks. We define leverage as the book value of long-term debt divided by
the market value of equity. It seems natural to think that high-leverage firms have high volatility,
and since these firms effectively are short bonds, their equity may suffer disproportionately from a
decrease in the real rate. The positive coefficient in row (2) indicates that this intuition bears out in
the data. When the real rate falls, the book-to-market spread between low-and-high leverage firms
also falls. In other words, high-leverage firms become cheaper when the real rate falls.

In rows (3)-(5), we sort stocks based on three types of market (CAPM) betas:

1. The first CAPM beta we compute is a two-year rolling beta. In a given quarter, we use the
previous twenty-four months worth of monthly return data to compute a CAPM beta. In
order to have a valid two-year beta, a firm must have at least 80% of its observations over
the previous two years.

2. The second CAPM beta we compute is a “long-run” beta. We first aggregate monthly returns
into six-month returns. Then at the end of each quarter we use the previous ten years worth of
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data to compute betas from our six-month return series (e.g. 20 observations per regression).
Once again, firms must have 80% of their observations in order to have a valid long-run beta.

3. The third CAPM beta we compute uses a two-month window. For each firm, we use daily
stock data from the previous two months to compute a high-frequency measure of CAPM
beta. We exclude firms that do not have at least 20 observations over this time frame.

In all cases, our benchmark index is the CRSP Value-Weighted Index. For the first two measures
of CAPM Beta, all of our individual firm data derives from the CRSP Monthly dataset. We deal
with delisted returns as in Shumway (1997) by setting missing delisted returns with codes 400-591
to a value of -30%.

Row (3) indicates that the book-to-market spread based on a two-year CAPM beta is correlated
with the real rate. Row (4) sort stocks based on CAPM betas that we compute using long-horizon
returns. The motivation for studying longer-run CAPM betas is that long-horizon returns are more
plausibly driven by cash flow news rather than discount rate news. Thus, long horizon CAPM betas
can be viewed as a measure of aggregate cash flow beta. Row (4) indicates a positive relationship
between the book-to-market spread based on long-run CAPM beta in levels, but the relationship
is not particularly strong in a statistical sense when moving to first-differences. Row (5) uses our
measure of CAPM beta that is computed using daily data over rolling 60-day windows. This con-
struction mimics how we compute volatility (and hence PVS). There is again a positive relationship
between 2-month beta and the real rate, but not one that is robust across specifications.

In row (6), we sort stocks on the estimated beta of their cash flows with respect to aggregate
cash flows. Specifically, cash flow betas are computed via rolling twelve quarter regressions of
quarter-on-quarter EBITDA growth on quarter-on-quarter national income growth. EBITDA is
defined as the cumulative sum of operating income before depreciation (series oibdpq from COM-
PUSTAT quarterly). We require a minimum of 80% of observations in a window to compute a cash
flow beta. If high volatility stocks have higher cash flow betas than low volatility stocks, then their
valuations should fall more when aggregate growth expectations are low. In this case, our results
using PV S could be explained by changes in aggregate growth expectations rather than change in
the precautionary savings motive. Row (6) shows that the book-to-market based on cash flow betas
is not significantly correlated with the real rate.

Keep in mind that the preceding regressions are all univariate. The relevant question for us is
whether PV S is just picking up on the information carried in these various book-to-market spreads.
Two pieces of evidence strongly suggest that PV S carries independent information about the real
rate. For one, in Table A.7, we run bivariate horse races of PV S against each of these alternative
sorting variables. None of these alternative sorting variables drive out PV S from the regression.
This is true when running the horse races in levels, first differences, and across different subsam-
ples.

As a second piece of evidence, in row (9) of Table A.6 we run a “kitchen-sink” regression of
the following form:

Real Ratet = a+bPV S×PV S+θ
′
Xt + εt

where Xt contains all of the valuation spreads discussed above. Row (9) of the table reports the
estimated bPV S, its associated standard error, and the adjusted R2 from the regression. The simple
takeaway from the kitchen-sink regression is that none of the control variables drive out the ex-
planatory power of PV S for the real rate. The coefficient on PV S remains statistically significant
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in both the levels and first-differenced specifications, and the point estimate compares favorably to
those found in the main text. If anything, including the other control variables increases the eco-
nomic relationship between PV S and the real rate. These results suggest that the relative valuation
of high and low-volatility stocks contains unique information about the real rate.

A2.7.2 Horse Races Alternative Stock Characteristics and More Alternative Constructions
of PVS

Alternative Constructions of PV St
We first show that we obtain similar results for alternative definitions of PV St . In row (2) of

Table A.7, we recompute PV St by value-weighting the book-to-market ratio of stocks within each
volatility quintile, as opposed to equal-weighting. In row (3), we obtain similar results sorting
stocks on volatility measured over a two-year window, rather than a two-month window. Our base-
line result therefore captures changes in the valuation of stocks that historically have been volatile,
not changes in the volatility of low-valuation stocks. This distinction is important to our interpre-
tation of PV St as a measure of investors’ risk perceptions relevant to the macroeconomy.

Relationship to Other Stock Characteristics
Rows (4)-(9) of Table A.7 Panel A investigate whether stock return volatility is really the key

stock characteristic for the relationship between stock prices and the real rate. In row (4), we run
a horse race of PV St against the difference in yields between 10-year off-the-run and on-the-run
Treasuries, a measure of liquidity premia in the fixed income market (Krishnamurthy (2002), Kang
and Pflueger (2015)). The table reports the estimated coefficient on PV St . The explanatory power
of PV St for the real rate is unchanged, suggesting that PV St subsumes any information about the
real rate that is captured in the demand for liquid assets like on-the-run Treasuries.

Next, we test whether volatility simply proxies for another stock characteristic by controlling
for book-to-market spreads based on alternative characteristics. These tests help us rule out that
the PV St-real rate relationship captures the pricing of these alternative characteristics, including
leverage, growth, and the duration of cash flows. For an alternative characteristic Y , we construct
a book-to-market spread the same way we construct PV St . We report the coefficient on PV St ,
while controlling for the Y -sorted book-to-market spread and the aggregate book-to-market ratio.
We consider characteristics Y that capture alternative economic mechanisms through which the
real rate might correlate with PV St : cash flow duration, firm leverage, systematic risk (i.e., CAPM
beta), firm size, and value (i.e., book-to-market ratio).

Rows (5)-(9) show that in all cases the regression coefficient on PV St is essentially unchanged
relative to our baseline results. Row (5) shows that PV St is not capturing differences in the duration
of cash flows (Weber (2016)) between low- and high-volatility stocks, which would cause their
values to move mechanically with interest rates. We draw a similar conclusion when studying
leverage sorts in row (6). The results on CAPM beta in row (7) confirm that the relation between
PV St and the real rate is not simply picking up on aggregate stock market risk, suggesting that
investors care about risk factors that are broader than the aggregate stock market.9 In row (8),

9As we discuss in Table A.6, there is a correlation between the real rate and the spread in valuations of beta-sorted
portfolios, confirming the intuition that the price of safe assets is high when prices of risky stocks are low. However,
the relationship between the real rate and PV St is stronger in univariate regressions and in horse races, consistent with
our interpretation of total volatility as a more robust measure of an individual stock’s risk.

17



we find that our volatility sorts do not simply proxy for size, despite the fact that smaller firms
tend to be more volatile. The value-sorted book-to-market spread is sometimes thought to capture
the value of growth options, so the results in row (9) suggests that the relation between PV St and
the real rate is not driven by growth options. In Table A.8, we use double sorts to show that the
relationship between PV S and the real rate is not driven by industry, whether the firm is a dividend
payer, as well as the characteristics studied here.

Based on this analysis, we conclude that sorting stocks on volatility is key to our construction
of PV St . From a statistical perspective, it may not be surprising that there exists a cross section
of stocks that is correlated with real rates. The economic content of our findings is that volatility,
while not a fundamental firm characteristic, is a robust measure of risk. We therefore view these
results as supportive of our interpretation of PV St as a measure of investor risk perceptions.

Data Details for Table A.7

Value-Weighted Version of PV St The value-weighted version of PV St is the value-weighted
average book-to-market ratio of low-volatility stocks at time t minus the value-weighted average
book-to-market ratio of high-volatility stocks at time t. The value weights are determined by
market capitalizations at the end of quarter t.

PV St Based on Two-Year Volatility The variable “2-Year Volatility” listed under “Alterna-
tive Constructions” in the table uses each firm’s trailing 2-year volatility to form our volatility-
sorted portfolios. We use monthly return data from CRSP to compute this measure of volatility.

Off-the-Run Minus On-the-Run Treasury Yields The off-the-run minus on-the-run Trea-
sury yield spread is the difference between the continuously compounded 10-year off-the-run and
on-the-run bond yields. On-the-run bond yields are from the monthly CRSP Treasury master file.
The off-the-run bond yield is obtained by pricing the on-the-run bond’s cash flows with the off the-
run bond yield curve of Gürkaynak et al. (2007). For details of the off-the-run spread construction
see Kang and Pflueger (2015).

Other Variables Used in Horse Races For a description of the other variables used in the
horse races, see Section A2.7.1 of this appendix.

A2.7.3 Double-Sorted Versions of PV St

In this subsection, we create double-sorted versions of PV St as an alternative way to address the
possibility that volatility just proxies for another characteristic whose price is correlated with the
real rate. More precisely, consider characteristic Y. We construct a Y-neutral version of PV St
by first grouping stocks at time t based on whether they have above or below median values of
characteristic Y. We define “low Y” firms as those firms with below-median values of Y and “high
Y” firms are defined analogously. Next, within low-Y firms, we further sort firms into terciles
based on volatility. PV SL,Y

t is defined as the average book-to-market ratio of low-volatility and
low-Y firms minus the average book-to-market value of high-volatility and low-Y firms. PV SH,Y

t
is defined in the same manner, except for high-Y firms. Finally, the Y-neutral version of PV St
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is defined as (PV SL,Y
t + PV SH,Y

t )/2. This spread measures the difference in valuations of low
volatility and high volatility stocks that have similar values of characteristic Y.

For example, suppose the characteristic that we are interested in is CAPM-Beta. We then split
stocks into low and high beta firms based on the median CAPM-Beta at time t. Then within each
CAPM-Beta bucket, we compute the difference in book-to-market ratios of low and high volatility
stocks. Finally, we average the spread between low- and high-volatility stocks across low and high
CAPM-Beta firms. This procedure delivers us a version of PV S that is immunized to CAPM-Beta
but differentially exposed to volatility. The sorting variables we use are described in Section A2.7.1
of this appendix. In addition, we construct an industry-neutral version of PV St in the same way
by first grouping stocks into industries based on their SIC codes and the 48 industry definitions
on Ken French’s website. We also form PV St in the subset of dividend paying and non-dividend
paying stocks, where we define a dividend-paying stock at time t as one that has paid a divided any
time in the previous two years.10

After we build double-sorted versions of PV St , we run the following regression in both levels
and first differences:

Real Ratet = a+b×Y-Neutral PVSt + εt (4)

In all cases, we standardize the double-sorted version of PV St (or its first difference) to have a mean
of zero and a variance of one. Table A.8 contains the point estimates of b, their associated standard
errors, and the adjusted R2 from these regressions. Echoing our analysis from Section A2.7.2,
we find that all of the double-sorted versions of PV St exhibit an economically and statistically
significant positive correlation with the real interest rate. By and large, the point estimate on the
Y-neutral version of PV St is comparable to what we obtain in the main text when using the raw
version of PV St . The fact that the industry-adjusted version of PV St continues to explain a large
fraction of real rate variation indicates that PV St does not just load up on industries that are more
exposed to interest rate movements. A similar conclusion holds when looking at dividend versus
non-dividend paying stocks. Overall, these facts lend further support of the idea that volatility is
the key characteristic underlying the construction of PV St .

A2.7.4 Total Volatility vs. Alternative Measures of Risk

As discussed in the main text, we use total volatility of stock returns because it is a robust measure
of risk. Intuitively, volatility increases with stocks’ exposure to any risk factors that investors care
about, and PV St captures how much of a price discount investors require for holding risky stocks.
To confirm that our results are robust to variations in how we measure risk, we verify that the
spread in book-to-market ratios is similar when we sort stocks by their CAPM betas instead of
total stock return volatility. The CAPM beta captures systematic risk provided that investors are
well-diversified and that investors’ aggregate wealth portfolio equals the aggregate stock market.
Indeed, we find that PV St and the beta-sorted book-to-market spread are 82% correlated in levels
and 51% correlated in first-differences. As our preceding analysis shows, the link between the real
risk-free rate and the spread in book-to-market ratios when sorting on two-year CAPM betas is
similar, albeit weaker, than our baseline results for PV St .

Of course, investors may care about risk factors other than the aggregate stock market. To
allow for a broader set of factors, we sort firms into quintiles based on the volatility of the fitted

10We determine dividend yields by looking at the total return and the ex-dividend return in CRSP.

19



value from a regression of daily stock returns on the Fama and French (1993) factors. To match the
construction of our benchmark sorting variable, i.e. total volatility, we use trailing 60-day returns
at the end of each quarter t. As expected, the resulting book-to-market spread is even more closely
correlated with PV St , with correlations of 87% in levels and 84% in first-differences. Overall, we
find that PV St is not sensitive to small variations in our measure of risk. We use total volatility
as our benchmark sorting variable because it does not require us to take a stand on the underlying
risk-factors that investors care about.

A3 Additional Empirical Results

A3.1 Monetary Policy Shocks - All announcements
In Section III.A.2 of the main text, we show that monetary policy shocks do not differentially affect
high-volatility stocks. In the main text, we exclude unscheduled FOMC meetings because surprise
policy changes made outside of regularly scheduled meetings may be driven by financial market
conditions. Here we examine the full sample of FOMC meetings for robustness. The results are
in Table A.9. As discussed in the paper, if discretionary monetary policy was an omitted variable
driving the positive covariance between the observed real rate and PV St , we should see negative
coefficients in Table A.9. Generally the coefficients in Table A.9 are statistically insignificant with
inconsistent signs. Using daily returns, we find a positive correlation that is borderline statistically
significant for some specifications. However, this is the opposite of what we would expect if
monetary policy acted as an omitted variable for our findings in Table III in the main paper. Instead,
a positive correlation is consistent with the Fed scheduling additional meetings to cut interest
rates in times and stabilizing high-volatility stocks in times of market turmoil. Consistent with
this interpretation, in untabulated results we find that the positive correlation is entirely driven by
surprise changes in 2001. In that year, the Fed cut rates aggressively outside of regularly scheduled
meetings in the aftermath of the technology bubble.

A3.2 Decomposing Comovement between the Real Rate and PV St

Section III.B of the paper establishes that both the real rate and PV St forecast future returns on
volatile stocks. In this subsection, we use a present-value decomposition to argue that this return
predictability has implications for interpreting the contemporaneous correlation between the real
rate and PV St . Vuolteenaho (2002) derives the following relation tying a firm i’s log book-to-
market ratio to its future log return and log accounting return (ROE):

θi,t = ri,t+1− ei,t+1 +ρθi,t+1 +νit

where θi is the log book-to-market of firm i, ri,t+1 is its log stock return, and ei,t+1 is the log ROE.
ρ is a log-linearization constant and νi,t is an approximation error, such that θi,t ≈ ri,t+1− ei,t+1 +
ρθi,t+1. To map this expression to the current setting, we define the log version of PV St , denoted
by pvst , as follows:

pvst ≡
[

1
NL,t

∑
i∈Low Volt

θi,t

]
−
[

1
NH,t

∑
i∈High Volt

θi,t

]
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where, for example, NL,t is the number of firms in the low vol portfolio at time t. The Vuolteenaho
(2002) decomposition then implies that:

pvst ≈ rPV S
t+1 − ePV S

t+1 +ρ× pvst+1

rPV S
t+1 ≡

[
1

NL,t
∑

i∈Low Volt

ri,t+1

]
−
[

1
NH,t

∑
i∈High Volt

ri,t+1

]

ePV S
t+1 ≡

[
1

NL,t
∑

i∈Low Volt

ei,t+1

]
−
[

1
NH,t

∑
i∈High Volt

ei,t+1

]
(5)

In addition, we assume that pvst follows an AR(1) process, pvst+1 = a+ φ pvst + ξt+1. Next,
combining the AR-process with Equation (5), plus some rearranging yields:

Cov(Real Ratet , pvst)≈ (1−ρφ)−1× [Cov
(

Real Ratet ,rPV S
t+1

)
−Cov

(
Real Ratet ,ePV S

t+1

)
+ρCov(Real Ratet ,ξt+1)]

Dividing both sides by Cov(Real Ratet , pvst) delivers a simple covariance decomposition:

1 = Ψr−Ψe +Ψξ (6)

where Ψr ≡ (1−ρφ)−1×Cov
(
Real Ratet ,rPV S

t+1
)
/Cov(Real Ratet , pvst), and so forth.

Equation (6) states that covariation between today’s real rate and pvst can arise for three rea-
sons: (i) today’s real rate forecasts future returns to the volatility-sorted portfolio, rPV S; (ii) today’s
real rate forecasts future cash flows on the same portfolio, ePV S; or (iii) today’s real rate forecasts
future innovations in tomorrow’s pvs.

To operationalize the decomposition, we need to first estimate φ and ρ . We fit a simple AR(1)
for pvs and find that φ = 0.88 for quarterly data. With regards to ρ , we consider a range of values
from 0.9 to 0.97.11 All of the other components needed for the covariance decomposition are
estimated from simple covariances in the data, namely one-quarter ahead forecasting regressions
of returns and ROEs on PV St .12

For all of the ranges of ρ that we consider, Ψr is never less than 70% and approaches 100%
for larger values of ρ . Moreover, for all of the ranges of ρ considered in Vuolteenaho (2002), Ψr
is never below 90%. This is rather unsurprising given that the real rate does not forecast future
ROE for the low-minus-high volatility portfolio. We therefore conclude that a large majority of
the covariation (around 90%) between PV St and the real rate can be attributed to the real rate
forecasting future returns on the volatility-sorted portfolio. Put differently, PV St and the real rate
correlate because discount rate shocks to high-volatility stocks coincide with shocks to the real
rate. This result is consistent with the interpretation of PV St as a measure of risk perceptions
rather than expected cash flows.

11Vuolteenaho (2002) sets ρ = 0.967 for annual data. We use a range of values to get a sense of how sensitive our
decomposition is to the approximation constant.

12Note that in estimating Cov
(
Real Ratet ,ePV S

t+1

)
by forecasting future ROE with PV St , we are imposing that in-

vestors have rational expectations of the cash flows of high-volatility versus low-volatility firms. As discussed later in
Section A3.5, this assumption is justified by the fact that PV St does not forecast surprises in ROE based on analyst
forecasts, nor does it correlate with analyst expectations of cash flows. To be clear, it could be that movements in the
expected return of high-versus-low volatility stocks are still driven by behavioral forces and irrational expectations of
risk. Indeed, this is precisely what we find in the main text.
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A3.3 Return Forecasting for Other Asset Classes
Next, we show that PV St captures common variation in the compensation investors demand for
holding volatile securities within several different asset classes, consistent with the idea that it is a
broad measure of risk perceptions relevant to the macroeconomy.

We use test asset portfolios from He et al. (2017), which cover six asset classes: U.S. corpo-
rate bonds, sovereign bonds, options, credit default swaps (CDS), commodities, and currencies.13

Within each asset class, we form a portfolio that is long the lowest-volatility and short the highest-
volatility portfolio in the asset class, where volatility is measured with a 5-year rolling window
of prior monthly returns. The first three columns in Table A.10 contain summary statistics on the
volatility-sorted portfolios in each asset class. In contrast to equities, the average returns of long-
short portfolios are negative for several asset classes, showing that the low-volatility premium in
U.S. equities (Ang et al. (2006)) is not a systematic feature of all asset classes.

The second set of columns in Table A.10 shows that both PV St and the real interest rate fore-
cast quarterly returns on volatility-sorted portfolios for many asset classes. The top row shows
our results for U.S. equities. The remaining rows show economically and statistically significant
evidence that PV St and the real rate forecast long-short returns within three other asset classes:
U.S. corporate bonds, options, and CDS. There is also a positive, marginally significant correla-
tion between PV St and sovereign bond returns, and a positive but insignificant correlation between
PV St and commodity returns. We obtain similar results forecasting annual returns.

These regressions show that both PV St and the real rate reflect common variation in the com-
pensation investors demand for holding volatile securities across a variety of asset classes. To
quantify the strength of this common variation, we compute for each asset class c the correlation
ρc between the low-minus-high volatility return in c and the average return of the low-minus-high
volatility trade in all other asset classes excluding c. For example, ρc for c = options computes the
correlation of the return on the volatility trade in options and the average return of the trade across
all asset classes except options. The average ρc is 0.42, comparable to common variation in value
and momentum strategies across asset classes (Asness et al. (2013)).

A3.3.1 Data Construction - Other Asset Classes

In Table A.10, we use both PV St and the one-year real rate to forecast returns on the low-minus-
high volatility trade in other asset classes. To do so, we use the test assets from He et al. (2017),
henceforth HKM. We focus on the following asset classes from HKM: equities, U.S. corporate
bonds, sovereign bonds, options, credit default swaps (CDS), commodities, and foreign exchange
(FX). We refer the reader to HKM for more detail on each of these portfolios.

Within each asset class, we form a portfolio that is long the low volatility portfolio in that asset
class, and short the high-volatility portfolio. For each portfolio in each asset class, we compute the
volatility at each quarter using the trailing 5-year history of monthly portfolio returns, requiring
a minimum of four years of data. We are constrained to use monthly data because HKM do not
have daily asset class data. For example, suppose we want to form the low-minus-high volatility

13For U.S. stocks, He et al. (2017) use the Fama-French 25 portfolios. We use our own volatility-sorted portfolios
for consistency and because this induces a bigger spread in volatility. We obtain qualitatively similar results with the
Fama-French 25.
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portfolio for U.S. corporate bonds in quarter t.14 We then compute the volatility of each of the 10
HKM corporate bond portfolios over the previous 5 years. We then go long the portfolio with the
lowest trailing volatility and short the portfolio with the highest volatility. We hold this long-short
portfolio for one quarter, and then repeat the process. Denote the returns to this long-short strategy
as LMHV c

t , where the superscript c denotes the asset class we are studying and the subscript de-
notes time of the return. The forecasting regressions in Panel B of the table use PV St or Real Ratet
to forecast LMHV c

t+1 for several different c.

A3.4 Robustness: PVS and Real Outcomes
A3.4.1 Evidence from VARs

The observed real rate mixes two components – the natural rate of interest and discretionary mon-
etary policy – as we show in Eq. (14) in the paper. We would expect these two components to have
offsetting correlations with real investment:

• The natural rate of interest is positively correlated with investment through risk perceptions
according to our model.

• Discretionary monetary policy tends to push towards a negative correlation between the real
risk-free rate and real investment, as an exogenous increase in the real interest rate is gener-
ally thought to be contractionary (e.g. Christiano et al. (1999)).

Consistent with this interpretation, the evidence in Section III.A.2 suggests that it is possible to
separate these forces using a measure of risk perceptions like PV St . Figure III in the main pa-
per isolates the first channel, showing that investment increases following an increase in PV St ,
conditional on holding the real risk-free rate constant. We now further disentangle the two chan-
nels driving the real rate-investment relationship. When we estimate a standard VAR that includes
both PV St and the real rate, we find that a contractionary monetary policy shock increases the real
risk-free rate and decreases investment, while a shock to PV St increases the real risk-free rate and
increases investment, exactly as expected.

We estimate a VAR that is as simple and transparent as possible, while following a common set
of recursiveness assumptions, similar to Sims (1980), Bernanke and Mihov (1998) and Gilchrist
and Zakrajšek (2012). We use the following strategy for measuring dynamic effects:

Yt =
k

∑
i=1

BiYt−i +
k

∑
i=1

CiPt−i +Ayvy,t (7)

Pt =
k

∑
i=0

DiYt−i +
k

∑
i=0

GiPt−i +Ap
[

vPV S,t
vMP,t

]
. (8)

Here, Yt is a vector of quarterly non-policy variables, consisting of unemployment, the investment-
to-capital ratio, and detrended inflation. Pt is a vector of policy variables consisting of PV St and
the detrended real rate. Eq. (7) describes a set of structural relationships in the economy, where
macroeconomic variables depend on lagged values of macroeconomic and policy variables. Eq.

14This corresponds to US_bond11 through US_bond20 in HKM’s data.
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(8) describes the stance of monetary policy conditional on contemporaneous macroeconomic vari-
ables. Our baseline estimation uses k = 1 lag.

We estimate the structural policy shocks under the restriction that vPV S,t does not respond to
vMP,t contemporaneously, but vMP,t may respond to vPV S,t , consistent with the Federal Reserve
actively monitoring macroeconomic and financial variables. It is plausible that investors’ risk
perceptions shift gradually over time and do not jump in response to monetary policy actions.
Indeed, this identification restriction is supported by our analysis of monetary policy shocks in the
main text.15 Following Bernanke and Mihov (1998), structural innovations in the real rate and
PV St shocks are assumed to affect output, inflation, and precautionary savings demand with a lag.

As a baseline, the left panel of Figure A.3 shows responses to an unexpected tightening by the
Federal Reserve. Consistent with the long literature on monetary policy shocks, summarized in
Christiano et al. (1999), unemployment increases and and inflation decreases after a one-standard-
deviation shock to the real interest rate. The effect on the investment-to-capital ratio is not statis-
tically different from zero. Interestingly, PV St does not respond to monetary policy shocks with
tight 95% confidence intervals, consistent with our prior finding that monetary policy does not act
as an omitted variable driving the relation between the observed real rate and PV St .

The right panel of Figure A.3 shows that a positive PV St shock (corresponding to a decline
in risk perceptions) significantly decreases unemployment and increases real investment, despite
being associated with a similar increase in the real rate as the MP shock. The contrasting responses
across the left and right panels in Figure A.3 are exactly what we would expect if PV St isolates
risk perceptions.

Shocks to PV St are both statistically significant and quantitatively important for unemploy-
ment and investment, as shown by forecast error variance decompositions. Ten quarters after the
shock, PV St shocks explain 14% of variation in the unemployment rate and 39% of the variation
in investment-to-capital ratios. It is intuitive that risk perceptions shocks should matter most for
real investment, since it is the interface between financial market attitudes towards risk and the real
economy. For comparison, the monetary policy shocks explain 17% of variation in unemployment
and only 5% of variation in the investment-to-capital ratio.

Robustness Figure A.4 shows that impulse responses look similar to Figure A.3 if we use the pre-
crisis sample. Figure A.5 shows that our findings are not dependent on the specific identification
assumption. We see that unemployment and investment responses are similar if we make the
alternative identification assumption that PV St is faster than the real rate.

Figure A.6 shows that again the conclusion is similar if instead of estimating a VAR(1) we
include additional lags in our estimation and base the impulse responses on a VAR(4). Finally,
Figure A.7 shows that we obtain similar results if we replace the unemployment rate by the output
gap. Of course, the output gap responses have the opposite signs of the unemployment responses in
our baseline specification, because the output gap decreases in recessions, whereas unemployment
increases. So, our results linking shocks to risk perceptions and the real economy are not specific

15This identification restriction is not crucial to our findings. As we show below, our conclusions are unchanged if
instead we make the opposite identification assumption that PV St responds to the real rate contemporaneously, but the
real rate reacts to risk perceptions with a lag. This second identification assumption is different from saying that the
Fed does not pay attention to the stock market. It merely requires that the Fed historically did not react instantaneously
to the cross-sectional valuation spread newly documented in this paper. Impulse responses are also robust to excluding
the post-crisis period and to including additional lags.
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to a particular measure of economic activity.

A3.4.2 Evidence from Jordà (2005) Local Projections

In Section III.C of the main text, we use Jordà (2005) local projections to show that an increase in
PV St forecasts a boom in investment, an expansion of output, and a decline in unemployment. In
that analysis, we control for lagged outcome variables and the real interest rate. Here, we explore
the robustness of those local projections by running the following sequence of regressions:

yt+h = a+bh
PV S×PV St +bh

RR×RealRatet +bh
y× yt +bh

mkt×Agg BMt +bh
cp×CPt + εt+h

where h is the forecast horizon. yt+h is either the investment-to-capital at time t+h, the real output
gap at t+h, or the change in the unemployment rate between t and t+h. In this regression, we also
control for the aggregate book-to-market ratio (Agg BMt) and the Cochrane and Piazzesi (2005)
bond risk-factor, the latter of which we construct using quarterly data and forward rates from
Gürkaynak et al. (2007). We include the aggregate book-to-market ratio and the Cochrane and
Piazzesi (2005) factor to test whether PV St reflects redundant information embedded in measures
of financial market activity from aggregate stock and bond markets.

Figure A.8 displays the results of these local projections. The main thing to notice is the
magnitude of the response of the macroeconomy to a risk perceptions shock is very similar in
these specifications compared to those shown in Figure III of the main text. Following an increase
in PV St , investment and the output gap both rise and unemployment falls, even when controlling
for the value of the aggregate stock market and the Cochrane and Piazzesi (2005) factor. These
results therefore suggest that PV St contains information about the real side of the economy that
are not contained in these alternative financial market indicators.

In Table A.11 we present regression evidence for forecast horizon h = 1. We run our baseline
local projections adding different control variables including the aggregate book-to-market ratio,
the 10-year minus 1-year Treasury yield spread, the Cochrane and Piazzesi (2005) bond risk-factor,
the Gilchrist and Zakrajšek (2012) credit spread, and the Baker et al. (2016) policy uncertainty
variable. PV St continues to have forecasting power for future macroeconomic outcomes in all
cases.

A3.4.3 Firm-Level Investment

Our motivating model from Section II.A of the main text suggests that a decline in risk perceptions
should disproportionately affect real investment at high-risk firms. To examine this prediction, we
run firm-level regressions in Compustat data of investment on indicators for the firm’s volatility
quintile, PV St , and the interactions between PV St and the quintile dummies:

CAPXi,t→t+4

Ai,t
= ai+at +

5

∑
q=1

bq ·1q
it +bPV S×PV St +

5

∑
q=2

bq,pvs ·1q
it×PV St +bCF

CFi,t→t+4

Ai,t
+εi,t+4.

where 1q
it is an indicator that firm i is in volatility quintile q at time t. ai and at are firm and time

fixed effects, respectively. The variable CAPXi,t→t+4/At captures investment for the firm from
time t to t +4 and CFi,t→t+4/At controls for the cash flows of the firm over the same period. The
coefficient of interest in the regression is the interaction between the firm’s volatility quintile and
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PV St . Table A.12 reports the regression results: as predicted by the model, the investment of
higher-volatility firms is more sensitive to PV St than the investment of lower-volatility firms. This
result is also robust across pre- and post-2000 subsamples.

A3.4.4 Private versus Public Firms

Our measure of risk perceptions derives from the pricing of volatile stocks. These firms generally
account for a small portion of the value of the aggregate stock market, which explains why PV St
has a low correlation with the valuation of the aggregate stock market. However, given that volatile
firms are a small part of the market, it is perhaps surprising that movements in their price can
impact aggregate economic outcomes like unemployment and real investment. The resolution of
this apparent tension is that private firms make up a significant part of the overall real economy,
and they behave more like high-volatility public firms than low-volatility public firms.

More specifically, previous studies have found that private firms make up roughly 50% of ag-
gregate non-residential fixed investment, 70% of private-sector employment, 60% of sales, and
50% of pre-tax profits (Davis et al. (2007) Asker et al. (2014) and Zwick and Mahon (2017)). We
see a similar pattern in our data. In Figure A.9, we plot the imputed share of U.S. investment com-
ing from private firms. We compute private firm investment as the difference between aggregate
investment and the investment of publicly traded firms, which we measure in COMPUSTAT.16 The
figure shows that private firms account for roughly half of aggregate investment, and their share is
relatively stable over time.

Moreover, private firms are more similar to high-volatility public firms than low-volatility pub-
lic firms. A first simple way to make this point is to compare firm characteristics. Asker et al.
(2014) show that private firms are smaller, less profitable, and invest more than public firms. In
Table A.13, we show that a similar pattern holds when comparing high-volatility public firms to
low-volatility public firms. Over our COMPUSTAT quarterly sample (1982Q1-2016Q2), the me-
dian high-volatility public firm is much smaller, with $32 million in nominal assets compared
to $1323 million in assets for low-volatility public firms. In terms of profitability, the median
high-volatility public firm had an annual return on assets (ROA) of 0.1%, whereas the median
low-volatility public firm had an ROA of 11.8%. And, in terms of investment, the median high-
volatility public firm invested at a rate of 7.4% compared to 5.3% for low-volatility public firms.
Thus, much like private firms, high-volatility public firms are smaller, less profitable, and invest
more than low-volatility public firms.

A second way to make the point that private firms are more like high-volatility firms is to ex-
amine their investment behavior. As described in Section V in the main text, aggregate investment
is much more correlated with the investment rates of high-volatility stocks (79% correlation) com-
pared to low-volatility stocks (35% correlation). Because private firm investment is such a large
share of aggregate investment, these correlations reinforce the notion that private firms are more
like high-volatility firms. See Table A.14 for these correlations.

16After 1990, we use COMPUSTAT quarterly to compute total public-firm investment, as it provides more up-to-
date accounting information. In each quarter t and for each firm f , we take the last observation in the data within a
year of t. We then compute total investment for publicly traded firms by summing over all firms. Prior to 1990, we
compute aggregate investment using COMPUSTAT annual because coverage is poor in COMPUSTAT quarterly. We
chose 1990 as the cutoff because this was the date when total public-firm investment from COMPUSTAT quarterly
and COMPUSTAT annual converged to roughly the same level.
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More directly, in Figure A.10 we decompose the response of aggregate investment to a PVS
shock into the portion driven by private-firm investment and public-firm investment. We do so
by stripping out COMPUSTAT investment from aggregate investment. This analysis mirrors the
Jorda (2005) local projections from Section III.C of the paper and Section A3.4.2 of this appendix.
The main takeaway from the figure is that private-firm investment is a key part of the response to a
shock to PVS, consistent with the idea that private firms behave more like volatile public firms.

Overall, this analysis suggests that private firms are an important component of the real econ-
omy, and PVS likely captures the risk perceptions of this subset of firms. PVS does not forecast the
aggregate stock market – yet still forecasts aggregate investment and economic expansions – be-
cause the aggregate stock market is tilted towards safer “bond-like” stocks that are fundamentally
different than private firms.

A3.5 Additional Analysis of Expectations
A3.5.1 Contemporaneous Cash-Flow Expectations

In Section II.D of the main paper, our regression analysis indicates that PV St is highly correlated
with several measures of expected risk. One concern with these results is that expectations of risk
may comove with expectations of the future cash flows. We deal with this potential issue in the
main text by directly controlling for contemporaneous cash-flow expectations in our regressions.
We now show more directly through a series of univariate regressions that PV St is only weakly cor-
related with cash-flow expectations. Specifically, in Table A.15 Panel A, we run contemporaneous
regressions of PV St on expectations of future cash flows constructed from the Thompson Reuters
IBES data set of equity analyst forecasts. For each stock, we construct the consensus analyst fore-
cast of ROE. We then compute the difference between the median forecast for high-volatility stocks
and the median forecast for low-volatility stocks. We regress PV St on this spread in expected cash
flows. In column (1), we use analyst forecasts for the next quarter, in column (2), we examine an-
nual forecasts, and in column (3) we use analyst forecasts for long-term growth.17 We standardize
both PV St and the explanatory variables. The sample for these regressions is shorter because IBES
data is only reliable for our cross section after the early 1990s, and the number of observations
varies across columns because different forecasts are available starting at different dates. We find
similar results if we restrict the sample to the common period where all variables are available.

As one would expect, expectations of future cash flows are positively correlated with PV St .
When investors expect high cash flows for high-volatility stocks, PV St tends to be high. However,
the correlation is quite weak – across the three specifications, expectations of cash flows explain at
most 15% of the variation in PV St . Mechanically, this means that the remaining 85% of variation
in PV St must be explained by variation in expectations of future returns (Campbell and Shiller
(1988)). This accords with our results in Section A3.2, where we concluded that nearly 90% of the
comovement between the real rate and PV St arises because the real rate forecasts future returns to
volatility-sorted stocks. The main takeaway here is that variation in PV St is primarily driven by
investor expectations of returns, not their expectations of cash flows.

17IBES defines long-term growth as the “expected annual increase in operating earnings over the company’s next
full business cycle”, a period ranging from three to five years.
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A3.5.2 Forecasting Revisions in Expectations of Future Cash Flows

In Section III.B of the main text we document that PV St negatively forecasts future returns on
a portfolio that is long low-volatility stocks and short high-volatility stocks. We concluded from
that analysis that PV St reflects changes in the cost-of-capital at high-volatility firms: when PV St
is low, high-volatility firms need to offer investors higher returns on capital because investors
perceive these firms as especially risky. An alternative explanation for these forecasting results
is that investors have biased beliefs about future cash flows. If investors are overly optimistic
about the future earnings of volatile stocks, they will bid up the prices of those stocks and hence
PV St . When high future earnings are not realized, PV St will fall as investors revise their beliefs
downwards and realized returns on high-volatility stocks will be low. This behavioral story would
match the fact that high values of PV St forecasts future returns on high-volatility stocks.

To examine the possibility that investors have biased beliefs about expected cash flows, we
once again use analysts forecasts from the Thompson Reuters IBES data set. We define a stock’s
quarterly ROE surprise as the difference between its realized ROE and the analyst consensus ROE
forecast. The annual ROE surprise is the average surprise over the previous four quarters. Row
(1) of Table A.15 Panel B shows that there is no evidence that PV St forecasts earnings surprises.
In row (2), we examine revisions in expectations of future cash flows. We study how analyst
expectations for quarterly earnings at quarter t +3 evolve from quarter t to t +2. We choose these
horizons based on data availability in IBES. Row (2) shows that PV St does not forecast revisions
in expected earnings. These results reiterate the point that PV St is largely driven by expectations
of risk, and not by incorrect beliefs about the future cash flows of volatile firms.

A3.5.3 PVS and Direct Measures of Expected Risk

In Section II.D of the main text, we showed that PV St is negatively correlated with direct mea-
sures of expected risk: (i) subjective expectations of earnings volatility of high-volatility stocks
(relative to low-volatility) from analyst forecasts; (ii) expected return volatility of high-volatility
stocks based on option prices; (iii) objective expectations of return volatility for high-volatility
stocks, where objective expectations are defined from the perspective of a statistical forecasting
model; (iv) the percent of loan officers loosening lending standards, which is plausibly related to
their subjective expectations of risk; (v) small business optimism; and (vi) the Baker et al. (2016)
economic policy uncertainty measure. Our main finding is that PV St is highly correlated with
subjective measures of risk and weakly correlated with objective measures of risk from statistical
forecasting models.

We complement the evidence in Section II.D with additional results in Table A.16, where we
relate PV St to objective and subjective measures of expected risk for aggregate macroeconomic
variables and the aggregate stock market. Overall, Table A.16 further supports the conclusion that
PV St is related to expected risk, and that this connection is most evident for subjective measures of
risk that reflect both public and private firms. The first set of columns in Table A.16 uses univariate
regressions to investigate the link between PV St and other measures of expected risk. The second
set of columns links the one-year real interest rate with the same measures of expected risk. In
row (1), we build a measure of the expected volatility of the aggregate stock market. From 1986
onward, we follow Bloom (2009) and use the VXO implied volatility index of the S&P 100, which
is highly correlated with the popular VIX index. Options data is not available prior to 1986, so
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we use the one-step ahead forecast from fitting an AR(1) model to the within-quarter realized
volatility of the aggregate stock market, which we scale to create a smooth series when the VXO
becomes available. The regression results show that PV St is lower when the expected volatility
of the aggregate stock market is high. However, the relationship is not statistically significant,
emphasizing the importance of using a measure of risk that does not overweight low-volatility
public firms.

In row (2), we construct an objective measure of risk designed to reflect the whole economy,
not just those firms that dominate the aggregate stock market. Specifically, we an fit ARMA(1,1)-
GARCH(1,1) model to industrial production growth and then define the objective expectation of
risk as the one-period forecast of volatility from the GARCH component of the model. We find a
negative relationship between the expected risk of industrial production and PV St , though this rela-
tion is not statistically insignificant. In untabulated results, we observe similar patterns when using
GDP growth or consumption growth. Using a similar measure of macroeconomic risk, Hartzmark
(2016) finds a statistically significant relation with interest rate over a sample period that includes
the Great Depression. Our finding of a weak result during our post-war sample emphasizes the
importance of relating PV St to subjective measures of macroeconomic risk.

In row (3), we again find little relation between PV St and the macroeconomic uncertainty index
from Jurado et al. (2015), again emphasizing the need to relate PV St to subjective measures of risk.
Jurado et al. (2015) define the uncertainty of a macroeconomic series as the conditional volatility
of the purely unforecastable component of that series. They employ sophisticated econometric
techniques to compute uncertainty measures for a wide range of macroeconomic and financial
series, and then combine them into a single aggregate index of macroeconomic uncertainty.

Rows (2) and (3) focus on objective measures of macroeconomic risk, whereas asset prices and
macroeconomic activity should reflect subjective expectations over a broad cross-section of private
and public firms. Motivated by this observation, in row (4) of Table A.16 we create an index
of macroeconomic uncertainty using forecast dispersion of growth rates in real GDP, industrial
production, real private fixed nonresidential investment, and corporate profits. Specifically, we
obtain 1-quarter, 2-quarter, and 4-quarter forecasts from the Survey of Professional Forecasters
for 1985 onwards, which is when real growth rates were asked for instead of imputed. We then
apply a Hodrick-Prescott filter to each series, standardize, and take a cross-sectional average to
arrive at our SPF Macroeconomic Uncertainty index. A univariate regression of PV St on this SPF
Macroeconomic Uncertainty index confirms that it is low when macroeconomic survey uncertainty
is high. The point estimate in the regression is measured precisely and is large relative to the other
measures in the table. Similarly, SPF Macroeconomic Uncertainty is negatively correlated with the
real rate, though less than PV St itself (Table III of the main text). Overall, these results reinforce
the idea that PV St reflects subjective expectations of risk that are relevant for macroeconomy, in
part because PV St captures risk perceptions relevant to private and public firms, and not just the
risks of low-volatility public firms that are relatively overweighted in the aggregate stock market.

A3.5.4 Subjective Expectations of Risk and Realized Risk

In both Section II.D of the main text and Section A3.5.3 of this appendix, we showed that PV St is
more correlated with subjective expectations of risk than objective expectations. In Section IV.B
of the main text, we argued that this fact is consistent with our other evidence that risk expectations
may not be fully rational. To be clear, this is not to say that subjective expectations of risk that
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drive PV St are completely disconnected from reality. Indeed, the model of diagnostic expectations
in the main text is based on the assumption that subjective expectations reflect a kernel of truth.
To show that this is the case, we build on our finding from Section II.D that PV St is correlated
with subjective expectations of risk that are embedded in the options of high-volatility firms. In
particular, we test whether option-implied volatilities are rooted in reality by checking whether they
forecast subsequent realized volatilities. We do so via the following panel forecasting regression
of future firm-level realized volatility on current implied volatility:

Realized Volatilityi(t + k, t +h) = a+b× IVi,t(t + k, t +h)+ εi,t

where Realized Volatilityi(t + k, t + h) is the realized volatility of firm i from t + k to t + h. IVi,t
is the implied volatility of firm i measured at time t for returns from t + k to t + h.18 Table A.17
contains the results of these regressions, which again are run only for firms that are classified as
high-volatility as of time t. In column (1), we test whether time-t implied volatilities based on
options with a one-year maturity forecast realized volatility over the subsequent year. Column (2)
of the table runs the panel forecasting regression with industry-by-time fixed effects to account
for any potential variance risk premiums embedded in the options of firms in the same indus-
try. Columns (3) and (4) focus on the sample preceding the 2008-09 financial crisis. The point
estimates in the pre-crisis sample are generally higher than their full-sample counterparts, likely
reflecting dislocations in the options markets during the crisis. Columns (5)-(8) run similar re-
gressions for k = 3,h = 4. In all cases, the point estimates and their standard errors indicate that
implied volatilities forecast for future realized volatility.

There are two key takeaways from these predictive regressions. First, expectations of volatil-
ity embedded in the options of high-volatility firms do reflect information about future realized
volatility. As the paper shows, these expectations are also a key driver of movements in PVS. Sec-
ond, however, these expectations are biased estimates of future volatility. To see why, note that if
option-implied volatilities were an unbiased estimate of future realized volatility, these regressions
would deliver a constant of zero and a point estimate on implied volatilities of one. However, in
all of our specifications, we can comfortably reject this null hypothesis.

In the main text, we show that the degree of bias in risk expectations has predictable temporal
patterns. In particular, we use PVS to forecast implied volatility forecast errors, defined as the
difference between realized volatility and implied volatility. We find that when PVS is high, real-
ized volatility consistently exceeds expected volatility from options, especially for high-volatility
stocks. Taken together then, our analysis paints a simple picture. PVS is at least partially driven by
expectations of risk. These expectations are based in some truth, as evidenced by the fact that they
forecast future volatility. At the same time, these expectations are often biased in the sense that
periods where PVS is high are reliably followed by periods in which realized volatility exceeds
expected volatility.

18We obtain implied volatilities at the firm level from the standardized volatility surface produced by OptionMetrics.
For a given maturity, we compute the implied volatility for each firm by averaging all available strikes in the standard-
ized volatility surface dataset. We chose this route for its convenience and simplicity, though a more precise approach
would build VIX-like measures at the firm level.
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A3.5.5 Realized Risk, Expected Risk, and Good News

In Table A.18 we directly examine the link between measures of realized and expected risk and
macroeconomic news that we assumed in the model. For compactness, we include all macroeco-
nomic news measures in every column.19 In column (1), we show that the realized volatility of
high-volatility stocks falls relative to low-volatility stocks following good news. Columns (2)-(4)
repeat the analysis using three different measures of expected risk. Column (2) shows that ana-
lysts’ perceived risk of high-volatility firms declines when there is positive news about GDP and
corporate profit growth. The same general pattern emerges when we use the percentage of banks
loosening lending standards (column 3) and the NFIB Small Business Optimism Index (column 4)
as our measures of expected risk.

A3.5.6 Measurement of Revisions in Expected Risk

In the main text, we use options to study revisions from quarter t to t +3 in the expected volatility
of stock returns that will be realized between t + 3 and t + 4. In particular, we test whether PV St
can forecast these revisions, which we infer from the implied volatility embedded in option prices.

To formalize our approach, first define the time-t conditional variance of returns between t + k
and t +h, denoted by Rt+k,t+h, as:

Vt
(
Rt+k,t+h

)
≡ Et+k

[
R2

t+k,t+h
]
−E2

t+k
[
Rt+k,t+h

]
= Et

[
Vt+k

(
Rt+k,t+h

)]
+Vt

(
Et+k

[
Rt+k,t+h

])
(9)

where the second equality follows from the law of total variance.
Next, define the news about variance between t and t + k as:

ηt+k ≡ Et+k
[
Vt+k

(
Rt+k,t+h

)]
−Et

[
Vt+k

(
Rt+k,t+h

)]
= Vt+k

(
Rt+k,t+h

)
−Et

[
Vt+k

(
Rt+k,t+h

)]
(10)

Our approach in the main text effectively focuses on the following object:

θt+k ≡ Vt+k
(
Rt+k,t+h

)
−Vt

(
Rt+k,t+h

)
,

which we can easily construct using option prices at time t and t + k. θt+k is not exactly the same
as the news about expected variance, but is close. To concretely relate the two, substitute Eq. (9)
into Eq. (10) and rearrange to get:

θt+k = ηt+k−Vt
(
Et+k

[
Rt+k,t+h

])
(11)

In the data, we use PV St to forecast θt+k. However, to ensure our point estimates on PV St are not
biased in this regression, we should also control for Vt

(
Et+k

[
Rt+k,t+h

])
. Thus, the remaining task

is to construct Vt
(
Et+k

[
Rt+k,t+h

])
in the data. To do so, let’s focus on the case where k = 3 and

h = 4, as we do in the main text. Next, notice that we can write:

Vt(Et+3[Rt+3,t+4]) = Et
{
E2

t+3[Rt+3,t+4]
}
−E2

t [Rt+3,t+4] (12)

19The fact that the real GDP surprise does not come in significant in columns (1) and (3) is a product of the
multivariate regression. In univariate regressions, it comes in negative and significant.
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We can form an estimate of Et+3[Rt+3,t+4] by regressing Rt+3,t+4 on PV St+3. In turn, the square
of the fitted value from this forecasting regression provides an estimate of Et

{
E2

t+3[Rt+3,t+4]
}

.
Similarly, we can construct an estimate E2

t [Rt+3,t+4] based on the square of the fitted value from
a regression of Rt+3,t+4 on PV St . Combining the two yields an proxy for Vt

(
Et+k

[
Rt+k,t+h

])
,

which we then add as a control to our forecasting regression. The results are presented below:

θt+3 = a + b1 × PV St + b2 × Vt (Et+3 [Rt+3,t+4])
0.05 0.47 0.004
(0.28) (2.99) (5.05)

where point estimates are listed below the coefficients and t-statistics based on Newey-West stan-
dard errors with five lags are in parenthesis. As is clear from the regression, controlling for the
time-t variance of expected returns at t + 3 does not change the main conclusion that PV St fore-
casts revisions in risk. Moreover, if we just regress θt+3 onto PV St , the point estimate is basically
unchanged at 0.48. With this in mind, and to keep the exposition as simple as possible, in the main
text we focus on predicting revisions in volatility as opposed to variance. In addition, we do not
control for the time-t variance of expected returns at t +3.

A3.5.7 Forecasting Negative Returns

We next examine return forecasts as a complementary way of assessing whether the expectations
of risk underlying PV St are rational. We study the profitability of strategies that sell put options
because their returns depend directly on the accuracy of investors’ expectations of risk. Under
rational expectations, riskier strategies should always have higher expected returns. Assuming that
options on high-volatility stocks are riskier than options on low-volatility stocks, rational investors
should always require higher expected returns for selling puts on high-volatility firms. In contrast,
if investors underestimate risk when PV St is high, as our previous results suggest, then expected
returns to selling puts on high-volatility firms may be lower than returns to selling puts on low-
volatility firms at these times.

We compute the returns to selling puts using data from OptionMetrics, following the procedure
of Jurek and Stafford (2015). For each firm i and quarter t, this procedure finds the set of out-
of-the-money put options with the lowest maturity greater than 182 days. From this set, we then
select the put option that is closest-to-the-money and require that the delta of the option is at least
-0.4 to account for differences in volatility across firms and time. We sell this option at the best
bid price, hold it for one quarter, then buy it at the best offer price.20 At the portfolio level, we
take the equal-weighted average of high-volatility firm returns minus the equal-weighted average
of low-volatility firm returns.

Panel A of Figure A.11 plots the realized returns to this strategy at time t +1 as a function of
PV St , as well as the fitted value from the forecasting regression and the 95% confidence interval
for the fitted value. We label forecast dates with significantly negative expected returns. The
figure shows that conditional expected returns were significantly negative in 2000q1 and 2000q2,
as indicated by the 95% confidence interval falling below zero. This suggests that when PV St

20Following Jurek and Stafford (2015), we also assume the put writing strategy is twice levered. Leverage only
affects the level of returns, not our return forecasting results. The assumed amount of leverage is well within the
Chicago Board Options Exchange (CBOE) margin requirements for single name options.
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is high, investors underestimate risk and therefore charge too little when selling put options on
volatile firms.

The option price data is available for a relatively short sample, so there are only two quarters
in which we forecast negative expected returns. Reassuringly, Figure A.11 Panel B shows that the
periods when we forecast negative returns to selling puts on volatile stocks coincide with periods
when we forecast negative excess returns to holding volatile stocks themselves. Taken together, the
evidence on return predictability suggests that investors sometimes underestimate risk. At these
times, volatile stocks are too expensive and puts on volatile stocks are too cheap. Subsequently,
investors realize that they under-estimated risk and revise their expectations of risk upward. The
prices of volatile stocks then fall, and the prices of puts on volatile stocks rise. Investors underesti-
mate risk enough that during the quarters with the highest values of PV St , we forecast significantly
negative returns to selling puts on volatile stocks and to holding volatile stocks.

A4 Model Appendix
In this appendix, we provide proofs for the model propositions.

A4.1 Risk
Consumption growth is described by the following process:

∆ct+1 = εt+1, (13)
εt+1 = exp(a−bεt)ηt+1, (14)

where ηt+1 is iid standard normal, so the conditional variance of log output growth is Vt (εt+1) =
exp(a−bεt).

Taking the comparative static in the vicinity of εt = 0 then gives Proposition 2a:

dVt (εt+1)

dεt
= −exp(a)b < 0. (15)

A4.2 Real Risk-Free Rate
The stochastic discount factor can be written as:

Mt+1 = β

(
Ct+1

Ct

)−γ

, (16)

= β exp(−γεt+1) . (17)

The time-t log real risk-free rate is then given by the asset pricing Euler equation:

1 = Et
[
exp(r f t)Mt+1

]
, (18)

= exp(r f t)β exp
(

1
2

γ
2Vt (εt+1)

)
, (19)

implying that

r f t = − ln(β )− 1
2

γ
2Vt (εt+1) . (20)
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Taking the comparative static of r f t in the vicinity of εt = 0 gives:

dr f t

dεt
= −1

2
γ

2 dVt (εt+1)

dεt
. (21)

Substituting in for dVt(εt+1)
dεt

from equation (15) gives Proposition 2d:

dr f t

dεt
=

1
2

γ
2 exp(a)b > 0. (22)

A4.3 Risky Returns
The marginal return to capital in firm i is the marginal benefit of an additional unit of investment
divided by the marginal cost:

Rit+1 =

(
dYit+1

dKit+1

)
/

(
dΦit

dIit

)
, (23)

= exp
(

siεt+1−
1
2

s2
i Vt (εt+1)

)
/φ
′
(

Iit

Kit

)
. (24)

Taking the expectation conditional on information known at time t shows:

Et [Rit+1] = 1/φ
′
(

Iit

Kit

)
. (25)

Substituting for Rit+1 into the asset pricing Euler equation, 1 = Et [Mt+1Rit+1], gives:

1 =
Et
[
Mt+1 exp

(
siεt+1− 1

2s2
i Vt (εt+1)

)]
φ ′
(

Iit
Kit

) , (26)

=
β exp

(
1
2

(
(γ− si)

2− s2
i

)
Vt (εt+1)

)
φ ′
(

Iit
Kit

) , (27)

so the log expected return on capital must equal:

ln(Et [Rit+1]) = ln
(

1/φ
′
(

Iit

Kit

))
,

= − lnβ − 1
2

(
(γ− si)

2− s2
i

)
Vt (εt+1) . (28)

Combining this with the expressions for the real risk-free rate (20) gives Eq. (6) in the main
paper:

ln(Et [Rit+1])− r f t = γsiVt (εt+1) . (29)

Taking the difference of the expression (28) for high- vs. low-volatility firms gives:

ln [EtRHt+1]− ln [EtRLt+1] = γ (sH− sL)Vt (εt+1) . (30)

We then take the comparative static of (30) with respect to εt in the vicinity of εt = 0 and apply
the chain rule with (15) to obtain Proposition 2c:

d (ln [EtRHt+1]− ln [EtRLt+1])

dεt
= −γ (sH− sL)exp(a)b. (31)
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A4.4 Valuation Ratios and PV Smodel
t

We next solve for book-to-market ratios and PV Smodel
t . Because of our assumption that each firm

produces only for one period, firm i’s market-to-book ratio equals:

Vit−Dit

Kit+1
=

Et [Mt+1Dit+1]

Kit+1
(32)

= Et

[
Mt+1 exp

(
siεt+1−

1
2

s2
i Vt (εt+1)

)]
(33)

With the expression for expected returns (25) and the asset pricing Euler equation (26) it fol-
lows that the book-to-market ratio equals the expected return:

Kit+1

Vit−Dit
=

Kit+1

Et [Mt+1Dit+1]
=

1

φ ′
(

Iit
Kit

) , (34)

= Et [Rit+1] . (35)

We can therefore write PV Smodel
t as:

PV Smodel
t = ln

(
KLt+1

VLt−DLt

)
− ln

(
KHt+1

VHt−DHt

)
, (36)

= −(ln [EtRHt+1]− ln [EtRLt+1]) . (37)

Proposition 2b then follows directly from Proposition 2c.

A4.5 Real Investment
Finally, we use the functional form for φ to solve for real firm investment. Because adjustment
costs are assumed to be quadratic, we have:

φ
′
(

Iit

Kit

)
= 1+

Iit

Kit
. (38)

Equating the log return on real investment (25) with the log return required by risk-averse
investors (28) then gives:

invit = ln
(

1+
Iit

Kit

)
, (39)

= lnβ +
1
2

(
(γ− si)

2− s2
i

)
Vt (εt+1) , (40)

= lnβ − γ

(
si−

γ

2

)
Vt (εt+1) .

Taking the comparative static with respect to εt in the vicinity of εt = 0 and applying the chain
rule gives:

dinvit

dεt
=

1
2
(
γ

2−2γsi
) dVt (εt+1)

dεt
, (41)

= −1
2
(
γ

2−2γsi
)

exp(a)b, (42)

= γ

(
si−

γ

2

)
exp(a)b. (43)
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Propositions 2e and 2f then follow.

A4.6 Model with Diagnostic Beliefs
While the model in the main text features rational expectations, in the data we find that PV St
forecasts revisions in expected risk. In this section, we augment the model with the diagnostic
expectations of Gennaioli and Shleifer (2010, 2018); Bordalo et al. (2018) to rationalize this addi-
tional evidence.

The key properties of subjective expectations of risk that we are trying to capture are that (i)
they fall after good news, and (ii) they fall too far, so that there are predictable upward revisions.
We now show that one can account for these features of the data by assuming that investors update
using diagnostic expectations, overweighting states of the world that are representative. Following
the assumptions in Gennaioli and Shleifer (2018, Chapter 5), under diagnostic expectations and
the subjective perceived time-t conditional mean and variance of εt+1 are:

Eθ
t (εt+1) = 0, (44)

Vθ
t (εt+1) =

Vt (εt+1)

1+θ (1− exp(−bεt))
, (45)

where Vt (εt+1) continues to denote the objective conditional variance.21 For θ > 0, Eq. (45)
implies that investors tend to underestimate macroeconomic risk following a positive εt shock and
overestimate risk following a negative εt shock. In our model, objective risk falls after a positive
consumption surprise, but subjective risk falls even more. Thus, diagnostic beliefs capture the
over-extrapolation we document in the data.

A4.6.1 Results for Model with Diagnostic Beliefs

Assuming that preferences and the firm’s problem are the same as in Section II in the main paper,
the equilibrium under diagnostic expectations is characterized by the same equations as before
(Eqs. (6), (10), and (11)) in the main paper, simply replacing objective risk Vt (εt+1) with subjec-
tive risk Vθ

t (εt+1).22 Similarly, the comparative statics in Proposition 2 that capture key elements
of risk-centric theories have the same signs as before and are amplified by a factor of (1+ θ).
In other words, diagnostic expectations strengthen risk-centric economic fluctuations because in-
vestors’ expectations of risk overreact to recent news.

Finally, we show that diagnostic expectations lead to predictable revisions in investor expec-
tations of risk. We assume that at the end of period t investors learn the true volatility and revise

21This result follows from Proposition 1 in Gennaioli and Shleifer (2018, Chapter 5) under the following assump-
tions: The representativeness of state εt+1 is given by h(εt+1|εt )

h̄(εt+1)
, where h is the likelihood function and h̄(εt+1) is the

reference likelihood. As in Gennaioli and Shleifer (2018, Chapter 6), we assume that agents’ reference distribution
is the distribution at the state in the absence of news, i.e. h̄(εt+1) = h(εt+1 |εt = 0 ). The distorted likelihood hθ

equals hθ (εt+1 |εt ) = hθ (εt+1 |εt )
(

h(εt+1|εt )

h̄(εt+1)

)θ

Z, where Z is a constant ensuring that the likelihood of different states
integrates up to one. The parameter θ indexes the degree of belief distortion, where θ = 0 corresponds to rational
expectations and θ > 0 implies that agents overweight representative states.

22To ensure that subjective expected total factor productivity is equalized across firms, we continue to assume that
the representative investor perceives firm i’s total factor productivity Zi,t+1 = exp

(
siεt+1− 1

2 s2
i Vθ

t (εt+1)
)
.
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their beliefs to Vt (εt+1) = exp(a−bεt). The following proposition gives the relationship between
the revision in beliefs and PV Smodel

t .

Proposition 3: Suppose we have two types of firms H and L with sH > sL > λ

2 and that
investors have diagnostic beliefs (θ > 0). In the neighborhood of εt = 0, high values of PV Smodel

t
forecast positive revisions in expected risk:

d(Vt [εt+1]−Vθ
t [εt+1])

dPV Smodel
t

=
θ

1+θ

1
γ(sH− sL)

> 0.

Proposition 3 formalizes the intuition in classical risk-centric accounts of the business cycle that
expectations of risk contain an element of overreaction (Keynes (1937), Minsky (1977)). Following
a good shock, investors lower their subjective expectations of risk too much, resulting in a value
of PV Smodel

t that is too high. They then predictably revise their beliefs back up, so high values of
PV Smodel

t forecast positive revisions in expectations of risk. Proposition 3 shows that the model
with diagnostic expectations can rationalize the finding that PV St positively forecasts revisions
in expected risk (Table VIII) and volatility forecast errors (Table IX). These findings cannot be
explained by the rational model with θ = 0. A simple calculation shows that our empirical results
imply reasonable magnitudes for the belief distortion parameter, θ . Rows (1) and (4) of Table
II suggest that subjective expectations of risk move about twice as much in response to PV St as
objective expectations, which implies that we need θ ≈ 1, in line with the estimates of Bordalo
et al. (2018) and Bordalo et al. (2018).

A4.6.2 Derivations for Model with Diagnostic Beliefs

Our derivation of the subjective distribution follows Gennaioli and Shleifer (2018), Chapters 5 and
6. Their Proposition 1 in Chapter 5 states the following:

Suppose that lnX̃ |I0 ∼ N
(
µ0,σ

2
0
)

and lnX̃ |I−1 ∼ N
(
µ−1,σ

2
−1
)
. Then, provided

(1+ θ)σ2
−1− θσ2

0 > 0, the distorted density hθ (X̃ |I0) is also lognormal with mean
µ0(θ) and variance σ2

0 (θ) given by:

µ0 (θ0) = µ0 +
θσ2

0

σ2
−1 +θ

(
σ2
−1−σ2

0
) (µ0−µ−1) , (46)

σ
2
0 (θ) = σ

2
0

σ2
−1

σ2
−1 +θ

(
σ2
−1−σ2

0
) (47)

As in Gennaioli and Shleifer (2018), Chapter 6, we assume that agents’ reference distribution is
the distribution at the state vector in the absence of news. That is, the reference distribution for
εt+1 before learning εt is the distribution at the conditional average of εt , i.e. at Et−1 (εt) = 0. This
gives µ−1 = 0, σ2

−1 = exp(a), µ0 = 0, and σ2
0 = exp(a−bεt).23 Substituting into the Proposition

23We follow Bordalo et al. (2018) in considering the distribution at the conditional average of εt as the refer-
ence distribution for simplicity and tractability. Alternatively, we could also consider the case where the reference
distribution equals the conditional distribution of εt+1 conditional on knowing εt−1. This would give µ−1 = 0 and

σ−1 =
√

exp(a+ 1
2 b2σ2

t−1). This would make the solution more complicated but preserve the main qualitative feature

that the subjective variance Vθ
t (εt+1) reacts more to εt than the objective variance Vt (εt).
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gives the subjective mean and variance for εt+1 after having learned εt :

Eθ
t (εt+1) = 0, (48)

Vθ
t (εt+1) = exp(a−bεt)

1
1+θ (1− exp(−bεt))

, (49)

=
Vt (εt+1)

1+θ (1− exp(−bεt))
. (50)

The subjective variance is therefore distorted relative to the objective variance by a factor of
1

1+θ(1−exp(−bεt))
.24

The derivations for the real risk-free rate (20), log expected excess returns (29), and log real
firm investment (40) go through with Vt (εt+1) replaced by Vθ

t (εt+1) everywhere. This proves
Proposition 1′.

To prove Proposition 2′a, we find the comparative static of Vθ
t (εt+1) with respect to εt in the

vicinity of εt = 0:

dVθ
t (εt+1)

dεt
= −(1+θ)bexp(a)

= (1+θ)
dVt (εt+1)

dεt
. (51)

To show Proposition 2′b, note that Propositions 2b through f were all proved using the chain
rule for dVt(εt+1)

dεt
. Replacing dVt(εt+1)

dεt
by dVθ

t(εt+1)
dεt

throughout shows that the comparative statics in
Proposition 2b through f scale up by a factor 1+θ under diagnostic expectations.

To prove Proposition 3, we apply the chain rule with respect to PV Smodel
t to take the derivative

in the vicinity of εt = 0:

d
(
Vt (εt+1)−Vθ

t (εt+1)
)

dPV Smodel
t

=
d
(
Vt (εt+1)−Vθ

t (εt+1)
)

dεt

1
dPV Smodel

t
dεt

(52)

= θ exp(a)b
1

γ (sH− sL)(1+θ)exp(a)b
(53)

=
θ

1+θ

1
γ (sH− sL)

> 0. (54)

This completes the model proofs.

24Technically the proposition only applies if 1+θ (1− exp(−bεt))> 0, or if the variance does not increase exces-
sively. We follow Bordalo et al. (2018) in imposing this condition, which holds with probability one in the perfectly
rational limit with θ → 0.
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APPENDIX FIGURES

Figure A.1: Comparing Filtering Methods for the Real Rate
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Notes: The top panel of the figure plots the raw one-year real rate. The raw real rate is the one-year Treasury bill rate net of one-year survey
expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percentage terms. The bottom panel of
the figure compares two different methods for extracting the cyclical component of the real rate. The first just uses a deterministic time trend. The
second uses the methodology of Hamilton (2017), with full details in Section A2.1. Data is quarterly and spans 1970Q2-2016Q2. Shaded bars
indicate NBER recessions.
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Figure A.2: Simulated t-statistics and R2
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Notes: This figure plots simulated t-statistics and R2 for a univariate regression of the real rate on PV S. We independently fit AR(1)-GARCH(1,1)
processes to each series and simulate each 10,000 times. Within each simulation, we regress the real rate on PV S, saving the Newey-West t-statistic
(with five lags) and the R2. The top panel of the figure shows the distribution of the t-statistics from this procedure and the bottom panel shows the
R2. The red bar shows the actual estimate of each statistic in the data. The p-values listed in the plot are computed as the proportion of simulations
that have a t-statistic (or R2) that exceeds the actual value in the data. The one-year real rate is the one-year Treasury bill rate net of one-year survey
expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percent and linearly detrended. See the
Section A1 for details on how we construct PV S.
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Figure A.3: Impulse Responses to Monetary Policy and PVS Shocks (Traditional VAR)
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Notes: This figure plots impulse responses to monetary policy shocks (left panel) and PVS shocks (right panel). Impulse responses to one-
standard deviation shocks are estimated from a five-variable VAR(1) in unemployment, the investment-capital ratio, inflation, PVS, and the linearly
detrended real rate with one lag using quarterly data 1970Q-2016Q2. Unemployment is the civilian unemployment rate (UNRATE). The investment-
capital ratio is computed as private nonresidential fixed investment (PNFI) divided by the previous year’s current-cost net stock of fixed private
nonresidential assets (K1NTOTL1ES000). Following Bernanke and Mihov (1998), structural innovations in the real rate are assumed to affect
output, inflation, and PVS with a lag. PVS shocks are assumed to affect output and inflation with a lag, but have a contemporaneous effect on the
real rate. Dashed lines denote 95% confidence bands, generated by simulating 1000 data processes with identical sample length as in the data from
the estimated VAR dynamics.
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Figure A.4: Impulse Responses Pre-Crisis
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Notes: This figure plots impulse responses to monetary policy shocks (left panel) and PV S shocks (right panel). It corresponds to Figure A.3 of this
appendix, but uses the pre-crisis sample that ends in 2008Q4.
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Figure A.5: Impulse Responses Alternative Ordering
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Notes: This figure plots impulse responses to monetary policy shocks (left panel) and PV S shocks (right panel). It differs from Figure A.3 of this
appendix in that here we construct impulse responses under the assumption that PV St reacts to the real rate immediately, but the real rate reacts to
PV St with a lag.
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Figure A.6: Impulse Responses for VAR(4)
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Notes: This figure plots impulse responses to monetary policy shocks (left panel) and PV S shocks (right panel). It differs from Figure A.3 of this
appendix in that impulse responses are based on a VAR(4) instead of a VAR(1).
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Figure A.7: Impulse Responses with Output Gap
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Notes: This figure plots impulse responses to monetary policy shocks (left panel) and PV S shocks (right panel). It differs from Figure A.3 of this
appendix in that it uses the output gap instead of the unemployment rate.
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Figure A.8: Impulse Responses of the Macroeconomy to PVS Shocks (Local Projections)
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Notes: This figure plots the estimated impulse response (and its associated 95% confidence band) of several macroeconomic variables to a one-
standard deviation shock to PV St using local projections. We compute impulse responses using Jordà (2005) local projections of each macroe-
conomic outcomes onto PVSt . In all cases, we run regressions of the following form: yt+h = a+ bh

PV S ×PV St + bh
RR ×RealRatet + bh

y × yt +

bh
mkt ×Agg BMt + bh

cp ×CPt + εt+h, where Agg BMt is the aggregate book-to-market ratio and CPt is the Cochrane and Piazzesi (2005) bond
risk-factor. We consider three different macroeconomic outcomes for the y-variable. The first is the investment-to-capital ratio, defined as the level
of real private nonresidential fixed investment (PNFI) divided by the previous year’s current-cost net stock of fixed private nonresidential assets
(K1NTOTL1ES000). The second is the real output gap, defined as the percent deviation of real GDP from real potential output. The third is the
change in the U.S. civilian unemployment rate. When forecasting the investment-capital ratio, yt+h is the level of the investment-capital ratio at
time t + h. For the output gap, yt+h is the level of the output gap at time t + h. Finally, for the unemployment rate, yt+h is the change in the
unemployment rate between t and t + h, and yt is the change between t− 1 and t. All macroeconomic variables come from the St. Louis FRED
database and are expressed in percentage points. PV St is defined as in the main text. The real rate is the one-year Treasury bill rate net of one-year
survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percent and linearly detrended.
For all regressions, we use Newey-West standard errors with five lags. Data is quarterly and spans 1970Q2-2016Q2.
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Figure A.9: The Share of Aggregate Investment from Private Firms
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Notes: This figure plots the share of U.S. fixed non-residential investment (excluding government investment) coming from private firms. Aggregate
U.S. investment is defined as the level of real private nonresidential fixed investment (PNFI), which we obtain from the St. Louis FRED database.
We measure the level of investment from publicly traded firms using data on U.S. listed firms from COMPUSTAT. After 1990, we use COMPUSTAT
quarterly to compute total public-firm investment, as it provides more up-to-date accounting information. In each quarter t and for each firm f , we
take the last observation in the data within a year of t. We then compute total investment for publicly traded firms by summing over all firms. Prior
to 1990, we compute aggregate investment using COMPUSTAT annual because coverage is poor in COMPUSTAT quarterly. We chose 1990 as the
cutoff because this was the date when total public-firm investment from COMPUSTAT quarterly and COMPUSTAT annual converged to roughly
the same level. The level of private-firm investment is defined as aggregate investment minus public-firm investment. The figure then plots private
firm investment scaled by aggregate investment, expressed in percentage points. Data is quarterly and spans 1970Q2-2016Q2.
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Figure A.10: Decomposing the Aggregate Investment Response to PVS Shocks
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Notes: This figure plots the estimated impulse responses of aggregate investment, investment by private firms, and investment by public firms to a
one-standard deviation shock to PVS using local projections. We compute impulse responses using Jordà (2005) local projections of each variable
onto PV St via regressions of the following form: yt+h = a+bh

PV S×PV St +bh
RR×RealRatet +bh

y × yt + εt+h, where yt is the aggregate investment
rate at time t. Aggregate investment is defined as the level of real private nonresidential fixed investment (PNFI) divided by the previous year’s
current-cost net stock of fixed private nonresidential assets (K1NTOTL1ES000). Public-firm investment is total investment from COMPUSTAT
(CAPX + R&D) divided by the previous year’s current-cost net stock of fixed private nonresidential assets. Private-firm investment is the difference
between aggregate investment and public-firm investment. Data is quarterly and spans 1970Q2-2016Q2.
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Figure A.11: PV St and Negative Returns
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Panel B: Returns on the Volatile Stocks
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Notes: Both panels of this figure relate PV St to future returns. In Panel A, we form a portfolio that sells out-of-the-money put options on high-
volatility firms and buys out-of-the-money put options on low-volatility firms. In Panel B, we instead forecast excess returns on high-volatility
stocks alone (i.e., not the long-short portfolio underlying PV St ). In both cases, realized returns are depicted by orange dots in the graph. In addition,
we forecast returns at (t + 1) with PV St at time t and plot the fitted value from the regression in blue. The gray bands are the 95% confidence
interval for the fitted value in the regression and are based on Newey-West standard errors with five lags. In instances where the upper bound of
the 95% confidence interval is negative – meaning expected returns are negative and statistically significant – we label the realized return with the
date of the forecast. PV St is the difference between the average book-to-market (BM) ratio of low-volatility stocks and the average BM-ratio of
high-volatility stocks. The internet appendix contains details on variable construction. For both panels, data is quarterly and runs from 1996Q1 to
2016Q2.
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APPENDIX TABLES

Table A.1: Real Rate Variation (Alternative Filters and Raw Series)

Dependent. Variable: Hamilton-Filtered Real Rate (r̃t) Raw Real Rate
Levels First-Differences Levels

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PV St 1.20** 1.44** 1.32** 0.39** 0.40** 0.32** 1.41** 1.36** 1.20**
(0.18) (0.18) (0.22) (0.13) (0.13) (0.12) (0.25) (0.20) (0.25)

Aggregate BM 0.51** 0.50** 0.02 0.15* 0.57** 0.74
(0.14) (0.20) (0.08) (0.09) (0.24) (0.48)

Output Gap 0.27** 0.47** 0.30**
(0.06) (0.16) (0.15)

Inflation 0.15* -0.01 0.02
(0.08) (0.09) (0.13)

Constant 0.00 0.00 0.00 -0.02 -0.02 -0.02 1.86** 1.86** 2.20**
(0.19) (0.18) (0.15) (0.06) (0.06) (0.05) (0.28) (0.27) (0.70)

Adj. R2 0.42 0.47 0.59 0.11 0.10 0.20 0.37 0.43 0.49
N 185 185 185 184 184 184 185 185 185

Notes: This table reports regression estimates of the one-year real rate on the spread in book-to-market (BM) ratios between high volatility and low volatility stocks (PV St ). For all NYSE, AMEX, and
NASDAQ firms in CRSP, we compute volatility at the end of each quarter using the previous sixty days of daily returns. We then form equal-weighted portfolios based on the quintiles of volatility. Within
each quintile, we compute the average book-to-market (BM) ratio. Section A1 contains full details on how we compute BM ratios. PV St is defined as the difference in BM ratios between the bottom
and top quintile portfolios. Aggregate BM is computed by summing book equity values across all firms and divided by the corresponding sum of market equity values. The output gap is the percentage
deviation of real GDP from the CBO’s estimate of potential real GDP. Inflation is the annualized percentage four-quarter growth in the GDP price deflator from the St. Louis Fed (GDPDEF). The one-year
real rate is the one-year Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percent. In columns (1)-(6), we
follow Hamilton (2017) in extracting the cyclical component of the real rate and use it in the regression. We do the same for inflation, the aggregate BM ratio, and the output gap. See Section A2.1 for
more details on the procedure. Columns (7)-(9) use the raw real rate. We do not present first-difference analysis of the raw real rate because this maps directly to the first-difference analysis of the linearly
detrended real rate that we present in the main text. Standard errors are reported under point estimates and computed using Newey-West (1987) with five lags. In each set of regressions, we normalize PVS
(or its first difference) to have a mean of zero and a variance of one. * indicates a p-value of less than 0.1 and ** indicates a p-value of less than 0.05. Data is quarterly and spans 1970Q2-2016Q2.



Table A.2: The Real Rate and Future Returns (Alternative Filters and Raw Series)

Panel A: Return Forecasting

Vol-Sorted Rett→t+1 Mkt-Rft→t+1

(1) (2) (3) (4)

Hamilton-Filtered Real Rate (r̃t) 1.49** -0.19
(0.58) (0.39)

Raw Real Rate 1.17** -0.24
(0.46) (0.27)

Adj. R2 0.03 0.03 -0.00 -0.00
N 184 184 184 184

Panel B: Aggregate Earnings and Dividend Growth Forecasting

Dep. Variable: gE
t,t+1 gE

t,t+4 gD
t,t+1 gD

t,t+4

(1) (2) (3) (4) (5) (6) (7) (8)

r̃t -4.32 -11.45 0.10 -0.06
(6.34) (7.60) (0.51) (0.59)

Rt -3.68 -7.45 -0.64 -0.75
(4.10) (5.07) (0.39) (0.48)

Adj R2 0.00 0.00 0.06 0.04 -0.00 0.04 -0.01 0.07
N 184 184 181 181 184 184 181 181

Notes: Panel A of this table uses the one-year real interest rate to forecast returns on either the low-minus-high volatility equity portfolio or the
excess returns on the aggregate stock market. For all NYSE, AMEX, and NASDAQ firms in CRSP, we compute volatility at the end of each quarter
using the previous sixty days of daily returns. We then form equal-weighted portfolios based on the quintiles of volatility. Volatility-sorted returns
are returns on the lowest minus highest volatility quintile portfolios. Vol-Sorted Ret in the forecasting regression corresponds to returns on this
low-minus-high volatility portfolio. When forecasting the aggregate stock market, we use the excess return of the CRSP Value-Weighted index
obtained from Ken French’s website. For quarterly regressions, standard errors are computed using Newey-West (1987) with two lags. Panel B of
the table reports forecasting regressions of real aggregate earnings growth (gE ) or real aggregate dividend growth (gD) using the one-year real rate.
Real earnings and real dividends come from Robert Shiller’s website. The one-year real rate is the one-year Treasury bill rate net of one-year survey
expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percent. In the table, r̃t is the cyclical
component of the real rate, extracted using Hamilton (2017). See Section A2.1 for more details on the procedure. Rt is simply the raw real rate.
Standard errors are reported below point estimates and computed using Newey-West (1987) with two lags for quarterly regressions and five lags for
annual. * indicates a p-value of less than 0.1 and ** indicates a p-value of less than 0.05. For both panels, all regressions have a constant, but we
omit the estimates to save space. Data is quarterly and spans 1970Q2-2016Q2. Growth rates and returns and expressed in percentage terms.
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Table A.3: Subsample Analysis of PV St and the Real Rate

Dep. Variable: One-Year Real Rate
Levels First-Differences

(1) (2) (3) (4) (5) (6) (7) (8)
PVS 1.26** 1.08** 1.05** 0.53** 0.40** 0.24** 0.29** 0.24**

(0.24) (0.28) (0.20) (0.11) (0.14) (0.10) (0.10) (0.09)

Subsample
Main Main, Long Pre-1977 Main Sample Main, Long Pre-1977

Ex. Volcker Ex. Volcker
N 185 145 253 95 184 143 252 94
Adj. R2 0.41 0.30 0.26 0.21 0.13 0.13 0.08 0.11

Notes: This table reports regression estimates of the one-year real rate on the contemporaneous spread in book-to-market (BM) ratios between low- and high-volatility stocks (PV St ). For all NYSE, AMEX,
and NASDAQ firms in CRSP, we compute volatility at the end of each quarter using the previous sixty days of daily returns. We then form equal-weighted portfolios based on the quintiles of volatility.
Within each quintile, we compute the average book-to-market (BM) ratio. The Appendix contains full details on how we compute BM ratios. PV St is defined as the difference in BM ratios between the
bottom (BM Low Vol) and top quintile (BM High Vol) portfolios. The one-year real rate is the one-year Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from
the Survey of Professional Forecasters, expressed in percent. For the columns listed as “Main Sample” and “Ex. Volcker”, we linearly detrend the one-year real rate using the sample 1970Q2-2016Q2.
Standard errors are listed below each point estimate in parentheses and are computed using Newey-West (1987) with five lags. * indicates a p-value of less than 0.1 and ** indicates a p-value of less than
0.05. In the table, PV St is standardized to have mean zero and variance one. This is true in both the levels regression and the first-differenced regressions. Data is quarterly and the subsamples are as
follows: (i) “Main” is from 1970Q2-2016Q2 and corresponds to the sample used in the main text; (ii) “Main, Ex. Volcker” is 1970Q2-1976Q4 and 1987Q4-2016Q2. It is the main example but excludes the
period 1977Q1-1986Q4; (iii) “Long” is the period 1953Q2-2016Q2. To extend PVS back to 1953, we use the book equity data from Davis, Fama, and French (2000). In addition, to compute the one-year
real rate prior to 1970Q2, we take the 1-year nominal rate minus the four-quarter moving average of inflation; and (iv) “Pre-1977” is 1953Q2-1976Q4.



Table A.4: Decomposition of the Real Interest Rate and PV St

Regression on PVS
One-Year Real Rate Decomposition b se(b) Adj. R2

(1) Baseline Detrended Real Rate 1.26 0.24 0.41
(2) Baseline Raw Real Rate 1.41 0.25 0.37

(3) Nominal 1-Year Rate 1.90 0.59 0.27
(4) Expected Inflation 0.49 0.41 0.06

(5) Fixed Taylor Rule Implied Rate (Taylor, 1993) 0.36 0.33 0.04
(6) Residual 1.05 0.39 0.23

(7) Fitted Taylor Rule Implied Rate 0.22 0.20 0.04
(8) Residual 1.19 0.30 0.33

Notes: This table reports univariate regressions of several variables on PV S. Section A1 of the internet appendix contains full details on how we
compute PV St , defined as the difference in book-to-market ratios between low and high volatility stocks. In Row (1), the dependent variable in the
regression is the linearly detrended one-year real rate. The dependent variable in Row (2) is the raw one-year real rate. The one-year real rate is
the one-year Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters,
expressed in percent. Rows (3) and (4) decompose the raw one-year real rate into the one-year nominal rate and expected inflation. Rows (5) and (6)
decompose the raw one-year real rate into a Taylor (1993) rule component and a residual component. The Taylor (1993) rule component is defined
as Taylor1993t = 0.5× (Out putGap)+0.5× (In f lation−2)+2. The output gap is the percentage deviation of real GDP from the CBO’s estimate
of potential real GDP. Inflation is the annualized percentage four-quarter growth in the GDP price deflator from the St. Louis Fed (GDPDEF). The
Taylor (1993) rule residual used in Row (5) is then Raw Real Ratet −Taylor1993t . Rows (7) and (8) use the same decomposition, where the fitted
Taylor rule is defined as the fitted value from a regression of the raw real rate on the output gap and inflation. The Fitted Taylor Rule residual in Row
(8) is the residual from the aforementioned regression. Standard errors are computed using Newey-West (1987) with five lags. Data is quarterly and
the full sample spans 1970Q2-2016Q2. In all cases, PV St is standardized to have a mean of zero and a variance of one.
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Table A.5: Robustness of Different Approaches to Constructing PVS

PV St = a+b×Xt RealRatet = a+ c×Xt

X-Variable b se(b) R2 c se(c) R2

(1) PV S 1.26 0.24 0.41
(2) PV SLast 0.86 0.08 0.73 0.86 0.24 0.19
(3) PV S2M 0.92 0.10 0.84 1.01 0.29 0.26
(4) PV SMB 0.85 0.10 0.73 1.33 0.16 0.45
(5) PV STerc 0.99 0.01 0.99 1.31 0.23 0.44
(6) PV S2Y r 0.94 0.05 0.88 1.40 0.21 0.51

Notes: This table shows the regressions of PV St onto variants of itself and then also regressions of the one-year real rate onto variants of PV S. PV St refers to the primary variable used in the paper.
PV SLast uses a 2-month window to measure volatility and uses the most recent market value when constructing book-to-market ratios. PV S2M uses a 2-month window to measure volatility and uses the
median market capitalization over the previous 2-months to compute book-to-market ratios. PV SMB is the average market-to-book of high-volatility stocks minus the average of low-volatility stocks. The
construction of this variable mirrors that of PV St , though we winsorize individual market-to-book ratios at their 5% tails to mitigate the impact of outliers. To compute PV STerc, we first sort stocks into
terciles, as opposed to quintiles, based on their trailing two-month volatility at the end of each quarter. PV STerc is the average book-to-market ratio of the low-tercile volatility firms minus the average of the
high-tercile volatility firms, where we again mimic the construction of our original PVS variable for book-to-market ratios. PV S2Y r is the version of PVS that uses a 2-year window to measure volatility, as
opposed to a 2-month window. The variable RealRate is the one-year nominal Treasury rate minus the one-year ahead inflation expectation from the Survey of Professional Forecasters, linearly detrended
and expressed in percentage points. In the table, PV St and all of its variants have been standardized to have a mean of zero and variance of one. Standard errors are computed using Newey-West (1987)
with five lags. Data is quarterly and runs from 1970Q2 to 2016Q2 (N = 185).



Table A.6: The Real Rate and Valuation of Other Characteristic-Sorted Portfolios - Univariate
Results

Real Ratet = a+b×Xt + εt

Levels First-Differences
b se(b) Adj. R2 b se(b) Adj. R2

Univariate:
(1) Duration -0.69 0.26 0.12 -0.22 0.13 0.03
(2) Leverage 0.54 0.24 0.07 0.17 0.08 0.02
(3) Beta 1.20 0.21 0.37 0.13 0.08 0.01
(4) LR Beta 1.12 0.18 0.32 0.13 0.07 0.01
(5) 2M-Beta 0.35 0.25 0.03 0.36 0.14 0.11
(6) CF Beta -0.02 0.29 -0.01 -0.04 0.07 -0.00
(7) Size -1.12 0.19 0.32 -0.25 0.11 0.05
(8) Value 0.69 0.21 0.12 0.18 0.09 0.02

Kitchen-Sink:
(9) PVS 2.04 0.57 0.59 0.46 0.16 0.17

Notes: This table reports regression estimates of the one-year real rate on the book-to-market spreads of portfolios formed on various sorting
characteristics. Rows (1)-(8) run the following regression, in both levels and first-differences: Real Ratet = a+ b×Y-Sorted BM Spreadt + εt ,
where Y-Sorted BM Spreadt is the spread in book-to-market ratios between stocks sorted on characteristic Y. Our main variable of interest in the
study is the spread in book-to-market ratios between high volatility and low volatility stocks (PV St ). For all NYSE, AMEX, and NASDAQ firms in
CRSP, we compute volatility at the end of each quarter using the previous sixty days of daily returns. We then form equal-weighted portfolios based
on the quintiles of volatility. Within each quintile, we compute the average book-to-market (BM) ratio. PV St is defined as the difference in BM
ratios between the bottom and top quintile portfolios. We form book-to-market spreads in the same fashion for other sorting variables. The sorting
variables we use are: (1) Duration (Weber (2016)); (2) Leverage, measured as long-term debt from COMPUSTAT divided by market equity; (3)
CAPM Beta, measured using monthly data over rolling 5 year windows; (4) Long-Run (LR) CAPM Beta, measured using semi-annual data over a
rolling ten year window; (5) 2M-Beta, computed at the end of each quarter using the previous sixty days of daily returns; (6) Cashflow (CF) Beta,
which is measured by regressing EBITDA growth on national income growth; (7) market capitalization; and (8) book-to-market ratios themselves
(value). Spreads are always between the high quintile and the low quintile of the sorting variable. In Row (9), we run a kitchen-sink regression of
the real rate on PV St plus all of the book-to-market spreads in rows (1)-(8) and report the estimated coefficient on PV St . The real rate is the one-year
Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in
percent and linearly detrended. In all cases, we normalize all book-to-market spreads (or their first-difference) to have mean zero and variance one.
Standard errors are computed using both Newey-West (1987) with five lags. Italicized point estimates indicates a p-value of less than 0.1 and bold
point estimates indicate a p-value of less than 0.05. Data is quarterly and spans 1970Q2-2016Q2.
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Table A.7: Horse Races and Alternative Constructions of PVS

Levels First-Differences

Full Pre-Crisis Full Pre-Crisis

b se(b) R2 b se(b) R2 b se(b) R2 b se(b) R2

(1) Baseline 1.26 0.25 0.41 1.50 0.21 0.47 0.44 0.16 0.13 0.63 0.17 0.21

Alternative Constructions:
(2) Value-Weight 1.12 0.25 0.32 1.42 0.24 0.41 0.31 0.13 0.08 0.40 0.15 0.10
(3) 2-Yr Volatility 1.42 0.23 0.52 1.62 0.20 0.54 0.26 0.11 0.05 0.43 0.10 0.10

Horse-Races:
(4) Liquidity 1.39 0.22 0.46 1.57 0.21 0.50 0.37 0.17 0.15 0.56 0.19 0.22
(5) Duration 1.17 0.28 0.41 1.31 0.27 0.48 0.44 0.14 0.12 0.61 0.14 0.20
(6) Leverage 1.50 0.25 0.43 1.64 0.23 0.47 0.57 0.20 0.14 0.74 0.22 0.21
(7) CAPM Beta 1.26 0.23 0.41 1.46 0.20 0.47 0.32 0.12 0.15 0.50 0.12 0.23
(8) Size 1.08 0.46 0.41 1.42 0.41 0.46 0.61 0.25 0.13 0.73 0.29 0.20
(9) Value 1.52 0.31 0.43 1.70 0.26 0.47 0.69 0.22 0.16 0.79 0.24 0.22

Notes: This table reports a battery of robustness exercises for the relationship between PV St and the real rate documented in Table III in the main text. Specifically, we report time-series regression results
of the following form: Real Ratet = a+b×PV St +θXt + εt , where PV St is the average book-to-market ratio of low-minus-high volatility stocks. We run this regression in levels and in first differences
and, in each case, we standardize PV St (or its first-difference) to have a mean of zero and variance of one over the full sample. Xt is a one of several control variables. For all specifications, the table reports
the estimated coefficient on PV St . Row (1) repeats our baseline result from Table III in the main text, columns (2) and (6). Row (2) uses value weights instead of equal weights when forming PV St . Row
(3) constructs PV St using the past two years of return volatility, as opposed to the past two months. In rows (4)-(9), we run horse races of PV St against several other variables. Row (4) controls for the
spread between off-the-run and on-the-run Treasury yields (Krishnamurthy (2002)). In rows (5)-(9), we control for the book-to-market spread based on other characteristic sorts. The CAPM beta is based
daily stock returns over a rolling two-month window. See the internet appendix for a description of each characteristic, details on variable construction, and alternative CAPM betas. The one-year real rate
is the one-year Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percent and linearly detrended. The listed
standard errors are computed using Newey-West (1987) with five lags. Italic point estimates indicates a p-value of less than 0.1 and bold indicates a p-value of less than 0.05. Data is quarterly and the full
sample spans 1970Q2-2016Q2, while the pre-crisis sample ends in 2008Q4.



Table A.8: The Real Rate and Double-Sorted Versions of PVS

Real Ratet = a+b×Y-Neutral PVSt + εt

Levels First-Differences
Characteristic Y b se(b) Adj. R2 b set(b) Adj. R2

(1) Duration 0.81 0.20 0.16 0.36 0.12 0.10
(2) Leverage 1.16 0.22 0.35 0.38 0.13 0.12
(3) 2M-Beta 1.30 0.22 0.43 0.24 0.09 0.04
(4) Size 1.23 0.24 0.39 0.38 0.14 0.12
(5) Value 1.10 0.22 0.31 0.34 0.13 0.09
(6) Industry-Adjusted 1.15 0.21 0.34 0.29 0.11 0.06
(7) Div. Payers 1.22 0.18 0.38 0.27 0.09 0.06
(8) Non-Div. Payers 0.63 0.26 0.10 0.31 0.13 0.08

Notes: This table reports a battery of robustness exercises for our main results. Specifically, we report time-series regression results of the following
form, in both levels and first-differences: Real Ratet = a+ b×Y-Neutral PVSt + εt . For rows (1)-(5), the variableY-Neutral PVSt is constructed
by sorting all NYSE, AMEX, and NASDAQ firms in CRSP into two bins based on the median value of characteristic Y at time t. Within the
high-Y (above median) firms, we further sort firms into terciles based on their volatility over the previous sixty days. Within each tercile, we
compute the average book-to-market (BM) ratio between the low and high-volatility firms. We repeat this procedure for firms in the low-Y bucket.
Y-Neutral PVSt is then defined as (BMt of Low-Volatility − BMt of High-Volatility with High Y)/2 + (BMt of Low-Volatility − BMt of High-
Volatility with Low Y)/2. In row (6), we compute an industry-adjusted version of PV St by first sorting stocks into industries based on their SIC code
and the 48 industry definitions on Ken French’s website. Within each industry i we sort firms into quintiles based on their trailing 60-day volatility
and then define PV Si,t as the average BM ratio of low-volatility firms in industry i minus the average BM ratio of high-volatility firms in industry i.
The industry-adjusted PV St is defined as the equal weighted PV Si,t across all 48 industries. In row (7), we construct PV St only for the set of firms
who have paid a dividend over the past twenty-four months. Row (8) repeats the exercise for the set of firms that have not paid a dividend over the
past twenty-four months. See Section A2.7.3 of this appendix for more details on how we construct each of these versions of PV St . In all cases, we
standardize PV St (or its first difference) to have a mean of zero and a variance of one. The one-year real rate is the one-year Treasury bill rate net
of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percent and linearly
detrended. Standard errors are computed using Newey-West (1987) with five lags. Italicized point estimates indicates a p-value of less than 0.1 and
bold point estimates indicate a p-value of less than 0.05. Data is quarterly and the full sample spans 1970Q2-2016Q2.
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Table A.9: Volatility-Sorted Returns and Monetary Policy Surprises - Including Unscheduled FOMC Dates

Vol-Sorted Rett→t+1 = a+b×MP Shockt→t+1 + εt→t+1

Quarterly Data Daily Data

All Scheduled All Scheduled Sample

MP Shock b se(b) b se(b) b se(b) b se(b) Start End

Romer and Romer (2004) 0.75 1.55 0.71 1.55 0.27 0.27 0.27 0.27 1970Q1 1996Q4

Bernanke and Kuttner (2005) -2.94 14.18 -1.65 21.18 5.55 3.96 -1.08 2.14 1989Q2 2008Q2

Gorodnichenko and Weber (2016) -1.14 18.64 1.60 52.57 13.34 6.13 3.67 3.73 1994Q1 2009Q4

Nakamura and Steinsson (2018) 1.46 23.91 12.83 58.14 18.74 8.79 5.29 4.86 1995Q1 2014Q1

Notes: This table reports regressions of volatility-sorted returns onto monetary policy shocks. For all NYSE, AMEX, and NASDAQ firms in CRSP, we compute volatility at the end of each quarter using
the previous sixty days of daily returns. We then form equal-weighted portfolios based on the quintiles of volatility. Volatility-sorted returns are returns on the lowest minus highest volatility quintile
portfolios. Quarterly return regressions aggregate daily monetary policy shocks by summing over all shocks within a quarter. The Romer and Romer (2004) shock is the change in the intended Federal
Funds rate inferred from narrative records around monetary policy meetings, after controlling for changes in the Federal Reserve’s information. The Bernanke and Kuttner (2005) shock is derived from
the price change in Federal Funds future contracts relative to the day before the policy action. The Gorodnichenko and Weber (2016) shock is derived from the price change in Federal Funds futures from
10 minutes before to 20 minutes after an FOMC press release. The Nakamura and Steinsson (2018) shock is the unanticipated change in the first principal component of interest rates with maturity up to
one year from 10 minutes before to 20 minutes after an FOMC news announcement. Columns listed as “All” include all policy changes and “Scheduled” includes only changes that occurred at regularly
scheduled policy meetings. In restricting the analysis to regularly scheduled meetings, we exclude quarters after 1993Q4 where the Federal Reserve made policy changes outside of scheduled meetings.
Prior to 1994, policy changes were not announced after meetings so the distinction between scheduled and unscheduled meetings is not material. Robust standard errors are reported.



Table A.10: PV St , the Real Rate, and Future Returns to Volatile Assets in Other Asset Classes

Forecasting Low-High Vol Rett→t+1 with
PV St Real Ratet

Asset Class N Mean Volatility b se(b) R2 b se(b) R2

U.S. Stocks 184 2.7 29.6 5.34 1.04 0.13 1.57 0.56 0.04
U.S. Corporate Bonds 136 -3.1 8.9 2.36 0.70 0.27 0.51 0.27 0.03
Sovereign Bonds 50 -10.9 19.5 2.89 1.60 0.09 0.46 0.78 -0.02
Options 88 -16.0 17.8 1.92 0.80 0.03 1.07 0.56 0.02
CDS 31 -7.0 6.4 1.77 0.40 0.47 0.77 0.31 0.11
Commodities 89 10.3 35.4 1.19 2.44 -0.01 -0.34 1.33 -0.01
FX 120 1.2 10.8 -0.20 0.33 -0.01 -0.57 0.38 0.02

Notes: This table reports summary statistics and forecasting results for portfolios sorted on volatility in other asset classes. For U.S. stocks, the low-minus-high vol return is defined as in Panel A. For other
asset classes, we use the portfolios in He et al. (2017) as test assets. Within each asset class and in each quarter, we sort the test portfolios based on their trailing 5-year monthly volatility. We then form a
new portfolio that is long the lowest-volatility portfolio and short the highest-volatility portfolio within each asset class. For U.S. stocks, we use our own low-minus-high volatility portfolio based on all
CRSP stocks. The reported mean and the volatility are annualized and in percentage terms. The columns under “Forecasting Low-High Vol Rett→t+1” report the point estimate, t-statistic, and adjusted
R2 from forecasting one-quarter ahead returns on the low-minus-high volatility trade within each asset class using PV St or Real Ratet . Standard errors are based on Newey-West (1987) standard errors
with two lags. Italicized point estimates indicates a p-value of less than 0.1 and bold point estimates indicate a p-value of less than 0.05. The real rate is the one-year Treasury bill rate net of one-year
survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percentage points and linearly detrended. PV St is the average book-to-market ratio of
low-minus-high volatility stocks. We standardize PV St to have mean zero and variance one for our full sample (1970Q2-2016Q2). Quarterly return data from He et al. (2017) ends in 2012 and data
availability varies with asset class. All returns are expressed in percentage points.



Table A.11: Robustness: PVS and Real Outcomes

Investment-Capital Ratio Output Gap Unemployment

b se(b) b se(b) b se(b)

(1) Baseline 0.22 0.05 0.29 0.09 -0.11 0.03
(2) Agg B/M 0.24 0.04 0.34 0.08 -0.12 0.04
(3) Yield Spread 0.22 0.05 0.30 0.08 -0.13 0.03
(4) Cochrane-Piazzesi 0.23 0.05 0.28 0.08 -0.11 0.03
(5) GZ Spread 0.14 0.07 0.20 0.13 -0.08 0.06
(6) Policy Uncertainty 0.22 0.04 0.31 0.07 -0.13 0.06

Notes: This table compares other measures of financial conditions to PV St , the average book-to-market ratio of low-minus-high volatility stocks. This table presents regression evidence for forecast horizon
h = 1. We run our baseline local projections adding different control variables including the aggregate book-to-market ratio, the 10-year minus 1-year Treasury yield spread, the Cochrane and Piazzesi
(2005) bond risk-factor, the Gilchrist and Zakrajšek (2012) credit spread, and the Baker et al. (2016) policy uncertainty variable. PV St continues to have forecasting power for future macroeconomic
outcomes in all cases.



Table A.12: PVS and Firm-Level Outcomes

Dependent Variable % CAPXAnn
i,t+4/Ai,t

Full Sample 1983Q1-1999Q4 2000Q1-2016Q2

(1) (2) (3) (4) (5) (6)

% CFAnn
i,t+4/Ai,t 0.08** 0.07** 0.09** 0.09** 0.05** 0.05**

(0.00) (0.00) (0.01) (0.01) (0.00) (0.00)
PV St 0.63** 0.00 0.47** 0.00 0.33** 0.00

(0.10) (0.00) (0.16) (0.00) (0.06) (0.00)
PV St ×1q=2

it 0.15** 0.17** 0.19** 0.17* 0.13** 0.13**
(0.04) (0.04) (0.09) (0.10) (0.04) (0.03)

PV St ×1q=3
it 0.24** 0.29** 0.30** 0.29** 0.27** 0.28**

(0.04) (0.05) (0.11) (0.12) (0.05) (0.05)
PV St ×1q=4

it 0.28** 0.38** 0.45** 0.46** 0.36** 0.38**
(0.06) (0.06) (0.14) (0.14) (0.05) (0.06)

PV St ×1q=5
it 0.16* 0.33** 0.37** 0.43** 0.42** 0.45**

(0.09) (0.08) (0.15) (0.16) (0.07) (0.08)

FE i (i, t) i (i, t) i (i, t)
R2 0.57 0.59 0.59 0.59 0.68 0.69
# of Firms 9,356 9,356 6,792 6,792 5,604 5,604
N 315,333 315,333 155,080 155,080 160,073 160,073

Notes: This table studies how firm-level investment interacts with PVS. We measure firm i’s investment at time t as the running four-quarter total
CAPX (denoted CAPXAnn

i,,t ) divided by the book value of assets at time t − 4 (denoted Ai,t−4). CFAnn
i,t is the running four-quarter total cash flow

for the firm, computed as depreciation and amortization plus income before extraordinary items. Both are winsorized at their 1% tails. We run
regressions of the form: CAPXAnn

i,t+4/Ai,t = FE +∑
5
q=2 aq ·1q

it +b1×CFAnn
i,t+4/Ai,t +∑

5
q=1 cq×1q

it +d2×PV St +∑
5
q=2 dq×PV St ×1q

it + εi,t+4, where

1 j
it is an indicator function for whether firm i is in volatility-quintile j at time t. PV St is average book-to-market ratio of low-minus-high volatility

stock and in all regressions is standardized to have mean zero and variance one for the period 1970q2-2016q2. FE is a set of fixed effects as indicated
in the table. We use all firms in the CRSP-COMPUSTAT merged database where the value of book assets is greater than $10 million. We exclude
financial firms and firms with negative investment. Standard errors are listed below point estimates and are double-clustered by firm and by quarter.
* indicates a p-value of less than 0.1 and ** indicates a p-value of less than 0.05. The full sample runs from 1983Q1-2016Q2. The total size of the
subsamples does not match the full sample because we drop fixed-effect groups of size one.
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Table A.13: Characteristics of Low versus High-Volatility Firms

Low-Vol Firms High-Vol Firms
Total Assets ($ mm) Mean 10,821 722

Median 1,323 32

ROA (%) Mean 12.2 -6.9
Median 11.8 0.01

Investment Rate (%) Mean 6.9 13.9
Median 5.3 7.4

Notes: This table shows statistics on the nominal size (total assets), profitability (return on assets, or ROA), and investment rates of firms sorted
into volatility quintiles. At each date t, we compute the trailing 60-day volatility of each firm in the CRSP-COMPUSTAT merged database and
them sort stocks into quintiles based on their volatility. ROA is defined as the trailing four-quarter sum of earnings before operating income before
depreciation, scaled by the book value of assets at t−4. The investment rate for each firm is defined as the trailing four-quarter sum of CAPX and
R&D, scaled by the book value of assets at t−4. We winsorize ROA and investment rates at their 1% tails to mitigate the impact of outliers. Data
is quarterly and spans 1983Q1-2016Q2.
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Table A.14: High-Volatility and Low-Volatility Firm Investment

Aggregate I/K Low-Vol Medium-Vol High-Vol
Aggregate I/K 1 0.35 0.59 0.79
Low-Vol 0.35 1 0.87 -0.08
Medium-Vol 0.59 0.87 1 0.27
High-Vol 0.79 -0.08 0.27 1

Notes: This table shows the correlation of aggregate investment (private nonresidential fixed investment divided by the aggregate capital stock)
with the investment rates of firms sorted into volatility terciles. At each date t, we compute the trailing 60-day volatility of each firm in the CRSP-
COMPUSTAT merged database and them sort stocks into terciles based on their volatility. The investment rate for each firm is defined as the
trailing four-quarter sum of CAPX and R&D, scaled by the book value of assets at t−4. The investment rate within each tercile is the average rate
across firms in that tercile. Data is quarterly and spans 1990Q1-2016Q2. We start in 1990Q1 because the level of total investment in COMPUSTAT
quarterly data aligns with total investment from COMPUSTAT annual from that point forward.
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Table A.15: PVS and Investor Expectations of Cash Flows

Panel A: Contemporaneous Relationship with Expectations of Cash Flows

Dependent Variable PV St

(1) (2) (3)

High-Minus-Low Volatility Stocks:
Et [ROEt+1] 0.29**

(0.12)
Et [ROEt+1→t+4] 0.30**

(0.13)
Et [Long-Term Growth] 0.35*

(0.20)

Adj. R2 0.10 0.11 0.15
N 102 110 110

Panel B: PVS, Cash-Flow Surprises, and Future Revisions in Expectations

Y = a+b×PV St + ε

b se(b) Adj. R2 N
Expected Cash Flows:

(1) ROE Surpriset+1→t+4 0.13 0.13 0.00 94
(2) Et+2 [ROEt+3]−Et [ROEt+3] -0.09 0.10 -0.00 102

Notes: Panel A of this table shows contemporaneous regressions of PV St on investor expectations of cash flows. In column (1), for each firm i
and date t, we use the time-t expectation of quarterly accounting return on equity (ROE) at time t +1, denoted Et [ROEi,t+1], from the Thompson
Reuters IBES dataset. At the portfolio level, Et [ROEt+1] is the cross-sectional median for high-volatility stocks minus the median for low-volatility
stocks, where stocks are designated as high or low volatility at time t based on their past 60 days of realized returns. In column (2), we mirror the
expected ROE measure in column (1) but instead use the annual ROE forecast from IBES for the next fiscal year. Column (3) again follows the
same approach, but instead uses the “long-term growth” estimate provided by IBES. PV St is the average book-to-market ratio of low-minus-high-
volatility stocks. We include a constant in all regressions and all variables are standardized to have mean zero and unit variance. Newey-West (1987)
standard errors with five lags are listed below point estimates. In Panel B, we use PV St to forecast future revisions in expected cash flows and
risk. In row (1), we forecast the median return on equity (ROE) surprise for low-volatility stocks minus the median ROE surprise for high-volatility
stocks, where ROE surprises are computed using Thomson Reuters IBES data. The time horizon for our ROE surprises is time t +1 to t +4. In row
(2), we compute revisions in expected ROEt+3 based on the Thompson Reuters IBES database of analyst forecasts. Specifically, for each firm i and
date t, we use the median forecast of ROE time t +3, denoted Et+2 [ROEi,t+3]. For each (i, t), we choose the shortest forecast horizon h such that
the quarterly earnings are at least two fiscal quarters away, which in calendar time is generally between 3 and 4 quarters from date t. For each firm i,
we then define the revision in expected ROE at time (t +2) as Et+2 [ROEi,t+3]−Et [ROEi,t+3]. At the portfolio level, Et+2 [ROEt+3]−Et [ROEt+3]
is the cross-sectional median revision for high-volatility stocks minus the median revision for low-volatility stocks. In all cases, data is quarterly
and depends on data availability, though the full sample for PV St spans 1970Q2 to 2016Q2.
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Table A.16: PVS, the Real Rate, and Other Measures of Expected Risk

PV St = a+b×Xt

X-variable N b se(b) R2

(1) σt
(
Aggregate Stock Market Rett+1

)
185 -0.23 0.15 0.05

(2) σt (Industrial Production Growtht+1) 184 -0.10 0.23 0.00
(3) Macro Uncertainty Indext 185 0.07 0.23 -0.00
(4) SPF Macro Uncertainty Index 126 -0.44 0.17 0.27

Notes: This table different measures of economic risk with PVSt and the one-year real interest rate. σt+1 (Agg. Stock Market) in Row (1) is the expected volatility of the aggregate stock market. From
1986 onward, it is the time t value of the VXO option implied volatility index from the CBOE. To fill in the data prior to 1986, we fit an AR(1) model to within-quarter realized volatility of the CRSP
Value-Weighted index. We then use the one-step ahead forecast made at time t from the AR(1) model, reindexed to create a smooth series when appending the VXO after 1986. In row (2), we fit an
ARMA(1,1)-GARCH(1,1) to industrial production growth and then use the one-step ahead GARCH volatility forecast as our time-t measure of expected risk. Row (3) uses the macroeconomic uncertainty
index from Jurado et al. (2015). Finally, in row (4) we create an index of macroeconomic uncertainty using forecast dispersion of growth rates in real GDP, industrial production, real private fixed
nonresidential investment, and corporate profits. We obtain 1-quarter, 2-quarter, and 4-quarter forecasts come from the Survey of Professional Forecasters for 1985 onwards, which is when real growth
rates were asked for instead of imputed. We then HP filter each series, standardize, and take a cross-sectional average to arrive at SPF Macro Uncertainty index. The first set of regressions in the table
shows the results of a univariate regression of PVSt on each of these expected risk measures. The second set of regressions in the table shows the results of a univariate regression of the real rate on
contemporaneous values of each variable. The one-year real rate is the one-year Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional
Forecasters, expressed in percent and linearly detrended. In all regressions, we standardize both PVS and the expected risk measures to have mean zero and variance one in order to facilitate comparison
of magnitudes. Standard errors are computed using Newey-West (1987) with five lags. Data is quarterly and the full sample spans 1970Q2-2016Q2.



Table A.17: Subjective Expectations and Realized Risk

Dep. Variable Realized Volatility(t + k, t +h)
k = 0,h = 4 k = 3,h = 4

Full Sample Pre-Crisis Full Sample Pre-Crisis
(1) (2) (3) (4) (5) (6) (7) (8)

IVt(t + k, t +h) 0.71** 0.46** 0.94** 0.36** 0.26** 0.19** 0.51** 0.27**
(0.08) (0.06) (0.09) (0.10) (0.08) (0.07) (0.14) (0.09)

Constant 0.36** 0.16* 0.77** 0.55**
(0.06) (0.08) (0.07) (0.12)

FE (ind× t) (ind× t) (ind× t) (ind× t)
R2 0.21 0.72 0.41 0.86 0.02 0.65 0.11 0.75
N 1,213 935 254 171 1,178 902 248 167

Notes: This table uses implied volatilities at the firm-level to forecast realized volatility for high-volatility firms. For each firm i and time t, we use the term structure of implied volatilities at time t to back
out what the implied volatility of returns is for the horizon t + k to t +h, under the assumption that quarterly returns are not autocorrelated. We then run the following panel regression:

Realized Volatilityi(t + k, t +h) = a+b× IVi,t(t + k, t +h)+ εi,t

We use all firms in the CRSP-OptionMetrics merged database. High-volatility firms are defined as in Table 1 of the main text. The row FE indicates whether a fixed effect was included in the regression and
industries are defined using the 30 industry definitions from Ken French’s website. Standard errors are listed below point estimates and are double-clustered by firm and by quarter. * indicates a p-value of
less than 0.1 and ** indicates a p-value of less than 0.05. The full sample runs from 1996Q1-2016Q2 and the pre-crisis sample runs from 1996Q1-2006Q2. The size of the subsamples that include fixed
effects do not match their counterparts without fixed-effects because we drop fixed-effect groups of size one.



Table A.18: Realized Risk, Expected Risk, and Good News

Dependent Variable ∆4HML-Realized Vol ∆4σt (EPSt+5) ∆4(% Banks Loose) ∆4Small Business Opt.
(1) (2) (3) (4)

Real GDP Surpriset−4→t -0.12 -0.38** -0.03 0.36**
(0.09) (0.13) (0.13) (0.11)

Corporate Profit Surpriset−4→t -0.44** -0.14** 0.54** 0.16*
(0.13) (0.07) (0.11) (0.08)

LMH-Vol ROEt−4→t -0.05 0.04 0.14** 0.06
(0.09) (0.07) (0.07) (0.08)

∆4Bank Net Chargeoffst 0.27** 0.31** -0.23** -0.17**
(0.08) (0.08) (0.08) (0.06)

Adj. R2 0.34 0.43 0.47 0.27
N 158 106 101 158

Notes: This table reports univariate regressions of four-quarter changes of various measures of realized and expected risk on: (1) the surprise in real GDP growth, defined as realized real GDP growth
from time t−4 to t minus the expected annual growth forecast at time t−4 made by the Survey of Professional Forecasters; (2) the four-quarter change in analysts’ expected risk for high-volatility versus
low-volatility firms as described in Table II in the main texgt; (3) the trailing annual ROE of the low-minus-high volatility portfolio; and (4) the four-quarter change in bank net chargeoff rate, taken from
bank call reports. In terms of our risk measures, in column (1), we use the change in the average realized stock return volatility of high-volatility firms minus that of low-volatility firms. In column (2), we
use the change in expected analyst uncertainty over earnings (see Table II in the main text for a complete description). In column (3), we use the change in the net percent of U.S. banks loosening lending
standards, taken from the Federal Reserve Senior Loan Officer Opinion Survey (SLOOS). In column (4), we use the change in the NFIB Small Business Optimism index. The operator ∆4Zt denotes Zt -
Zt−4 for variable Z. In each regression, we include a constant and standardize all variables to have mean zero and variance one. In all cases, Newey-West (1987) standard errors with five lags are listed
below point estimates. Data is quarterly and depends on data availability.
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