Answer all the questions.

1	There is concern over the way the oceans are becoming more acidic as more carbon dioxide dissolves in them.				
	(a)	(i)	Draw a 'dot-and-cross' diagram for carbon dioxide.		
			Show outer electron shells only.		
		(ii)	[1] Use your diagram to state and explain the shape of a carbon dioxide molecule.		
		(,	out your diagram to state and explain the enape of a calcell alonge melocale.		
			[4]		
	((iii)	A bond between carbon and oxygen is polar but the molecule of carbon dioxide has no overall dipole.		
			Describe and explain the polarity of a carbon–oxygen bond.		
			Explain why the molecule of carbon dioxide has no overall dipole.		
	A		In your answer you should use appropriate technical terms, spelled correctly.		

(iv) Carbon dioxide forms hydrogen bonds with water.

Include relevant partial charges and lone pairs.

Draw a diagram to illustrate this.

		[3]
	(v)	Carbon dioxide is not very soluble in water.	
		Suggest an explanation for this in terms of hydrogen bonding.	
			•••
		[2]
(b)	An e	equilibrium occurring in the oceans is:	
		$CO_2(aq) + H_2O(I) \rightleftharpoons HCO_3^-(aq) + H^+(aq)$ equation 1	.1
	(i)	Explain why an increase in the concentration of dissolved carbon dioxide leads to a increase in the acidity of the water.	ın
		[2]

		$CO_2(aq) + H_2O(I) \rightleftharpoons HCO_3^-(aq) + H^+(aq)$ equation 1	1.1
	(ii)	The pH of the oceans is buffered by the reaction in equation 1.1 .	
		Explain the meaning of <i>buffered</i> and give the important condition necessary for the equilibrium to result in buffering.	his
			[4]
(c)	Give	e the conjugate base of HCO ₃ ⁻ .	
			[1]
(d)		erence books say that the pH of the oceans has changed from 8.179 in pre-industres to 8.069 today.	ial
	Cald	culate the percentage increase in [H ⁺].	

percentage increase in [H⁺] = % [2]

(e) (i) The shells of some sea creatures are made of calcium carbonate.

		Use the equations below to explain a possible effect of increased acidity on the these sea creatures.	e shells of
		$CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$ equ	uation 1.2
		$CO_3^{2-}(aq) + H^+(aq) \rightleftharpoons HCO_3^-(aq)$ equ	uation 1.3
			[3]
	(ii)	Explain one reason why it may be beneficial for the human race if more carbo dissolves in the oceans.	on dioxide
			[1]
(f)		be concentration of a saturated solution of carbon dioxide in water is 3.3×10^{-10} g at room temperature and pressure.	⁻³ mol per
	1.01	Okg of this saturated solution is boiled, releasing all the CO ₂ .	
	Cald	alculate the volume (in ${ m cm}^3$) that this ${ m CO}_2$ would occupy at room temperature and	pressure.
	One	ne mole of gas at room temperature and pressure occupies 24 dm ³ .	
	Give	ve your answer to an appropriate number of significant figures.	

volume =cm³ [3]

[Total: 29]

Turn over

2 Isocyanates are useful organic intermediates as they can be used to make pesticides and polymers.

an isocyanate

(a) Isocyanates can be formed by reacting compound A with bromine and alkali.

A textbook shows the steps in the reaction as:

- (i) Name the functional group in compound A.
 -[1]
- (ii) Name the type of reaction occurring in step 2.
 -[1]
- (iii) Draw 'curly arrows' on compound B to suggest the movement of electrons in step 3. [3]
- (b) Isocyanates (R–N=C=O) form carbamates by reacting with compounds with an –OH group.

One example of a carbamate, called 'carbaryl', is an insecticide. The structure of carbaryl is shown below.

(i) Complete the equation below for the formation of carbaryl by drawing structural formulae in the boxes. [2]

	(11)	(b)(i) could be regarded as 'environmentally friendly'.
		[2]
(c)		paryl is an effective insecticide that works by reversibly inhibiting an enzyme vital to insect mammalian metabolism. The use of carbaryl is now forbidden in the UK.
	(i)	Suggest one reason why the use of carbaryl is forbidden.
		[1]
	(ii)	Suggest how carbaryl inhibits the enzyme.
		[3]

(d) Di-isocyanates are used to make polyurethane polymers.

For example, the di-isocyanate MDI can react with ethane-1,2-diol to form the polyurethane shown below.

$$O = C = N - CH_2 - CH$$

$$-\overset{O}{\overset{\parallel}{\text{C}}}-\overset{O}{\overset{\parallel}{\text{N}}}-\overset{O}{\overset{\parallel}{\text{C}}}-\overset{O}{\overset{\parallel}{\text{C}}}-\overset{O}{\overset{\parallel}{\text{C}}}-\overset{O}{\overset{\parallel}{\text{C}}}-\overset{O}{\overset{\parallel}{\text{C}}}-\overset{O}{\overset{\bullet}{\text{C}}-\overset{O}{\overset{\bullet}{\text{C}}}-\overset{O}{\overset{\bullet}{\text{C}}-\overset{O}{\overset{\bullet}{\text{C}}}-\overset{O}{\overset{\bullet}{\text{C}}-\overset{O}{\overset{\bullet}{\text{C}}}-\overset{O}{\overset{\bullet}{\text{C}}}-\overset{O}{\overset{\bullet}{\text{C}}}-\overset{O}{\overset{\bullet}{\text{C}}-\overset{O}{\overset{\bullet}{\text{C}}}-\overset{O}{\overset{\bullet}{\text{C}}}-\overset{O}{\overset{\bullet}{\text{C}}}-\overset{O}{\overset{$$

polyurethane

Name the type of polym	erisation that is describ	ped above and explain y	our answer.
			[1]

(e) Polyurethane polymers can be 'blown' to produce foams.

Water vapour can be used to produce a blowing agent as it reacts with unreacted isocyanate groups to form carbon dioxide.

Suggest an equation for the reaction, representing the isocyanate as RNCO.

(f) A chemist wishes to substitute methyl groups on to the benzene rings in MDI to vary the properties of the polymer.Give the reagents and conditions needed to substitute a methyl group on to benzene.

.....[3]

[Total: 18]

[1]

Methanoic acid, $\mathrm{CH_2O_2}$, is used in solution as a limescale remover.

3

(a) D	raw the full structural formula for methanoic acid.	
(b) (i) Complete the equation for the ionisation of methanoic acid in aqueous solution.	[1]
, , ,	$CH_2O_2 \rightleftharpoons$	741
(ii) Write the expression for $K_{\rm a}$ for methanoic acid.	[1]
	$K_{a} =$	[1]
(iii) The p K_a of methanoic acid is 3.77. Show that $K_a = 1.70 \times 10^{-4}$ mol dm ⁻³ .	
(iv	Calculate the pH of a 0.0040 mol dm ⁻³ solution of methanoic acid. Give your answer to two decimal places.	[1]
	pH =	[2]

	(v)	when used for acids as strong as methanoic acid.
		Give the approximation.
		 Explain, with reference to numbers in your calculation, why it is not a very good approximation.
		[2]
(c)		escale is mainly calcium carbonate. Write an equation for the reaction of methanoic acid calcium carbonate.
		[2]
(d)	Met	hanoic acid and methanoates together form buffer solutions.
	(i)	Calculate the pH of a solution containing equal amounts of methanoic acid and sodium methanoate.
		$K_{\rm a} = 1.70 \times 10^{-4} \rm mol dm^{-3}$.
		pH =[1]
	(ii)	Enough sodium hydroxide is added to react with half the methanoic acid in the mixture of methanoic acid and sodium methanoate in (i).
		Calculate the pH of the resulting solution.

Turn over

pH =[2]

(e)		hanoic acid can be made in the laboratory by the oxidation of methanol. A chemist mpts to oxidise methanol and purifies an organic product from this reaction.
	(i)	The product has just one peak in its proton NMR spectrum.
		Identify the product and explain why it gives the NMR spectrum described.
		[2]
	(ii)	The chemist runs an infrared spectrum of this product.
		Give the wavenumber ranges of the peaks (above 1500 cm ⁻¹) and the bonds responsible for these peaks that you would expect to find in the infrared spectrum.
		[2]
(f)		hanoic acid vapour (CH_2O_2) decomposes in the presence of certain catalysts to give bon dioxide and hydrogen.
	(i)	Suggest an industrial use for the hydrogen produced by this reaction.
		[1]
	(ii)	Write the equation for the equilibrium reaction for the decomposition of methanoic acid.
		Complete the expression for K_c for this equilibrium.
		equation:
		$K_{c} =$
		[1]
	(iii)	Give the sign of the $\Delta S_{\rm sys}$ for the forward reaction in (ii) and give your reasons.
		ro1
		[2]

(iv)	The value of $K_{\rm c}$ at 298 K for the reaction in (f)(ii) is $4.8 \times 10^6 \rm mol dm^{-3}$. Methanoic acid vapour is allowed to reach equilibrium at 298 K. The concentration of methanoic acid vapour in the equilibrium mixture is found to be $2.5 \times 10^{-9} \rm mol dm^{-3}$.
	Calculate the equilibrium concentrations of ${\rm CO_2}$ and ${\rm H_2}$.
	concentration of CO_2 =
(v)	A student suggests that the reaction in (f)(ii) should be carried out at low pressure.
	Give the chemical reasoning behind this suggestion.
	[2]
(vi)	The enthalpy change for the forward reaction in (f)(ii) is +6 kJ mol ⁻¹ . The student suggests that the reaction should be carried out at high temperature because of the effect of temperature on the equilibrium yield of products.
	Give the chemical reasoning behind this suggestion.
	Suggest why it might not be economical to use a high temperature in this case.
	In your answer, you should make it clear how your points link together.
B	
	[4]

[Total: 29] Turn over

(a) A g	as–liquid chr	omatograph uses a carrier gas moving through a column.
(i)	Give an imp	portant feature of the carrier gas.
(ii)	What is ins	ide the column?
(iii)		surement is used to distinguish the compounds separated by the gas-liqu
		s emerging from the gas-liquid chromatograph are passed through a ma
spe	ectrometer. The comment of the comme	s emerging from the gas-liquid chromatograph are passed through a mash is used to determine the $M_{\rm r}$ of the substances and to give more detailed their structure. The structure of a simple organic compound, containing C, H and O only, is shown

(ii) Suggest the formula of the ion that gives rise to the peak at m/z 15.	
[2	2]
(iii) Suggest a formula for the compound.	
[1]
(c) The gas chromatograph on the Rosetta landing craft will be able to distinguish between chir compounds. Scientists will be looking for evidence of amino acids in the comet's tail.	al
(i) Draw below the structures of the two enantiomers of the amino acid sering HOOC-CH(CH ₂ OH)-NH ₂ , to show how they are related.	e,
	2]
(ii) Suggest why scientists are looking for the presence of amino acids in the comet.	
[1]

(d)	disc	005, a spacecraft landed on Titan, a moon of Saturn. By gas chromatography, scientists covered that the atmosphere of Titan contained, among other things, methane, traces of ane and traces of cyanogen, (CN) ₂ .
	(i)	High-energy ultraviolet radiation from the Sun breaks down the methane to produce radicals which start a chain reaction. Some of the radicals combine to form ethane.

Classify each of these equations in terms of the **type** of radical reaction involved.

Write two equations that illustrate the formation of ethane from methane by this method.

[4]

(ii) Cyanogen, (CN)₂, reacts with ethene in an electrophilic addition where two CN groups are added across the double bond, producing compound **C**.

Compound **C** can be hydrolysed in acid solution to form compound **D**.

Predict the structural formulae of compounds **C** and **D**.

You may need to refer to your Data Sheet.

compound C compound D

[2]

[Total: 17]

5	'Titanium yellow	' is a pigment	with formula	NiO•Sb _o O _c •	20TiO	that is use	d for oil	painting.
•	Titaliani yonovi	io a piginoni	With Iommaia	1110 00005	201109	triat io acc	a 101 011	paning

(a)	Complete the elec	ctron o	configurations	for a	a titanium	atom	and	for	the	titanium	ion	with	the
	oxidation state that	at titani	ium shows in T	iΟ ₂ .									

atom $1s^2 2s^2 2p^6 3s^2$

ion	$1s^2 2s^2 2p^6 3s^2$	101
ion	1s ² 2s ² 2p ⁰ 3s ²	IZI

(b) Give the oxidation state of antimony in Sb_2O_5 and the systematic name of Sb_2O_5 .

(c) Calculate the percentage by mass of titanium in NiO•Sb $_2$ O $_5$ •20TiO $_2$ ($M_{\rm r}$ 1996).

(d) On a computer screen, the colour of titanium yellow can be represented by mixing 93% red, 90% green and 0% blue.

Sketch the visible reflectance spectrum of titanium yellow on the axes below.

Label the axes. (No scales are necessary.)

[3]

(e)	Explain, in terms of electron energy levels, why compounds of transition metals are coloured.
	In your answer, you should make it clear how your points link together.
	[5]
(f)	An oil is used to suspend the pigment for oil painting. A good oil for this purpose is linseed oil One of the constituents of linseed oil, compound E , is shown below.
	compound E
	(i) Name the functional group (apart from the C=C group) found in compound E.
	[1]
	(ii) Classify the arrangements around the C=C double bonds in compound E as <i>cis</i> or <i>trans</i> , giving your reasoning.

(iii)	Suggest why oils with trans groups have higher boiling points than those with cis groups.
	[4]

Question 5 continues on page 20

- (g) Unsaturated oils react with iodine.
 - (i) Complete the equation below to show the reaction of iodine with a carbon–carbon double bond in an oil.

(ii) The 'iodine number' of an oil is the number of grams of iodine that will react with 100 g of the oil.

0.200 g of a sample of linseed oil is reacted with a solution containing 0.00170 mol of $\rm I_2$ (an excess).

Some iodine remains unreacted.

 $28.0\,\mathrm{cm^3}\,\mathrm{of}\,0.0200\,\mathrm{mol\,dm^{-3}}$ sodium thiosulfate, $\mathrm{Na_2S_2O_3}$, are needed to react with the iodine **remaining**.

$$2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$$

Calculate the iodine number of the sample of linseed oil.

iodine number =[5]

[Total: 27]

[2]

END OF QUESTION PAPER