Duration: 1 hour 30 minutes

MAXIMUM MARK 70

Final

MARKING INSTRUCTIONS

Generic version as supplied by OCR Sciences

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 sf, then allow to 2 or more significant figures.
If an answer is given to fewer than 2 sf , then penalise once only in the entire paper. Any exception to this rule will be mentioned in the Additional Guidance.

Question			Answer	Marks	AO	Guidance
1	a		$\begin{aligned} & \mathrm{p}=\rho \mathrm{gh}=1.3 \times 9.81 \times \mathrm{h}=1.0 \times 10^{5} \\ & \mathrm{~h}=7.8 \mathrm{~km} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2.2	
	b	(i)	$\begin{aligned} & -\mathrm{mV}_{\mathrm{g}}=1 / 2 m v^{2} \text { or } 1 / 2 m v^{2}+m V_{g}=0 \\ & \mathrm{~V}_{\mathrm{g}}=-\mathrm{GM} / \mathrm{R}=-\mathrm{gR} \\ & \mathrm{v}=\sqrt{ }(2 \mathrm{gR}) \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2.1 \end{aligned}$	Working must be shown
		(ii)	$v=\sqrt{ }\left(2 \times 9.81 \times 6.4 \times 10^{6}\right)=11 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$	B1	2.6	allow 11(.2) $\mathrm{km} \mathrm{s}^{-1}$
		(iii)	$\begin{aligned} & 1 / 2 \mathrm{mc}^{2}=3 / 2 \mathrm{kT} \text { where } \mathrm{m}=\left(\mathrm{M} / \mathrm{N}_{\mathrm{A}}\right)=6.6 \times 10^{-27} \mathrm{~kg} \\ & \mathrm{~T}=6.6 \times 10^{-27} \times 121 \times 10^{6} / 3 \times 1.38 \times 10^{-23} \\ & \mathrm{~T}=1.9 \times 10^{4}(\mathrm{~K}) \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.6 \end{aligned}$	ecf b(ii); allow $\mathrm{m}=4 \mathrm{u}$ or $4 \times 1.67 \times 10^{-27}$ allow 2 or 2.0
		(iv)	1 random motion and elastic collisions of particles 2 lead to distribution of kinetic energies/velocities among particles 3 a very few will have very high velocities at top end of distribution 4 a long way from mean /r.m.s. velocity at 300 K 5 hence some able to escape	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.2 \end{aligned}$	max 4 out of 5 marking points where answer is a logical progression
		(v)	helium nucleus is an α-particle so helium is generated by radioactive decay helium is found in (natural gas) deposits underground	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2.1 \end{aligned}$	max 2 out of 3 marking points
			Total	15		

Question			Answer	Marks	AO	Guidance
2	(a)		gradient $=\mathrm{b}$ and y-intercept $=\lg \mathrm{a}$	B1	3.1	
	(b)	(i)	$\begin{aligned} & 1.70 \\ & 0.41 \pm 0.03 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2.8	both values for the mark allow ecf to find uncertainty value
		(ii)	two points plotted correctly; line of best fit	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	3.2	ecf value and error bar of first point allow ecf from points plotted incorrectly
	c	(i)	$\begin{aligned} & \mathrm{b}=\text { gradient }=1.60 \\ & \mathrm{y}=0.86(\pm 0.01) ; \mathrm{x}=1.98 \text { so } y \text {-intercept }=0.86-1.6 \mathrm{x} \\ & 1.98=-2.3(1) \\ & \mathrm{a}=10^{-2.3}=0.005 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3.2	allow 1.56 to 1.64; allow 1.6 ecf gradient in finding y-intercept
		(ii)	worst acceptable straight line $b=$ gradient of steepest line $=1.75$ giving uncertainty ± 0.15	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	3.2	steepest or shallowest possible line that passes through the error bars; should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar allow (1.6) ± 0.1 or 0.2 where plausible working is shown
			Total	10		

Question			Answer	Marks		Guidance
4	*		see page 7	B1 x 6	3	
	b	(i)	$\begin{aligned} & \mathrm{E}=\mathrm{hc} / \lambda ; \Delta \varepsilon=\mathrm{E}_{1}-\mathrm{E}_{2}=\mathrm{hc} \Delta \lambda / \lambda^{2} \\ & \Delta \varepsilon=6.63 \times 10^{-34} \times 3 \times 10^{8} \times 0.6 \times 10^{-9} / 5.9^{2} \times 10^{-14} \\ & \Delta \varepsilon=3.4 \times 10^{-22}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2.6 \end{aligned}$	allow calculation of $\mathrm{E}=\mathrm{hc} / \lambda$ twice and difference taken
		(ii)	$\begin{aligned} & \sin \theta=n \lambda / d ; 1 / d=3 \times 10^{5}\left(\mathrm{~m}^{-1}\right) \\ & \theta_{1}-\theta_{2}=\sin ^{-1}\left(2 \times 589.6 \times 3 \times 10^{-4}\right)-\sin ^{-1}\left(2 \times 589 \times 3 \times 10^{-}\right. \\ & 4) \\ & \theta_{1}-\theta_{2}=20.717-20.695=0.022^{0} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.6 \end{aligned}$	or similar allow 20.72-20.70
			Total	12		

Question			Answer	Marks	Guidance
4	(a)		Level 3 (5-6 marks) Clear methods of measurement, statement of uncertainties and how to minimise them There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Adequate methods of measurement, statement of uncertainties and how to minimise them There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited methods of measurement, statement of uncertainties or how to minimise them The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.	B1 x 6	Indicative scientific points may include: M measurement D measured with metre rulers y measured using mm graticule on glass screen observed with hand lens U uncertainty D maximum $\pm 2 \mathrm{~mm}$ in 1.5 to $2.0 \mathrm{~m} 0.1 \%$ y $\pm 0.5 \mathrm{~mm}$ in the position of the centre of each maximum, giving an uncertainty of $\pm 1 \mathrm{~mm}$ $x=600 \times 10^{-9} \times 2 / 5 \times 10^{-4}=2.4 \mathrm{~mm}$ so we have $\mathrm{y}=5 \mathrm{x}$ with $\pm 1 /(2.4 \mathrm{x}$ 5) so of order of 8 to 10% in value of x. a vernier to $\pm 0.05 \mathrm{~mm}$ in 0.5 mm gives uncertainty of order of 10% total uncertainty of about 20% or $\pm 100 \mathrm{~nm}$ to 120 nm A minimising uncertainties D maximise distance available on bench y measuring across the maximum number of x possible a suggesting that a more sensitive method is needed, e.g. using slide projector to display enlarged image of slits on screen compared to millimetre scale projected on screen or similar

Question			Answer	Marks	AO	Guidance
5	a		see page 9	B1x6	3	
- b		(i)	$\begin{aligned} & I=I_{0} / r^{2} \text { or } I=k r^{-2} \\ & (k=20) \text { so } I=20 /(0.25)^{2}=20 \times 16=320 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2.6 \end{aligned}$	allow inverse square law statement
		(ii)1	640	B1	1.2	
		(ii)2	$\begin{aligned} & 640=20 / r^{2} \\ & \text { so } r=\sqrt{ }(20 / 640)=0.18(m) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	2.6	```ecf b(ii)1 accept 0.177 (m)```
			Total question 5	11		

Question			Answer	Marks	AO	Guidance
6	a		Time constant of charging $=10 \mathrm{~s}$ maximum current $=10 / 100 \mathrm{k}=100 \mu \mathrm{~A}$ statements about adequate sensitivity of meter and stopwatch	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3.3	allow alternative but equivalent statements e.g. current falls to 37 mA in 10 s e.g. readings can be taken every 3 to 5 s so can collect at least 8 sets of values before approaching change of less than $2 \mu \mathrm{~A}$; sensitivity of 0.5 s adequate
	(b)	(i)	1 the (total stored) charge is constant 2 capacitors in parallel must come to the same voltage 3 capacitors are identical so each stores half/same charge so final V is 5 V	B1 B1 AO		max 2 out of 3 marking points allow mathematical argument, e.g. initial $Q=1 \mathrm{mC}$ final Q on each is 0.5 mC as identical Cs in parallel so $\mathrm{V}=0.5 \times 10^{-3} \times 1.0 \times 10^{-4}=5.0 \mathrm{~V}$ or total $\mathrm{C} \times$ total Q gives 5 V
	(ii)		C_{1} curve : exponential decay curve from 10 V to 5 V C_{2} curve: $10-\mathrm{C}_{1}$ curve time axis: curves to be horizontal at 5 V about 25 s	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3.2	time constant of 5 s
			Total	9		

