AQA

Please write clearly in block capitals.

Candidate number

Surname
Forename(s) \qquad
Candidate signature \qquad
AS

PHYSICS

Paper 1

Tuesday 15 May 2018
Morning Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Answer all questions.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ Describe the interaction that is responsible for keeping protons and neutrons together |
| :--- | :--- | :--- | in a stable nucleus.

You should include details of the properties of the interaction in your answer.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$ Nuclei can decay by alpha decay and by beta decay.

In alpha decay only one particle is emitted but in beta decay there are two emitted particles.

Explain how baryon number is conserved in alpha and beta decay.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 1 | $\mathbf{3}$ Kaons are mesons that can be produced by the strong interaction between pions and |
| :--- | :--- | :--- | protons.

The equation shows a reaction in which a kaon and a lambda particle are produced.

$$
\pi^{-}+\mathrm{p} \rightarrow \mathrm{~K}^{0}+\Lambda^{0}
$$

Deduce the quark structure of the Λ^{0}
quark structure $=$ \qquad

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{4}$ The kaon decays by the weak interaction.

The equation shows an example of kaon decay.

$$
\mathrm{K}^{0} \rightarrow \pi^{+}+\pi^{-}
$$

State one feature of this decay that shows it is an example of the weak interaction.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{5}$ There have been considerable advances in our understanding of particle physics over |
| :--- | :--- | :--- | :--- | the past 100 years.

Explain why it is necessary for many teams of scientists and engineers to collaborate in order for these advances to be made.
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 2 | 1 | Figure 1 shows a truck moving freely down a ramp inclined at an angle to the |
| :--- | :--- | :--- | :--- | horizontal.

Figure 1

The truck starts from rest at the top of the ramp and reaches point \mathbf{A}. Friction and air resistance are negligible.

As the truck moves down the ramp to point \mathbf{A}, its centre of mass has a total vertical displacement of 8.0 m

Calculate the speed of the truck at point \mathbf{A}.
speed $=$ \qquad $\mathrm{m} \mathrm{s}^{-1}$

Figure 2

The truck starts from rest and moves freely down the ramp. It reaches point \mathbf{C} and then moves along the horizontal runway to \mathbf{D}. Friction and air resistance are negligible.

Discuss how the acceleration of the truck in Figure 2 differs from the acceleration of the truck in Figure 1.
\qquad
Question 2 continues on the next page
 8.0 m

The speed of the truck when it reaches the horizontal runway is the same as the speed of the truck in Figure 1 when it reaches point \mathbf{A}.

Explain why.
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2} .4$ The horizontal runway in Figure $\mathbf{2}$ has negligible friction and air resistance. As the |
| :--- | :--- | :--- | truck moves along the runway, it starts to rain. The rain falls vertically and water collects in the truck.

Discuss whether there are any changes in the momentum of the truck and collected water.
\qquad

$\mathbf{0}$	$\mathbf{3}$ Figure $\mathbf{3}$ shows some of the energy levels for a hydrogen atom.

Figure 3

An excited hydrogen atom can emit photons of certain discrete frequencies. Three possible transitions are shown in Figure 3.

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{1}$ The transitions shown in Figure $\mathbf{3}$ result in photons being emitted in the ultraviolet, |
| :--- | :--- | :--- | visible and infrared regions of the electromagnetic spectrum.

To which region of the spectrum do the emitted photons belong?
Tick (\checkmark) the correct box for each transition, A, B and \mathbf{C}.

| 0 | 3 | 2 |
| :--- | :--- | :--- | Two ways to excite a hydrogen atom are by collision with a free electron or by the absorption of a photon.

Explain why, for a particular transition, the photon must have an exact amount of energy whereas the free electron only needs a minimum amount of kinetic energy.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 3 | $\mathbf{3}$ The surface of a sample of caesium is exposed to photons emitted in each of the |
| :--- | :--- | :--- | three transitions shown in Figure 3.

The threshold frequency of caesium is $5.1 \times 10^{14} \mathrm{~Hz}$
Determine whether any of these transitions would produce photons that would cause electrons to be emitted from the surface of caesium.
 Calculate the maximum speed of electrons emitted from the caesium.
maximum speed $=$ \qquad $\mathrm{m} \mathrm{s}^{-1}$

| $\mathbf{0}$ | $\mathbf{4}$ | Figure 4 shows a uniform beam supported by two light cables, $\mathbf{A B}$ and $\mathbf{A C}$, which are |
| :--- | :--- | :--- | attached to a single steel cable from a crane. The beam is stationary and in equilibrium.

Figure 4

0	$\mathbf{4}$.1

Condition 1 \qquad
\qquad
\qquad
Condition 2 \qquad
\qquad
\qquad

0	4	2
2		

\qquad
\qquad
 [2 marks]
\qquad
\qquad
\qquad
\qquad

0	4	4

Calculate the tension T_{1} in cable $\mathbf{A B}$ and the tension T_{2} in cable $\mathbf{A C}$.

Question 4 continues on the next page

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{5}$ The steel cable from the crane has a circular cross-section of diameter $1.5 \times 10^{-2} \mathrm{~m}$ |
| :--- | :--- | :--- | :--- | The cable is 12 m long.

Calculate the extension of the cable caused by the weight of the beam. You can assume that the weights of all cables are negligible.

Young modulus of steel $=2.0 \times 10^{11} \mathrm{~Pa}$
extension $=$ \qquad m

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1}$ Calculate the weight of an ice cube that has volume $4.0 \times 10^{-6} \mathrm{~m}^{3}{ }^{2}$

$$
\text { density of ice }=920 \mathrm{~kg} \mathrm{~m}^{-3}
$$

weight $=$ \qquad N

0	5	2

Figure 5

When the ice cube is placed in the beaker, it displaces a volume of water causing the water level to rise.
The weight of water displaced is equal to the weight of the ice cube.
Calculate the volume of water displaced by the ice cube.
density of water $=1000 \mathrm{~kg} \mathrm{~m}^{-3}$

$\mathbf{0}$	$\mathbf{5}$	B
$\mathbf{3}$		

The mass of water now displaced is $3.9 \times 10^{-3} \mathrm{~kg}$
Calculate the volume of the piece of iron.

$$
\text { density of iron }=7800 \mathrm{~kg} \mathrm{~m}^{-3}
$$

volume $=$ m^{3}

| $\mathbf{0}$ | $6 \quad$ A student connects four lamps $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} in the circuit shown in Figure 6. |
| :--- | :--- | The battery has an emf of 9.0 V and negligible internal resistance.

Figure 6

| 0 | 6 | -1 |
| :--- | :--- | :--- | Table 1 shows the operating conditions for the lamps when they are at normal brightness.

Table 1

Lamps	Operating voltage / V	Power/W
A and C	6.0	6.0
B and D	3.5	4.1

The student observes that two of the lamps are at their normal brightness. Assume that any changes in resistance of the lamps are negligible.

Determine which two lamps are at their normal brightness.
Use calculations to support your answer.

| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{2}$ The student connects another lamp \mathbf{E} in the circuit as shown in Figure $\mathbf{7}$. |
| :--- | :--- | :--- | Lamp \mathbf{E} is identical to lamps \mathbf{A} and \mathbf{C}.

Figure 7

Explain what the student would observe regarding the brightness of the lamps.
Refer to potential differences across lamp \mathbf{E} in your answer.
\qquad

| 0 | 6 | $\mathbf{3}$ Lamp B in Figure 7 fails so that it no longer conducts. This change does not affect |
| :--- | :--- | :--- | the resistance of the other lamps.

Deduce the effect on the current in the battery.
Use calculations to support your answer.
\qquad
\qquad

| 0 | 7 |
| :--- | :--- | interference fringes using a white light source in a darkened room. Light from the source passes through a single slit and then through two narrow slits S_{1} and S_{2}.

Figure 8

0	$\mathbf{7}$.	1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{2}$ A filter transmits only green light of wavelength λ and red light of wavelength 1.2λ |
| :--- | :--- | :--- | This filter is placed between the light source and the single slit.

Describe the interference pattern now seen on the white screen.
Use a calculation to support your answer.
\qquad
Question 7 continues on the next page

| 0 | $\mathbf{7}$ | $\mathbf{3}$ | A student decides to use the apparatus shown in Figure 8 to determine the |
| :--- | :--- | :--- | :--- | wavelength of red light using a filter that transmits only red light.

The student suggests the following changes:

- decrease slit separation s
- decrease D, the distance between the slits and the screen.

The student decides to make each change independently.
Discuss the effects each independent change has on the interference pattern, and whether this change is likely to reduce uncertainty in the determination of the wavelength.
\qquad

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE/SPACES PROVIDED

