Manipulation of the Immune Response - Immunomodulation -

Janeway's Immunobiology, 9thed., 2017.

Immune system

Immune system is made of components, cells and organs that act together to defend the host from microbes.

Aim of immunomodulation

Immunomodulation methods

IMMUNOSUPPRESSION:

- •Immunosupressive drugs
- Monoclonal antibodies
- •Gene manipulation (CRISPR-Cas9, siRNA)

IMMUNOSTIMULATION:

- Antitumor therapy
- •BCG, adjuvans
- Interferons
- •Talidomide, levamisol
- •IL-2

- IMMUNISATION

- Vaccination
- Immunoglobulins

Immunosupression

When?

- Autoimmune diseases
- Organ transplantation
- Allergies

Problems:

- Lifetime usage of drugs
- Infections, tumors
- Nephrotoxicity
- Diabetogenic

Immunosupressive drugs

- Anti-inflammatory (NSAIDs, corticosteroids)
- Cytotoxic (azathioprine, cyclophosphamide)
- Noncytotoxic (cyclosporin A, tacrolimus, rapamycin)

Immunosuppressive drugs: steroids

Corticosteroids =

powerfull antiinflammatory drugs

- Prednisone (synthetic cortisol analog)
- Used in transplantations, autoimmune diseases, allergies
- Activated steroid receptors act as transcription factors

Effect on	Physiological effects			
↓ IL-1, TNF-α, GM-CSF ↓ IL-3, IL-4, IL-5, CXCL8	<pre>Inflammation caused by cytokines</pre>			
↓ NOS	↓ NO			
 Phospholipase A₂ Cyclooxygenase type 2 Annexin-1 	↓ Prostaglandins ↓ Leukotrienes			
Adhesion molecules	Reduced emigration of leukocytes from vessels			
f Endonucleases	Induction of apoptosis in lymphocytes and eosinophils			

Corticosteroid therapy

Figure 16.3 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Immunosuppressive drugs: steroids

© Fleshandbones.com Page et al: Integrated Pharmacology 2E

Corticosteroids physiology

 Possible multiple side effects

 Used in combination with other drugs to reduce toxicity

from P. Stewart, <u>Williams Textbook of Endocrinology</u>, 2003

Immune system: Anti-inflammatory action Immunosuppression

 \downarrow linear growth

Immunosupressive cytostatics

- Azathioprine, cyclophosphamide
 - Interfere with DNA synthesis (dividing cells)
 - Primarily planned to be used for anti-tumor therapy
 - Used in low dosage for autoimmune diseases (combination with corticosteroids)
 - Used in high dosage only before bone marrow transplantation to eliminate all lymphocytes
 - Cyclophosphamide (more toxic) developed as chemical weapon (*Mustard gas,* 1917.)

Non cytotoxic Immunosupressives

- Cyclosporin A
 - Discovered in 1971. (1976.)
- and Tacrolimus (FK506)
 - Less toxic
 - Bacterial/fungal origin
 - Interfere with clonal expansion of activated lymphocytes
 - Used in transplanted patients
 - Block calcineurin (cyclosporin A & tacrolimus)
 - T cells are more sensitive that other cells
- Sirolimus (Rapamycin)
 - inhibits lymphocyte proliferation and increases the number of Treg

Cyclosporin A and Tacrolimus

Figure 16.5 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Non cytotoxic Immunosupressive drugs

Immunological effects of cyclosporin A and tacrolimus				
Cell type	Effects			
T lymphocyte	Reduced expression of IL-2, IL-3, IL-4, GM-CSF, TNF- α Reduced proliferation following decreased IL-2 production Reduced Ca ²⁺ -dependent exocytosis of granule-associated serine esterases Inhibition of antigen-driven apoptosis			
B lymphocyte	Inhibition of proliferation secondary to reduced cytokine production by T lymphocytes Inhibition of proliferation following ligation of surface immunoglobulin Induction of apoptosis following B-cell activation			
Granulocyte	Reduced Ca ²⁺ -dependent exocytosis of granule-associated serine esterases			

Figure 16.4 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Immunosupression

DOI: 10.1056/NEJMra033540

Antibodies in therapy

- Monoclonal antibody therapy: transplantations, autoimmune diseases (supression), tumors (stimulation)
 - Cytotoxic (antibody-mediated cytotoxicity)
 - Neutralizing (block the function of target molecule)
 - Usually produced in mice problems?!?!?

Monoclonal antibodies developed for immunotherapy					
Generic name	Specificity	Mechanism of action	Approved indication		
Rituximab	Anti-CD20	Eliminates B cells	Non-Hodgkin's lymphoma		
Alemtuzumab (Campath-1H)	Anti-CD52	Eliminates lymphocytes	Chronic myeloid leukemia		
Muromomab (OKT3)	Anti-CD3	Inhibits T-cell activation			
Daclizumab	Anti-IL-2R	Reduces T-cell activation Kidney transplantat			
Basiliximab	Anti-IL-2R	Reduces T-cell activation			
Infliximab	Anti-TNF- α		Crohn's disease		
Certolizumab	Anti-TNF- α	Inhibit inflammation			
Adalimumab	Anti-TNF-α	induced by TNF- α	Dhaumahaid a thatta		
Golimumab	Anti-TNF-α		Rheumatoid arthritis		
Tocilizumab	Anti-IL-6R	Blocks inflammation induced by IL-6 signaling			
Canakinumab	Anti-IL-1β	Blocks inflammation caused by IL-1	Muckle–Wells syndrome		
Denosumab	Anti-RANK-L	Inhibits activation of osteoclasts by RANK-L Bone loss			
Ustekinumab	Anti-IL-12/23	Inhibits inflammation caused by IL-12 and IL-23	Psoriasis		
Efalizumab	Anti-CD11a $(\alpha_L \text{ integrin subunit})$	Block lymphocyte	Psoriasis (withdrawn from use in United States and European Union)		
Natalizumab	Anti- α_4 integrin	uanicking	Multiple sclerosis		
Omalizumab	Anti-IgE	Removes IgE antibody	Chronic asthma		
Belimumab	Anti-BLyS	Reduces B-cell responses	Systemic lupus erythematosus (pending approval)		
lpilimumab	Anti-CTLA-4	Increases CD4 T-cell responses	Metastatic melanoma		
Raxibacumab	Anti- <i>Bacillus anthracis</i> protective antigen (the cell-binding moiety of anthrax toxin)	Prevents action of Anthrax infection (pending approval)			

Figure 16.8 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Anti-CD4 Ab & graft tolerance

Figure 14-6 Immunobiology, 6/e. (© Garland Science 2005)

Anti-TNFa Ab in autoimmune diseases

Figure 16.9 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Works well for: Rheumatoid arthritis, Crohn's disease, ankylosing spondylitis Does not work for: multiple sclerosis

Anti-integrin Ab im MS

Figure 16.10 (part 1 of 2) Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Immune responses and tumors

Figure 16.12 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Malignant cells are monitored by immune system

Figure 16.13 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Tumors can avoid immune recognition

Mechanisms by which tumors avoid immune recognition						
Low immunogenicity	Tumor treated as self antigen	Antigenic modulation	Tumor-induced immune suppression	Tumor-induced privileged site		
No peptide:MHC ligand No adhesion molecules No co-stimulatory molecules	Tumor antigens taken up and presented by APCs in absence of co-stimulation tolerize T cells	T cells may eliminate tumors expressing immunogenic antigens, but not tumors that have lost such antigens	Factors (e.g.,TGF-β, IL-10, IDO) secreted by tumor cells inhibit T cells directly. Expression of PD-L1 by tumors	Factors secreted by tumor cells create a physical barrier to the immune system		
T cell CD28 LFA-1 TCR tumor	T cell DC C tumor	T cell apoptosis	Treg Treg Treg Treg Treg Treg Treg Treg Treg Treg Treg Tref			

Figure 16.14 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Escaping immune surveillance

Figure 16.16 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

mAbs and tumors

Figure 16.19 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Checkpoint blockade: anti CTLA-4 and anti-PD-1

Anti PD-1

U.S. Govt. has certain rights

Anti CTLA-4

Modern concepts of tumour immunotherapy

CRISPR/Cas9

Immunostimulation

When?

- Tumors
- Prevention of pathogenic infections
- Specific immunostimulants
 - antibodies or antigens
 - Vaccines
- Non-specific immunostimulants
 - adjuvants
 - non-specific immunostimulators

Problems:

- Unknown effects (novel methods and aproaches)
- Autoimmunity?