
CHAPTER 2

SIMULATION SYSTEM USE

This chapter describes the characteristics of the simulation system as they appear to its users, and

demonstrates the system functions that are available to them.

MASH System Characteristics

The MASH simulation system consists of an integrated set of PDP-10 subprograms that contain

functions for creating initial simulation states, defining simulation runs, executing simulations, and

producing outputs. Several related programs perform ancillary functions that support the above procedures.

The MASH system and these related programs are connected by common access to a set of on-line data and

documentation files.

Four MASH system characteristics are very important in understanding the environment in which the

system operates and the structure underlying the functions provided to users. They are: (1) the use of

machine readable codebooks for micro data definition and retrieval; (2) an on-line attribute library for

cataloguing definitions of attributes that are to be created by a simulation; (3) a permanent, on-line

dictionary within MASH for storage of a wide variety of entity definitions; and (4) the characteristics of the

MASH user command language and the command forms available. These characteristics are described

below.

Machine Readable Codebooks. The MASH system uses a system of machine readable codebooks to

provide comprehensive data documentation for users of these data and a reasonable degree of data

independence for programming tasks associated with them. Historically, data files used for social science

research have been poorly documented, both for purposes of content and use. The insularity of many social

science computing activities, coupled with a tradition of individual research, a reluctance to make available

data not thoroughly exploited by their collector, and the lack of professional rewards for data documentation

have combined to assign low priority to this activity. With some exceptions, most existing data files used

by social scientists are most thoroughly -- but nevertheless inadequately -- documented within programs

that have either created them or read them. Although there is evidence of use of machine readable codebooks

within social science computing, e.g. [B4], [I3], [S2], their use is not widespread. The lack of promising

standardization activity in this area has had the effect of producing multiple, local, incompatible,

specialized, and partial standards. Further discussion of these issues appears in Appendix 3.

15

16

MASH requires that each micro data file to be read be defined by another file, its codebook file. This

codebook is used to control the extraction of observations and values for inclusion in an initial population

for simulation as well as to retrieve documentation about the data source.

Codebooks acceptable to MASH are machine readable files that may be thought of as decks of punch

cards. Each card, or line, contains information about the physical or logical structure of the data file or

information about a data file attribute. The codebook may be printed in a human readable form by a

command from the user. Figure 2-1 contains a simplified illustration of formatted codebook output. A

detailed definition of codebook structure and content and a more comprehensive example are contained in

Appendix 3.

The MASH codebook is a machine readable character string file consisting of a sequence of fixed

length lines that are recorded on punch cards, disk, tape, or any other machine sensible medium. The

codebook file contains the following information about the data file it describes: (1) the record or segment

types occurring in the file and their names, lengths, and the flag field and value for identifying the

occurrence of each; (2) the character string format and packed binary format (if it exists) of each segment

type; (3) a unique name, label, mode, and positional information for each field, or attribute, in each segment

type; (4) the discrete and continuous ranges of values that each attribute can assume, with label information;

(5) special data conditions; (6) free form text describing any aspect of the data file and the survey that

generated it; (7) end of data indicators; and other information.

For the user, the most important property of machine readable codebooks for data definition is that

they allow a mechanism for addressing objects by name. Each segment, or record, type in the data file has a

segment name. For example Figure 2-1 contains a subset of the PERSON segment definition for the 1967

Survey of Economic Opportunity1 file. Each segment of the codebook corresponds to an entity level in the

enumeration unit structure. The segment names corresponding to the three levels of MASH micro

population are INTUNIT (interview unit), FAMILY, and PERSON.

Each attribute in each segment has an attribute name, e.g. MILITARY. This feature is used by

MASH (and can be used by any program that uses the codebook to address the data indirectly) to reference

documentation, values, and positional information for attributes for a variety of purposes. Furthermore, the

codebook also contains for each attribute its set of its legal values, and a short description associated with

those values. For example, the value "5" for attribute WORKING corresponds to the meaning "40-47

1 This file and its uses in microanalytic simulation activity are described in Appendix 1.

17

weeks worked (last year)." MASH uses this information to report not only the value of specific attributes

to the user, but also their meaning.

Once data have been defined in machine readable form, it is possible to retain that documentation and

attach it to its data wherever it appears. MASH retains the codebook description of all attributes that it

either reads from survey or census files or creates during a simulation. Machine readable codebooks are then

generated by MASH for all micro data files written for output. Thus, machine readable documentation,

once introduced in the system, is used for addressing data, labelling values, and is also perpetuated through

the system to document outputs.

 SEGMENT 6: PERSON

NO. ATTRIBUTE LABEL MODE/OPERATOR VALUE

14. MILITARY NOW IN ARMED FORCES N

YES EQ 1
NO EQ 2
MISS SC MISS 9
NAP (FEMALE) SC NAP 0

NOTES: SOURCE FOR WEEKS IS 1967 SEO FILE,
SEGMENT 4, INDEX 25.

15. WORKING WEEKS WORKED (CIVILIAN) N
NONE EQ 1
01-13 WEEKS EQ 2
14-26 WEEKS EQ 3
27-39 WEEKS EQ 4
40-47 WEEKS EQ 5
48-49 WEEKS EQ 6
50-52 WEEKS EQ 7
NAP (IN ARMED FORCES) SC NAP 0

 Figure 2.1 A Simplified Example of Formatted Codebook Output.

The codebook standard defined for and used by MASH is the result of an evolution of the concept by

the author and others over the last several years. Our original understanding of the importance of the

concept came during the construction of the BEAST language [B2]. The creation of the 1966 and 1967

Survey of Opportunity Research Files [Rl] provided an opportunity to test the adequacy of such

documentation and its effectiveness in processing codebook defined files. Codebooks for these files were

constructed [S2] and were used with substantial success for data documentation and moderate success for

indirect addressing of data by operating programs.

18

The Attribute Library. While many attributes in an initial simulation population are extracted from

a survey or census data file, others are created by simulation. These attributes may be required in the initial

simulation state and must therefore be assigned prior to the start of simulation, or they may be state

attributes defined during the course of simulation.

An on-line attribute library in the MASH system provides the mechanism for storing and retrieving

definitions of these attributes. Just as initial population attributes extracted from a survey file have their

machine readable definitions extracted from the corresponding codebook file, so the attributes to be created

in the simulation process have their corresponding definition extracted from the attribute library and have

their values initialized to a default value. Attribute definitions in the library are referenced by name just as

attributes in the data file are referenced by the names that are defined in the corresponding codebook file.

An auxiliary program, ALMAN, (A ttribute Library Manager), provides functions for processing the

attribute library. Attribute definitions may be created, modified, renamed, and deleted. Copies of existing

definitions may be made and then altered. The library's catalog may be inspected selectively in a number of

ways. ALMAN uses an interrogative form of interaction to obtain directions from its users, and it provides

guidance regarding alternative responses to questions.

Attribute library formats for specifying descriptions are identical with the specifications in the

MASH machine readable codebook standard. Thus, it is easy to extract attribute definitions in order to

assemble codebooks, and it is possible to file the contents of a machine readable codebook in the attribute

library.

The attribute library extends the concept of addressing by name to attributes not previously

addressable in this manner, and completes the definition of machine readable data by codebook information.

The MASH On-Line User Dictionary. The MASH system includes a permanent dictionary facility

which may be used to retain a wide variety of entities from session to session. The dictionary is essentially

a system for storage of data within MASH which can be accessed both by users and by MASH during

simulation runs. Users may create entities that are used by MASH during a simulation run; conversely,

MASH may create entities during the simulation run -- such as generated aggregate time series -- that

may be analyzed later.

The following entity types are now defined within the dictionary system:

• An attribute definition is an algebraic expression that defines a new micro population attribute
for output. It is a formula, and does not define a value until it is invoked for a specific micro

19

population. It therefore defines "virtual data" that is realized by the system by a number of
procedures.

• A census is a list of names of procedures that can be applied to a micro population for
purposes of summarizing the characteristics of a micro population in aggregate form.

• A code definition consists of a set of intervals and associated new values. It defines a function
of those intervals into the new values. This function is often called coding, collapsing, or
recoding.

• A command definition is a MASH command that is entered into the MASH dictionary. These
commands are available for execution by naming them in an EXECUTE command.

• An equation is an algebraic expression that is used in the definition of a macro submodel to
define the procedure for computing the value of an endogenous variable.

• A list definition consists of a list of names or symbols. The name of a list can be used in
many MASH commands as a convenient shorthand device for referencing a list of names.

• A macromodel definition consists of an ordered list of names of equations that are stored in the
MASH user dictionary.

• A procedure definition consists of an ordered list of MASH commands which are stored in the
dictionary. The execution of a procedure is equivalent to the sequential execution of the
commands named in the procedure, in the order in which their names appear.

• A sample definition consists of an algebraic and boolean expression which is either true or
false when applied to any micro population entity for which it is defined. Samples are used to
restrict certain input, output, and computational procedures to only those micro population
entities which are defined to be in the sample.

• A time series definition consists of an initial year for the time series, a final year, and a
sequence of numeric values for all years in the range specified. Series entities are used to store
aggregate annual economic and demographic time series.

• A table definition consists of an ordered list of time series names. It is used to group
aggregate time series for organizational, display, and output purposes.

Each entity in the MASH user dictionary is uniquely identifiable by three descriptors: (1) the name of

its owner,2 consisting of from 1 to 10 MASH alphabetic characters and digits; (2) the type of the entity;

and (3) the name of the entity, also consisting of from 1 to 10 MASH alphabetic characters and digits. A

user may own as many entities of any type as he wishes, subject to on-line storage capacity constraints.

Entities belonging to other owners may be referenced, copied, and then modified by their new owner. The

owner of an entity may supersede any of his entries with new versions of that entity and may also delete

any entities owned by him. An index to everyone's dictionary, one's own dictionary, or selected subsets of

either is easy to obtain.

2 Conceptually, the dictionary may be considered as either: (1) a single entity subdivided into sections belonging
to different owners; or (2) a number of separate dictionaries, each of which belongs entirely to a single owner. In
the latter case, the name of the owner may be thought of as the name of the dictionary.

20

Access controls on entities within the dictionary provide interlocks against inadvertent destruction of

one's own entities (by using a protection feature) and of entities belonging to others. Access to entities

owned by others is permitted at all times, both for display and for copying. These access rules allow

cooperative model development and research without imposing a more comprehensive and potentially more

restrictive access mechanism upon users of the dictionary.3

MASH Command Descriptions

MASH provides social science researchers and policy analysts with a high level, free form command

language that includes features for: (1) entering and modifying definitions, displaying entries saved in the

MASH dictionary, and performing other "housekeeping" chores; (2) creating initial populations for

simulation, browsing through micro data on-line, and taking surveys of simulated future population states;

(3) defining and executing macroeconomic models; and (4) specifying and controlling the simulation of a

microanalytic model. Knowledge of both the syntax of the MASH command repertoire and the semantics

of each command, i.e. the meaning and operational properties of the command, is important for effective

use of the system.4

Structuring the user interface to MASH around a high level command language reflects the belief that

social science research is assisted by computing tools that are discipline-oriented and directly usable by non-

programmers. Some supporting evidence exists in the form of the popularity and widespread use of two

such languages for data analysis, Data-Text [Hl] and SPSS [Nl]. Many analytical procedures used in the

social sciences are highly stylized and can be represented in a machine interpretable syntax. Some of the

syntactic forms are suggested by the author and others in BEAST [B2].

MASH functions are invoked by the user by issuing a sequence of commands. Each command

directs the system to perform a specific action or series of actions. Sometimes a command specifies that an

action is to be performed, but its execution is delayed until another command has been received. With a few

exceptions, each MASH command begins with the imperative form of a verb. Almost all MASH

3 Greater security could be provided by emulating the operating system and providing password access to
individual users' dictionaries; however, this would require substantial resources to ensure that password storage
was secure within MASH. An alternative measure chosen was to use the operating system's file security
mechanism to prevent any access to the MASH dictionary by computer users who are not members of the specific
research project.

4 The commands described in this chapter represent the state of the MASH system at the beginning of 1975. The
command repertoire has undergone constant revision and extension since the beginning of its development, and
therefore these descriptions do not now accurately represent the state of the language. For the user, a more precise
specification is necessary and may be obtained from existing working documents. For the interested general
reader, however, the following pages are sufficiently precise and impart a flavor of the structure and richness of the
command forms and functions that are available.

21

commands are complete English sentences, except that they are terminated with a semicolon instead of with

a period.

All MASH commands except two may be preceded by a command label. If a command label

appears, the command is first stored in the user's dictionary using the label as its name, and the command

will then be executed.

MASH commands are entered through the user's terminal in free form, and may be entered on as

many lines as are required to specify the command. The user will be prompted for each command with an

asterisk * on the left hand side of the termina1 paper or screen. If the command is not terminated on the

initial line, subsequent lines are prompted by an ampersand & to remind the user that the current command

has not yet been terminated. The semicolon character ";" terminates each command. A partially entered

command may be cancelled at any time by typing the sequence "escape" (or "altmode" or "prefix") followed

by "return".5

All interaction between MASH and the user during a MASH session is recorded in a protocol file for

the session. Lengthy output to the user's terminal may be suppressed with the knowledge that it is being

recorded in the protocol file for the session and can be retrieved and printed at a later time. Protocol file

output pages may be titled under user control.

MASH commands are constructed using a subset of the ANSI character set [U3]. Some of these

characters are used to form names and other symbols, while others are used as separator characters.

Appendix 2 contains a definition of these symbol sets as well as detailed descriptions of all current MASH

commands.

In all MASH commands, any text that follows the terminating semicolon is treated as a comment.

If the command line starts with a semicolon, i.e. the command is omitted, then the entire line is treated as a

comment. This allows a user to annotate a MASH session while it is in progress. For example:

*; Dictionary entries have now been defined,
*; so now create initial population for simulation.

5 MASH executes as a standard user program under the control of the TOPS-10 monitor system. All of the terminal
conventions and rules of operation of the monitor system, such as logging in and out, invoking MASH and other
user programs, correcting typing errors and manipulating files therefore apply. For a complete description of
these conventions and rules, see [D2], [D3] and [D4].

22

All comments entered during the course of a MASH session are reviewed by a project staff member, who

will respond to any questions asked by the user. Thus a user may register comments and questions during a

session and expect to receive reasonably prompt feedback after the session is over from someone who is

knowledgeable about the system.

Dictionary and Control Functions

Selecting a Dictionary. The MASH on-line user dictionary provides a mechanism for MASH users

to define various kinds of entities that may be saved and used either later in a simulation exercise or during a

subsequent MASH run. Any user may begin and use a dictionary by issuing a START command. For

example, suppose a user named Webster wished to start a MASH dictionary. This is accomplished by the

command:

START DICTIONARY FOR WEBSTER;

If a dictionary already existed for Webster, it would be selected for reference during the MASH session by

either of the commands:

USE WEBSTER'S DICTIONARY;
USE DICTIONARY BELONGING TO WEBSTER;

All subsequent references to dictionary entries that are not explicitly qualified by another owner's name will

automatically be assumed to be Webster's entries.

There is no requirement that the name of the dictionary owner be identical with the name of a person.

For cataloguing purposes it might be convenient to define fictitious owners such as MODEL.1, MODEL.2

and MODEL.3 that contain entities corresponding to different model definitions. The USE command may

be given at any time during a MASH run, and the new owner designated becomes effective immediately. In

the absence of a USE command, the default owner is STAFF.

The DEFINE Command. The types of entities that may be stored in the dictionary fall into several

classes. Perhaps the most common class consists of those entity types that are essentially lists of names;

sometimes those names are names of other entities. A list is entered into the dictionary by listing the

names, or symbols, in it. For example, to define a list of names of demographic attributes that might

appear in a codebook, the following MASH command may be used:

 DEFINE LIST DEMOGRAPH AS AGE, RACE, SEX, SCHOOLING, INSCHOOL;

23

The above command defines a list named DEMOGRAPH in the MASH dictionary. If a specific user's

dictionary was previously selected, or "opened", the list belongs to that user; otherwise it is catalogued as

belonging to the owner named STAFF.

Lists may be lists of names of any meaning, although in practice they will quite often be lists of

attribute names. Several other dictionary entity types are syntactically identical to lists and are defined in

the same way; they include procedures, tables, macromodels, and censuses. A procedure is a list of names

of commands, all of which belong to the owner of the procedure. A table is a list of names of annual

aggregate time series in the "data bank" which is a subset of the dictionary. A macromodel is a list of

names of equations, all of which belong to the owner of the macromodel definition. A census is a list of

summarization procedures such as cross tabulation that can be applied to micro populations.

Aggregate annual time series are lists of values, and are defined in almost the same manner. One

more ingredient is required; the time range of the values must be specified. Examples of the syntax used for

defining times series are:

DEFINE SERIES GNP FROM 1947 THROUGH 1951 AS 231.3, 257.6, 256.5, 284.8, 328.4;

DEFINE SERIES UNEMPL in 1973 AS 5.2;

No unit of measure or scaling factor is assumed in the MASH dictionary. Therefore, time series

should be entered with a convenient scaling factor, e.g., U.S. GNP in billions, and macro model equations

that use or update the time series should assume the scale factor used to record the series values.

Codes, or recodes, may also be defined within the MASH dictionary and may then be used to define

new attributes. Suppose, for example, that it is desired to recode the attribute AGE into the classes: (1)

under 5 years, (2) 5 through 13 years, (3) 14 through 20 years, (4) 21 to 65 years, and (5) 65 years and

above. Such a code would be defined in MASH in the following syntax:

DEFINE CODE AGECODE AS (0-5/5-13/14-20/21-64/65-*);

where the symbol "*" is interpreted as larger than any positive number if it appears on the right side of the

dash and smaller than any negative number if it appears on the left side of the dash. The codes associated

with each of the above intervals are assigned sequentially from the left, beginning with 1. If it were desired

to classify or code these intervals into the values 1, 2, 4, 7, and 9, then the following command would be

used:

24

DEFINE CODE AGECODE AS (0-5=1/5-13=2/14-20=4/21-64=7/65-*=9);

Each code phrase, i.e. the specification between slashes and parentheses, may consist of a series of intervals

of real numbers and real values; the recoded value may be an integer or a real number. For example, the

statement:

DEFINE CODE ILLUSTRATE AS (1, 3, 5, 7, 9 = 1/ 2, 4, 6, 8, 10 = 2/ -30-0 = 3.5/

 25-30, 40-50, 99=4.5);

defines a transformation that maps the odd digits into 1, the even digits into 2, the range from -30 through

0 into 3.5, and the ranges 25-30, 40-50, and the value 99 into 4.5. If a value does not appear in any code

phrase, either implicitly or explicitly, it is coded into 0. Code definitions are used in conjunction with the

function operator "CODED.BY," which is described below.

The DEFINE ATTRIBUTE and DEFINE SAMPLE commands are used to create derived algebraic

and boolean results from attributes of micro population entities. For example, suppose that an additional

attribute, payroll tax, is to be calculated for output for all persons in a micro population. If payroll tax is

computed as 7% of wages up to a maximum of $800, then the following command would enter the

definition of a new attribute which could be computed as part of an output operation:

DEFINE ATTRIBUTE PAYROLLTAX OF PERSON AS MINIMUM (0.07*WAGES, 800);

Samples differ from attributes only in that they must be either "true" or "false" when applied to any entity

at their level of definition. For example, the following definition of sample POORFAMS specifies that

only those families for which the value of the attributes TOTALWAGES and OTHERINCOM does not

exceed $1000 plus $800 for each person in the family -- that number of persons being the value of the

family attribute NOPERSONS -- are included in the sample:

DEFINE SAMPLE POORFAMS OF FAMILY AS 1000 +

800*NOPERSONS <= TOTALWAGES + OTHERINCOM;

A number of commands may be restricted to only those entities satisfying the conditions of a sample

definition.

25

Both attributes and samples must be assigned to a specific level of the micro population unit, i.e.

they must be defined as attributes or samples of interview units, families, or persons. Their definitions can

only include attributes from their level of definition or from higher (more inclusive) levels in order to avoid

any ambiguity in their evaluation.6

Expressions that define attributes and samples may be written in free form with operators and

operands intermixed and spread out over multiple lines. The algebraic operator symbols and notation

represent a mixture of Fortran, Algol, and MAD usage, with some redundancy provided to satisfy individual

preferences. Table A2-1 in Appendix 2 contains an enumeration of MASH operators and their precedence,

or hierarchical, levels.

In addition to the standard arithmetic operations of addition, subtraction, multiplication, and division,

several operators have been included that are not commonly available. The Algol construction IF... THEN

... ELSE allows computation to be conditional upon the truth or falsehood of the expression following the

IF, i.e. the "IF clause". If the clause, when evaluated, is true, the THEN clause is evaluated and the

resulting value is assigned to the attribute or sample. If the IF clause is false, the ELSE clause is evaluated

and the resulting value is assigned to the attribute or sample. IF..THEN..ELSE constructions may

themselves be nested, allowing some complexity of structure in the assignment process. For example,

suppose the previous definition of sample POORFAMS were to depend upon the value of an urban/rural

attribute. A revised definition might be specified as:

DEFINE SAMPLE POORFAMS AS

IF URBANRURAL = 1

THEN 1000 + 800*NOPERSONS <=

TOTALWAGES + OTHERINCOM

ELSE 1500 + 1200*NOPERSONS <=

TOTALWAGES + OTHERINCOM;

To the best of the author's knowledge, the CODED.BY operator has not been previously formalized

in statistical programming. This operator joins a numeric value on the left with a code definition on the

right; the result is a discrete mapping, or recoding, into the set of values, or codes, that form the range of

the code function. Using the code AGECODE defined in a previous example, one could define new

attributes:

6 For a description of a possible extension of the syntax that would permit boolean functions to be evaluated over
tree structures, see [K2].

26

DEFINE ATTRIBUTE CODEDAGE OF PERSON AS AGE CODED.BY AGECODE;

DEFINE ATTRIBUTE ASCODE OF PERSON AS 2*(AGE CODED.BY AGECODE) + SEX;

Functions are available for use within algebraic expressions to compute absolute values, averages,

exponentials and logarithms, maxima and minima, uniform and normally distributed random numbers,

square roots, and other results. Functions available within MASH and their meanings are listed in Table

A2-2 in Appendix 2. Since function references appearing in MASH attribute definitions, sample definitions

and equation definitions are interpreted during execution, new functions are easily added to the system.

In a similar manner, the DEFINE EQUATION command specifies equations that are available for

inclusion in a macroeconomic model. The Algol operator ":=" denotes the replacement of the value

associated with the variable on the left hand side of an equation with the result that is computed from the

right hand side. The variable on the left hand side of an equation is identified as endogenous, i.e. determined

within the model, by its placement, since equations must be specified in normalized form. The scalar name

T is reserved and represents the current calendar year during simulation. Subscript notation is used to

reference current and lagged values stored in time series in the data bank section of the dictionary. For

example, the following command:

DEFINE EQUATION INVSTACCEL AS NETINV(T) := MULT * (GNP(T-l) - GNP(T-2));

defines an investment accelerator equation in which this year's net investment (NETINV) depends upon the

rate of growth of GNP measured over the two preceding years.

As the above examples illustrate, constants, scalars, and time dependent variables may appear on the

right hand side of an equation, while equations may define both scalars and variables.

The DEFINE command may be used to store another MASH command in the dictionary. This

command may be executed at any later time by naming it in an EXECUTE statement. Sequences of names

of commands may also be defined; such sequences are called procedures. The commands named in

procedures may be executed in the sequence in which they are named by naming the procedure in an

EXECUTE statement.

Commands that Manipulate Dictionary Entities

A variety of MASH commands are available for displaying, altering, and removing entities in the

user dictionary. These commands are described below.

27

The DISPLAY Command. Displaying the contents of a user's dictionary, either totally or

selectively, and examining its index, are useful functions. The DISPLAY command provides a variety of

alternative syntaxes to support these functions. To display the index to the entire dictionary, containing

entries for all users, type:

DISPLAY EVERYONE'S DICTIONARY;

To display the index for the current owner's (user's) dictionary, type:

DISPLAY MY DICTIONARY;

To display the index to some other owner's dictionary, for example Smith's dictionary, type:

DISPLAY SMITH'S DICTIONARY;

Or, to display the index to all entities of a given type, say equations, in everyone's dictionary, type:

DISPLAY EVERYONE'S EQUATIONS;

To display the index to just the current owner's equations, or to Smith 's equations, type:

DISPLAY MY EQUATIONS;

DISPLAY SMITH'S EQUATIONS;

All of the above indices will list, for each entity, the name of its owner, its type, its name, its

length (in triplets of dictionary words), the date of its creation or last modification, the date on which it was

last accessed for any purpose other than displaying it, and whether it is protected against erasure or being

superseded by a newer version of itself. More compact forms of the DISPLAY command and reference to

other groupings of entries are also available and are described in Appendix 2.

The contents of any entity may also be displayed using another form of the DISPLAY command.

For example, to display the contents of the lists named FIRST, SECOND, and THIRD belonging to the

current owner, type:

DISPLAY LISTS FIRST, SECOND, THIRD;

28

To display Tinbergen's equation named El, type:

DISPLAY TINBERGEN'S EQUATION El;

If no owner is explicitly included in the command, the requested entities belonging to the current owner are

displayed.

The display output for each entity begins with the entity's information from the index. All entity

types except those consisting of algebraic and boolean expressions are displayed in a form very similar to

that in which they were entered. Algebraic entities are displayed in "Polish notation," which is their

internal representation within the dictionary.

Other forms of the DISPLAY command give more summary information about contents of the

dictionary. To display the list of names of owners who have a dictionary, and to display the name of the

owner currently in use, type:

DISPLAY OWNERS;

DISPLAY OWNER;

The words USER and OWNER are synonymous. To display summary information about the number of

entries a particular owner has, and other summary data -- say, for Webster -- type:

DISPLAY OWNER WEBSTER;

Any dictionary owner may protect any entity against inadvertent erasure or being superseded. For

example, the following commands protect and unprotect7 the entities named:

PROTECT LISTS BASICATTS, MICROTS;

UNPROTECT SAMPLE AGEDMEN;

7 It should be noted that protection is valid only for inadvertent erasure, since any authorized user may obtain
access to any entity in the MASH dictionary. Security of the dictionary files is obtained by using the PDP-10 file
security system to not allow access to the dictionary by other than project staff members or other users authorized
by the project director.

29

Any attempt to erase or supersede protected entities will fail, and the user will receive an appropriate

message.

Two special dictionary owners, HISTORIC and STAFF, have their entries automatically protected

when they are initially created. The owner HISTORIC "owns" all historic annual time series and other

related information; the owner STAFF is provided as a library area in which semi-permanent entities may

be stored and referenced by several users.

An owner may remove entities from his dictionary by erasing them. For example, the command:

ERASE SAMPLES AGEDMEN, EASTERNERS;

erases the sample definitions named AGEDMEN and EASTERNERS belonging to the current user. If the

entity is protected, it must first be unprotected.

Any user may make a copy of any entity in the dictionary, optionally giving it a new name. To

make a copy of a list named YSOURCES and name it YSOURCES2 (possibly prior to modifying the

copy), type:

COPY LIST YSOURCES NAMING IT YSOURCES2;

If the list belongs to Smith, and there is no reason to rename it, type:

COPY SMITH'S LIST YSOURCES;

to create a list named YSOURCES in the current owner's dictionary.

An owner may rename any of his existing entities using the RENAME command. To rename a

sample named POORFAMS to FAMSINPOV, type:

 RENAME SAMPLE POORFAMS TO FAMSINPOV;

Several additional commands are available for modifying MASH list-like entities, i.e. lists,

procedures, tables, macromodels, censuses, and series. For all of these types except series, the commands

ADD, DELETE, and REPLACE apply. Time series are modified using the ALTER command.

30

For the purposes of illustration, suppose the current owner owns a list named DEMOG which has

been created by the command:

DEFINE LIST DEMOG AS AGE, RACE, SEX;

To substitute, or replace, any element of this list with another -- for example, to replace RACE by

SCHOOLING -- type:

REPLACE RACE BY SCHOOLING IN LIST DEMOG;

The modified list will be identical with one that would be created by the statement:

DEFINE LIST DEMOG AS AGE, SCHOOLING, SEX;

The owner of an entity may delete one or more elements, or symbols, or names, from any list like

entity using the DELETE command, provided that it is not protected. For example, to delete AGE and

SEX from the above list, type:

 DELETE AGE, SEX FROM LIST DEMOG;

One or more elements may be deleted from the same entity using one DELETE command. If all elements

are deleted from an entity, the entity is erased. The names to be deleted may occur in any order, regardless

of their relative position in the entity. If any of the names to be deleted do not exist in the entity, the

command is aborted without any deletions occurring.

The owner of an entity may add one or more elements anywhere within a list-like entity or at its

beginning or end. For example, to add INSCHOOL to the end of the above list, type:

ADD INSCHOOL TO LIST DEMOG;

Alternatively, to add INSCHOOL at the beginning of the list and to add FAMRELAT after AGE, type:

ADD INSCHOOL TO LIST DEMOG AT BEGINNING;

ADD FAMRELAT TO LIST DEMOG AFTER AGE;

31

Only one command, the ALTER command, is available for modifying time series entities. The

command may be used to either alter current values of a time series in the dictionary or extend a series by

adding more values to it. Some examples of the alter command are:

ALTER SERIES GNP IN 1972 TO 1047.3;

ALTER SERIES UNEMPL FROM 1965 THROUGH 1968 TO 5.4, 5.2, 4.9, 4.7;

The number of values entered must be consistent with the length of the time period specified. The word

THROUGH means "starting with year 1 and proceeding through year 2", inclusive.

This completes the description of the basic commands that are used to define and manipulate MASH

dictionary entities.8

One control function is important to the user for efficient use of MASH, the TURN statement. It is

currently used for two purposes, output suppression and option selection. The first function allows a user

to suppress output from MASH to his terminal either temporarily or permanently by issuing the following

commands:

TURN ON CONSOLE;

TURN OFF CONSOLE;

The entire console dialogue for each run is reproduced in the session's protocol file. Output that is

transmitted to the user's terminal will be recorded in the protocol file regardless of whether it is typed or

suppressed at the console. The user may therefore select those parts of the dialogue to be suppressed with

the knowledge that they are not lost.

Another use of the TURN command involves the use of options for providing various functions that

are not (yet) incorporated in the command language. These options may be turned on or off either by

program control or at the command language level, and may be used to include policy alternatives in

microanalytic object model program modules.

Micro Population Functions

8 Several additional commands are available for a "MASH librarian." They include the ORIGINATE command,
which creates a new dictionary on a PDP-10 system where one did not previously exist, and the CONDENSE
command which eliminates previously erased entities from the dictionary and index and reclaims their space
(garbage collection, in list processing terminology).

32

MASH commands that apply to microdata processing may be divided into four groups: (1) those used

to create initial populations for simulation; (2) those that support on-line browsing functions, i.e. searching

through, examining and modifying microdata values; (3) those that survey micro populations and generate

output files; and (4) those that define and control micro simulation runs.

The first three of the above groups of commands are described below. Simulation control commands

are common to both micro and macro models, and are discussed later in this chapter.

Creating an Initial Population for Simulation

The creation of an initial population for simulation is an essential first step in a simulation

experiment. The creation of this initial population using MASH consists of the following steps:

1. Obtaining a suitable source of microdata described by an accompanying codebook.

2. Determining which of the attributes in the survey data file are to be included in the initial
population.

3. Adding attribute definitions from the attribute library for all additional attributes that are to be
imputed initially or defined during the course of the simulation.

4. Specifying which micro time series are to be generated for each of the simulation entities
during the simulation.

5. Determining whether subselection of enumeration units of the survey data file should occur,
and if so, according to what rule.

6. Proceeding with the mechanics of creating the population in MASH internal form.

Initiating the Creation of a Micro Population. The first command that is required to begin creating a

micro population is the SET BASE YEAR command. The base year, or initial year, is the calendar year

that corresponds to the state of the micro population in its initial state. Thus, the command:

SET BASE YEAR TO 1969;

associates the calendar year 1969 with the population that will be created. After the first year of simulation,

the updated population state will be associated with the year 1970.

The SET BASE YEAR command is the first command in the sequence of commands used to create a

micro population, and the CREATE command is the last command. In between these commands, the user

33

may execute an EXTRACT command and one or more INCLUDE commands. Other commands such as

GENERATE, IDENTIFY, and DISCARD may be executed if desired.

Specifying the Micro Data Source. The EXTRACT command is used to specify the names and

locations of the PDP-10 files containing the "survey file" and its associated machine readable codebook file

that will be used to create the initial population. For example, suppose that a 10 percent sample of the

1967 Survey of Economic Opportunity File, reformatted appropriately, were contained in the file named

SEO10.DAT, and its associated machine readable codebook file were named CBK10.DAT. Suppose further

that these files were stored on the on-line disk. To specify them as the initial population source, type:

EXTRACT FROM SURVEY FILE SEO10 DESCRIBED BY CODEBOOK FILE CBK10;

Including Survey. File and Library Attributes. The INCLUDE command specifies a group of either

"survey" or "library" attributes to be included in the initial population. For example to include the survey

attributes AGE, RACE, and SEX and the library attribute SOCECLEVEL, type the following two

commands:

INCLUDE SURVEY ATTRIBUTES AGE, RACE, SEX;

 INCLUDE LIBRARY ATTRIBUTE SOCECLEVEL;

These statements will cause the documentation for AGE, RACE, and SEX to be extracted from the survey

file codebook and the documentation for SOCECLEVEL to be extracted from the attribute library. These

definitions will be inserted in the machine readable codebook that will describe the initial population and

that will be associated with the population throughout the microsimulation. In addition, the values of the

attributes AGE, RACE, and SEX will be extracted for every person -- more generally, for every entity for

which they are defined -- which is included in the initial population.

There is no restriction on the order of attribute names within an INCLUDE command or the list it

references, or between INCLUDE commands. However, each attribute name can appear only once since all

attribute names within the survey file codebook over all levels of definition must be unique. If there are

duplications between the survey file codebook and the attribute library, only one of the duplicates can be

included.

34

Attributes to be included within an initial population for simulation are extracted from only these

two sources.9 For survey attributes, both initial values and definitions are extracted. For library attributes,

space is reserved for the values which are initially set to zero, and the definition is extracted. It is the

responsibility of the operating characteristic modules -- either during initialization or during simulation --

to calculate values of attributes whose definitions were extracted from the attribute library.

The INCLUDE command can be used to reference a list of attribute names to be included rather than

having to contain the attribute names directly. For example, the attributes AGE, RACE, and SEX could be

included by entering the commands:

DEFlNE LIST BASIC AS AGE, RACE, SEX;

INCLUDE SURVEY ATTRIBUTES IN LIST BASIC;

Generating Time Series at the Micro Entity Level. The GENERATE command allows a user to

retain one or more time series of attribute values for each entity in the initial population.

Simulating a dynamic microanalytic model produces a time series of values for each attribute of each

entity in the micro population. For some purposes, the time series of certain attributes at the micro level

must be obtained to evaluate the experiment. For example, the simulation of a policy that has an effect

upon the time pattern of earnings of persons can best be evaluated by analyzing the patterns of earnings

actually simulated over time for persons in the micro population.

The GENERATE command provides one method of obtaining such data. For example, to retain the

value of the attribute WAGES for the last 5 years of simulation for every person, type:

GENERATE LAST 5 YEAR SERIES FOR WAGES;

If, instead, the highest 5 values for WAGES were required -- perhaps to compute a basis for the level of

pensions at retirement -- they could be retained by typing:

GENERATE HIGHEST 5 YEAR SERIES FOR WAGES;

9 Computed attributes obtained from attribute definitions stored in the MASH dictionary are only computed at the
time micro output is generated; these definitions are not effective when a population is first being created.

35

Each of the above statements (but not both together) generates 5 additional attributes named WAGES00001,

... , WAGES00005. During the course of the simulation the values associated with these attributes will be

retained as specified in the GENERATE statement.10

Micro series of first and lowest values may also be generated. A GENERATE command may

reference a list of attribute names directly for convenience. Micro time series may be generated for both

survey and library attributes. Multiple GENERATE commands may be used, and the order of occurrence of

attributes within them is immaterial. These attributes are included in the initial population and have the

appropriate values generated for them automatically during the course of the simulation process.11

Only one type and length of micro time series may be generated for any one survey or library

attribute. Before the GENERATE command is invoked, each of the attributes either mentioned explicitly or

addressed implicitly must have been included in the initial population being constructed by an INCLUDE

command.

Subselecting the Enumeration Units. Unless otherwise specified, each enumeration unit in the

survey file used creates exactly one microanalytic unit for simulation in the initial population.

Subselection of these enumeration units is possible, and is controlled by entering a sample definition of

interview units into the MASH dictionary and referencing it in the CREATE command. The sample

definition must: (1) be at the interview unit level, i.e. all attributes within the definition must be interview

unit attributes; (2) contain no computed attribute names or other sample names; and (3) contain no

CODED.BY operators. For example, if REGION and IUWEALTH were interview unit attributes, and the

region code for northeast were 1, then the command:

DEFINE SAMPLE RICHYANKS OF INTUNIT AS

REGION=l .AND. IUWEALTH>=1000000;

defines a sample of northeastern interview units having wealth of at least $1,000,000.

Initiating the Population Creation Process. The CREATE command initiates the process of creating

the initial population in MASH internal form. The CREATE command requires that the user specify a

10 The number of attributes in the micro time series must be specified at the time the population is created because
a fixed length space allocation is made for each entity in the population. Prespecifying the length of micro time
series is a cost that is paid for the ease of addressing and storage management gained from such a strategy.

11 As an option, the initial values of all attributes for which micro time series are generated may be used to
initialize the series for each entity for which the attribute is defined.

36

name for the population to be created. MASH micro populations are referred to by name, which is an

integer between 1 and 99.12 For example, to create a micro population and name it "57":

CREATE POPULATION 57;

A simulation unit is created from each enumeration unit in the survey file named in the preceding

EXTRACT command.

Initial populations can also be created for only a subset of enumeration units in the survey file by

defining a sample of interview units (the highest level of the simulation unit structure) and restricting the

CREATE command to units for which the sample definition is true. For example, the following

commands could be used to obtain a population from only the rural west:

DEFINE SAMPLE RURALWEST OF INTUNITS AS RURAL=2 .AND. REGION=4;

CREATE POPULATION 57 USING SAMPLE RURALWEST;

The sample definition may contain random number functions, and the command has an option for selecting

many different sequences of random numbers.

The execution of the CREATE command: (1) extracts included attributes from the survey codebook

and attribute library; (2) creates the initial simulation population's codebook and constructs the internal

format of the initial simulation population data; (3) initializes the value of library attributes to zero; (4)

extracts survey file data and creates simulation units; and (5) applies an initializing set of operating

characteristics to the initial population thus formed. At each step, a message is typed informing the user of

the progress of this operation, since for large populations this operation can be lengthy.

The application of an initial set of operating characteristics to the population units uses the same

logic as simulation for sequencing the computation, except that special initialization characteristics are

used. These characteristics are dependent upon the source of data and must be coded to match the

characteristics of the survey data file. At the present time, two sets of initializing characteristics are present

in the system, one set for each of the populations described in Appendix 1. The name of the data file

contained in the survey file's machine readable codebook is used to select the proper set of initializing

characteristics.

12 Since each micro population consists of 10 PDP-10 files that can assume arbitrary names, there can be more
than 99 populations existing at one time. The effective restriction that this naming convention imposes is that
there can be no more than 99 potentially active populations catalogued in the same user disk area at the same time.

37

On-Line Browsing Through Micro Populations

The increased computational capability offered by modern digital computers has given social

scientists substantially greater power for data analysis, but often at the cost of increased separation of the

investigator from his data. Phrased differently, while computers can mechanically process large amounts of

data in complicated ways, they generally do not allow the investigator to get a "feel" for those data.

Interactive computing environments offer substantial promise in restoring some intimacy between

investigator and data, and systems that allow close contact with data such as [B6], [G4], [Ml], [M5], and

[R2] are beginning to be used.

With the objective of restoring the "feel" of data to an investigator, a set of commands have been

included within MASH that allow on-line examination of entities in a micro population. These commands

allow a user to examine the contents of a population and make modifications to it. An important aspect of

on-line browsing is that it may be intermixed with on-line simulation, i.e. the browsing commands and

simulation commands may be used jointly for on-line examination of the effects of object model operating

characteristics. This interaction will be discussed later.

Use of the browsing commands requires some knowledge of how a micro population is structured

within MASH. For each population, each micro entity at each level is assigned a name. These names are

chosen to be the positive integers starting with 1, for ease of reference, Thus, a newly created micro

population of households will contain interview units whose names are 1, 2, ... , families whose names are

1, 2, ... and persons whose names are 1, 2, ... Furthermore, the data for each entity are stored in a specific

(logical) address; we say that an entity lives at a specific address. Addresses are also chosen to be positive

integers for ease of reference; there are interview unit addresses 1, 2, ... , family addresses 1, 2, ... , and

person addresses 1, 2, ... When a micro population is created, all of its entities are named sequentially at

each entity level and assigned to specific addresses, also sequentially at each level.13

There is no necessary relationship between family names and addresses or between family addresses

and membership in interview units. Instead, cross-reference information is generated that describes the

structure of simulation units within the population. There are membership lists that contain the names of

all families in each interview unit and the names of all persons in each family. Address lists contain the

current address of each interview unit, family and person in the population. Containment data include for

13 The specific entity level names interview unit, family, and person are used in this discussion of the MASH
browsing functions to illustrate the uses to which the commands can be put. These functions are applicable to any
(up to) three-level micro population, regardless of the substantive nature of the unit of simulation.

38

each person the name of the family containing the person, and for each family the name of the interview

unit containing the family. These membership lists, address lists, and containment data define the basic

structural relationships between micro population entities.

As demographic processes are applied to the population during a simulation experiment, the structure

of the initial population will change. New names will be assigned to new births, and the data describing

the newly born child, including "inherited characteristics," will be stored in a new person address assigned to

the child. Marriages and divorces will often cause a new family and a new interview unit to be created.

Deaths will remove a person from the population; sometimes the person's family and interview unit will be

left empty and will also be removed.

For each structural change in the micro population, the cross reference information is adjusted to

reflect the new population structure. In addition, whenever a person changes family affiliation or creates a

new family, the data for the person are moved to a new address. and the person's old address is updated with

forwarding information. The person's new family name and a code denoting the reason for leaving the old

family are added to the person data at the old address, and the person's old family name and a code denoting

the reason for joining the new family are included in the person's data at the new address.14 After the

person has "moved," the data at the person's old address are preserved indefinitely by the system. Thus,

every structural change in the micro population generates a genealogical trail that can be reconstructed by

both user commands and by inter-unit operating characteristics that require that connections be made

between related persons who are not necessarily still members of the same interview unit. One use of this

genealogical information will be to provide a mechanism for the distribution of assets (inheritance) when a

family is dissolved due to the deaths of all its members.

Selecting a Population. Since a user may have created a number of micro populations, the first

browsing command should identify the population of interest, so that it may be "opened", i.e. made

available for inspection. To "open" a population for browsing, type:

BROWSE THROUGH POPULATION popnumber;

14 These additional historical and genealogical features depend upon the following attributes being present at
both the family and the person level: (1) the reason the entity joined the unit; (2) the reason the entity left the
unit; (3) the year the entity joined the unit; (4) the year the entity left the unit; (5) the entity's previous address;
and (6) the entity's forwarding address. Attribute definitions for these attributes are in the attribute library, and
must be included in a population when it is created. Operating characteristics that affect the population's structure
update them when required, and other commands reference them also, even though they are generally invisible to
the user of the system.

39

If a microsimulation is already in progress with this micro population, then it is already available for

browsing and it is not necessary to execute the above command.

While browsing, three pointers called browsing pointers identify the current interview unit, family

and person for browsing purposes.15 These pointers may be set in a number of ways, either explicitly or

implicitly as the result of a browsing command. These pointers are set explicitly using the LOOK

command. To examine any entity, the user "looks" at it, identifying it by name and level. For example:

LOOK AT INTUNIT 34;

LOOK AT FAMILY 245;

LOOK AT PERSON 78;

The LOOK command sets the browsing pointer to the entity type that it references. Associated entities

may be found by using the EXHIBIT command described below.

Each micro entity that has been created and is still a member of the population "lives" at some

address. To determine the address currently assigned to any existing micro entity, the user asks where the

entity is. For example: 16

WHERE IS INTUNIT 34;

WHERE IS FAMILY 245;

WHERE IS PERSON 78;

 To determine the values of any of the three browsing points, the user asks who the current entity is.

For example:

WHO IS THE CURRENT PERSON;

A second set of optional genealogical attributes may be included in a micro population; they consist of the

attributes FATHER (the name of the person's biological father), MOTHER (the name of the person's

biological mother), SPOUSE (the name of the person's current or most recent spouse), and CHILD01,

15 There are also three simulation pointers that identify a current entity at each level for simulation purposes, but
the two sets of pointers are independent. At the present time there is no way to address the simulation pointers
while browsing, but the addition of a "LOOK AT CURRENT SIMULATION UNIT;'' command would not be difficult
and might aid in observing the effects of simulation operating characteristics.

16 For grammarians, an optional "?" character may be inserted between the entity name and the terminating
semicolon in all commands that are actually questions.

40

CHILD05, ... (the name of the person's first (oldest), second, ... biological child). If these attributes are

included in the micro population at the lowest (PERSON) level, then they will be updated correctly during

the simulation process. The user can then use the WHO command as in the following examples:

WHO IS THE MOTHER OF PERSON 592;

WHO IS HER FATHER;

WHO ARE HER CHILD01, CHILD02;

If there is no current entity, a value, or name, of zero will be returned.

To determine the name of the entity "living" at at certain address, the user asks which entity lives

there. For example:

WHICH FAMILY LIVES AT ADDRESS 714?;

If an entity used to live at the address specified, the system will respond that there is no entity currently at

that address. If an entity ceased to exist while occupying that address, MASH will report its name and

status.

The values of attributes of specific entities are ascertained by the user by asking what they are. For

example:

WHAT IS AGE OF PERSON 495?;

WHAT IS REGION OF INTUNIT 31;

WHAT ARE ASSETS OF FAMILY 78?;

If an entity is specified in the WHAT command, the browsing pointer at that level is set equal to the name

of the entity named. Thus, after the above three commands have been executed, the current interview unit,

family, and person are named 31, 78, and 495 respectively, regardless of who the current entities were

previously. If an entity is not specified in the WHAT command, for example:

WHAT ARE WAGES?;

then the value of the named attribute for the current entity at the level for which the attribute is defined is

displayed for the user. For example, the above command, if executed after the previous three, would return

the value of the attribute WAGES for person 495, assuming that WAGES is a person attribute. Both the

41

numeric value and its associated codebook label are typed, thus making the response more intelligible in the

case of coded noncardinal attributes.

If micro time series attributes have been defined for an attribute, e.g. the last 5 values of the attribute

WAGES, then subscript or time series notation may be used to address the series. For example, the

command:

WHAT ARE WAGES (2) OF PERSON 64;

retrieves the second element of the micro time series WAGES for person 64, which after year T of

simulated time corresponds to the attribute's value in year T-l. 17

Modifications to the current values of attributes of micro population entities may be made by

specifying the change to be made. To specify a change, the attribute name, entity identification and new

value must be specified; knowledge of the specific value presupposes having an accurate codebook from

which to determine the meanings associated with possible new values. For example, to change the AGE

attribute of a person in the population, type:

CHANGE AGE OF PERSON 284 TO 51;

The value entered will be compared with the list of legal values in the population's codebook. If the value

is legal, it will be confirmed with the label associated with it; thus the user receives both numeric and

textual confirmation of his change. If the specified value is not included in the codebook for that attribute,

then the user is informed and asked whether the list of valid codes and labels for that attribute should be

displayed.

Using the codebook attributes described in Figure 2-1 for illustration, the following dialogue might

take place between MASH and an investigator interested in the attributes WORKING and MILITARY:

*WHAT IS WORKING OF PERSON 71;

4 ... 27-39 WEEKS

17 The meaning of WAGES(2) depends upon the GENERATE command that was used to create it. The first attribute
of a micro time series, e.g. WAGES(l), could be the highest, lowest, oldest or newest value defined for the
corresponding attribute depending upon how the population was created.

42

*WHAT IS MILITARY?;

2 ... NO

*CHANGE WORKING TO 0;

WAS 4 ... 27-39 WEEKS

NOW 0 ... NAP (NOW IN ARMED FORCES)

*CHANGE MILITARY TO 1;

WAS 2 ... NO

NOW 1 ... YES

Locating Entities with Specific Characteristics. Unless an investigator has good a priori knowledge

of his data or wishes to examine the effects of his operating characteristics on specific micro units, he will

be more interested in examining population units having specific characteristics rather than the first, second,

or third such unit in sequence. The FIND command may then be used to locate entities having specific

characteristics. For example, to find the first person in the micro population older than 65, type:

FIND FIRST PERSON WITH AGE>65;

If, after examining this person, another such person is desired for examination, type:

FIND NEXT PERSON WITH AGE>65;

If the beginning of the population has been examined previously, and the investigator wants now to browse

further along in sequence in the population -- say after the first 500 interview units -- he types:

FIND FIRST PERSON STARTING AFTER INTUNIT 500 WITH AGE>65;

Attributes used in a FIND command must be associated with the entity that is being searched for.

The search may be conducted for an interview unit, a family, or a person. Searching is performed

sequentially through interview units in order of increasing interview unit name. If the search is for a family

or person, the interview units which are searched as a group in the above order are each searched internally

in "left list order," i.e. by family, and within family, by person. If the search is successful, then all three

43

browsing pointers are redefined. The pointer at the search level is set to the name of the entity that was

successfully located. Browsing pointers at higher levels, if any, are set to the name of the containing

entity, and browsing pointers at lower levels, if any, are set to the first unit in the contained entity. If the

search fails, the browsing pointers are unaltered.

The EXHIBIT command is used to exhibit the structure of a micro population entity, its

genealogy18, or its history. Examples of the EXHIBIT command are:

EXHIBIT STRUCTURE OF FAMILY 64;

EXHIBIT GENEALOGY OF PERSON 1761;

EXHIBIT HISTORY OF PERSON 322;

The STRUCTURE option describes the structure of the interview unit that the entity is contained in,

if it is not an interview unit itself. The names and addresses of all families and persons currently contained

in the same interview unit as the entity named are listed. If no entity name is specified, the current entity

(to which the browsing pointer at that level is pointing) is used as the entity name. EXHIBIT

STRUCTURE resets the browsing pointers so that they point to the interview unit, family and person

referenced in the command. If the command specifies the family or interview unit and the exhibit level,

then the browsing pointers for the lower levels are set to the first entity contained in the entity one level

higher.

The HISTORY option traces the history of an entity at any level of the simulation unit structure

through its various moves. Each time that a significant demographic change occurs for a micro unit, the

entity moves to a new address and maintains a trail of both forward and backward pointers. The HISTORY

option traces those pointers and displays the time and reason for each entity move.

Population Surveys and Censuses

The results of a simulation exercise using a microanalytic model are often best captured in the form

of either surveys of individual entities or tabulations representing specific aggregations of interest to the

experimenter. Neither of these two forms of output are available from aggregate models.

18 The GENEALOGY option is applicable only to persons and has not yet been implemented. It will describe --
to the extent that information exists in the micro population -- the "family tree" of which the person is a
member.

44

Microanalytic simulation processes are capable of producing a wide variety of micro data output for

analysis. These outputs include cross-section samples and censuses at one or more points in time during

the simulation process, time series of attributes of micro population entities, portions of simulated "life

histories" of individuals, and summary information for various population subgroups.

The basic microdata output commands in MASH are the CONDUCT, OBTAIN, AND PRODUCE

commands. They allow a user to take a survey or a complete census of any micro population, including an

initial population that has been extracted from a three level, hierarchically structured survey data file as

described in the previous chapter. The output produced by execution of these commands may consist of

either (1) a rectangular data file whose observations are either interview units, families, or persons in the

micro population and whose variables are attributes of that entity level, its containing entity, if any, and the

first entity contained in it, if any; or (2) a hierarchical data file consisting of observations having three

hierarchical levels corresponding to the three levels of the unit of simulation and containing a segment for

each entity at each level of the unit. The output file produced is described by the contents of a machine

readable codebook file which is produced at the same time. Output files created using this mechanism may

be read by a wide variety of other data analysis programs on the PDP-10 computer, and they may be

exported to computer systems of other manufacturers.

For example, suppose that a small demographic survey were desired of the population whose name is

57, and that attributes AGE, RACE, SEX, and SCHOOLING were to be extracted for the entire population.

The user first selects two names, one for the survey file and the other to name the codebook that will be

created and will define that survey file. These names are used in the PRODUCE command. For example,

the user might enter:

PRODUCE SURVEY FILE DEMOG AND CODEBOOK FILE DEMCB;

Two PDP-10 files will be produced at the conclusion of the specification of the survey: (1) a file named

DEMOG.DAT containing the survey data, and (2) a file named DEMCB.DAT containing a machine

readable codebook describing the structure and contents of DEMOG.DAT in accordance with the standard

described in Appendix 3.

The attributes to be included in the survey file are specified by one or more OBTAIN statements.

For our example, the user could enter:

OBTAIN ATTRIBUTES AGE, RACE, SEX, SCHOOLING;

45

Or, alternatively the attributes to be extracted for the survey can be placed in lists of attribute names, e.g.:

DEFINE LIST Al AS AGE, RACE, SEX, SCHOOLING;

OBTAIN THE ATTRIBUTES IN LIST Al;

Multiple OBTAIN commands can be used to build a complete list of all attributes which are to be extracted.

After the PRODUCE command and all OBTAIN commands have been specified, the CONDUCT

command is used to initiate and carry out the survey. For our example, the command:

CONDUCT SURVEY OF PERSONS IN POPULATION 57;

conducts a survey of all living persons in the population named 57. The survey file will be rectangular and

will contain one observation for each living person in the population with the current values of the person's

age, race, sex and education attributes.

Surveys may be taken of subsets of a population. For example, to restrict the above survey to

include only men who are more than 65 years old, it is sufficient to enter the commands:

DEFINE SAMPLE OLDERMEN OF PERSONS AS AGE>65 .AND. SEX = 1;

CONDUCT SURVEY OF PERSONS IN POPULATION 57 USING SAMPLE OLDERMEN;

Three-level hierarchical surveys are obtained by omitting any reference to specific level in the

CONDUCT command. For example, to survey REGION and URBANRURAL at the interview unit level,

FAMINCOME and FAMWEALTH at the family level, and AGE and WAGES at the person level, it is

sufficient to enter the commands:

PRODUCE SURVEY Sl AND CODEBOOK Cl;

OBTAIN ATTRIBUTES REGION, URBANRURAL,

FAMINCOME, FAMWEALTH, AGE, WAGES;

CONDUCT SURVEY OF POPULATION 57;

46

Other options of the survey process include the ability to survey dead persons, specify the format of

the survey output file more exactly, and choose different random number seeds for stochastic functions that

can be included in sample definitions.

Both original population attributes and computed attributes may be collected by a sample survey.

Computed attributes are those that have been entered in the user's dictionary by a DEFINE ATTRIBUTE

statement. These attribute names may be included in OBTAIN statements. Their definitions will then be

retrieved from the user's dictionary and will be evaluated for each entity included in the sample. Computed

attributes may in turn require that other computed attributes be fetched from the dictionary if they appear in

the attribute's definition. Such intermediate attributes will be evaluated whenever their values are required

but they will not appear in the survey unless they are explicitly named in an OBTAIN statement. 19

Surveys may be conducted on a population at the time it is created, and at the end of any or all years

of simulation. More than one survey may be conducted at one point in simulated time. Since the entity

name and the simulated year are recorded on each line of the survey files produced, panels consisting of life

histories may be obtained by combining survey files conducted after each year of simulation -- for the

same sample within the same population -- and sorting them by entity name, simulated year, and line

number within observation.

The CONDUCT command provides a basic "escape function" for MASH, since it allows a user to

export the microdata to other programs for further processing and analysis. The existence of such a function

relieves MASH of the sole responsibility of providing internally many statistical procedures. SPSS [Nl],

Data-Text [Hl], PSTAT [B7], and several of the BMD series [D5] are among the well known and widely

available programs that may be used to process survey files produced by MASH. Nevertheless, there may

be advantages in providing some analytic functions within the system, both for reasons of efficiency and to

include them within the interactive nature of the system. Some of these functions are discussed later.

Selective cross-tabulation and multiple linear regression are initial candidates for implementation

within the system. The intended course of implementation is to define: (1) a COMPUTE command

encompassing a variety of possible analytical procedures; (2) a CENSUS entity that is a list of names of

19 The values of computed attributes (those whose definitions appear in the user's dictionary) are implicitly
defined for all entities at their level of definition, even though they are not stored explicitly with the other data for
those levels. Such attributes are called virtual attributes which contain virtual data as described in [Fl]. When a
survey is taken (in computational time) the user who takes the survey need not be aware that certain attributes are
defined by stored values (real) and others are derived from a definition (virtual). Within MASH, these virtual
attributes are realized, i.e. made real, by the act of taking a survey. At other times during a MASH session --
given the current level of implementation -- they are non-existent. In the long run, such virtual attributes are
expected to play a more important role in the system.

47

COMPUTE commands that are to be executed concurrently; and (3) a TAKE CENSUS command that

allows scheduling censuses. Such a combination will allow substantial flexibility in output specification

while providing economies inherent in minimizing passes over the population data files. Proposed syntax

rules for these commands are included in Appendix 2. The CANCEL command will be extended to permit

modification of the census taking agenda. These features will substantially enhance the system's ability to

provide user specified output with no intermediate effort.

Macromodel Commands

Macroeconomic models are specified in MASH by a set of equation definitions, a set of exogenous

and endogenous variable names, initial values for all endogenous variables, and time series inputs for all

exogenous variables. Model variables may be associated with, or bound to, time series in the data bank just

prior to simulation. Selective tracking, or subseries substitution, is permitted prior to and during

simulation. Parameters may be specified as literal names in equation definitions, and may be initialized by

searching parameter lists in the MASH dictionary. Results of macromodel simulations may be displayed as

the simulation proceeds and in table form after it has been completed.20

The Samuelson accelerator-multiplier interaction model [S3] is used in this and the next chapter to

illustrate the use of MASH commands for specifying macroeconomic models. The model contains three

equations: (1) national income y is the sum of governmental expenditures g, consumption expenditure c,

and induced private investment i; (2) consumption expenditure is proportional to national income, lagged

one period; and (3) investment is proportional to the first difference of consumption expenditures. The

model may be expressed mathematically by:

yt = gt + c t + it (1)

ct = αyt-l (2)

it = β(ct - ct-1) (3)

Only government expenditure is exogenous to the model. The above set of equations can be reordered into

the order (2), (3), (1) to form a recursive model.

20 Both the author and MASH owe a substantial intellectual debt to Mr. Mark Eisner and the TROLL econometric
modelling system [Ml] for many helpful discussions and ideas regarding computing tools for simulating
macroeconomic models. In particular, model specification and solution strategy and the tracking mechanism used
by MASH benefitted substantially from Eisner's early work with TROLL.

48

The equations in the above model are easily defined and catalogued in the MASH dictionary by the

following three DEFINE commands: 21

DEFINE EQUATION NATINCOME AS Y(T) := C(T) + G(T) + I(T);

DEFINE EQUATION CONSUMP AS C(T) := ALPHA * Y(T-l);

DEFINE EQUATION INVEST AS I(T) := BETA * (C(T) - C(T-l));

The macromodel, which we name SAMUELSON, is defined by naming the equations within it in a

recursive order:

DEFINE MACROMODEL SAMUELSON AS CONSUMP, INVEST, NATINC;

The equations named in a macromodel definition should belong to the same owner in the MASH dictionary

as the macromodel does.

21 Ease of definition for this model follows from the fact that it is totally recursive. Since equation definitions
allow any algebraic expression in predetermined and exogenous variables to appear on the right hand side, the
specification of any recursive model is straightforward. There are two extensions to these rules that extend the
scope of models that can be embedded within MASH:

(1) A GOTO function is used to provide some assistance in specifying blocks of simultaneous equations and
solving them iteratively. The GOTO function has one argument, the name of another macromodel equation.
Execution of the GOTO function transfers control to the named equation. Thus an equation such as:

DEFINE EQUATION LOOP1END AS DUMMY
IF ABS (ERRORNOW - ERRORLAST) <.0001
 THEN 0 ELSE GOTO (LOOP1BEGIN);

may be used to control an iterative computation; ERRORLAST and ERRORNOW are the results of two
iterations, and when they differ by more than .0001 in magnitude, control is transferred to LOOP1BEGIN
which initiates another iteration.

(2) An endogenous variable appearing on the left hand side of an equation may refer to the current period being
simulated, e.g. Y(T), or it may refer to either a past or a future time period, e.g. Y(T-k) or Y(T+k), k=1,2,
Calculating values for future periods could be useful in modelling such phenomena as consumer expectations,
in which a macro model would be used to predict future values of national income which would then enter into
consumer expenditure decisions at the micro level. Calculating values for past periods would allow models to
record revised figures for aggregates based upon data computed at a later time period.

49

The PREPARE command is the first command to be given to prepare a macromodel for simulation.

It includes a macromodel name, and the number of the microsimulation pass after which the macromodel

will be simulated.22 For example, to prepare the model SAMUELSON for simulation, type:

PREPARE MACROMODEL SAMUELSON;

If the definition of the macromodel and the definitions of all of its equations belonged to another owner, say

to Smith, then the model would be prepared by typing:

PREPARE SMITH'S MACROMODEL SAMUELSON;

As combined macro-micro models grow in complexity, it may be desirable to interleave several macro

submodels between micro submodel passes. The PREPARE command can be used to prepare a number of

macro models, one for execution after each pass of the micro submodel. For example, to prepare

macromodel FIRST belonging to the current owner for execution after pass 1, and to prepare the

macromodel NEXT belonging to Smith for execution after micro pass 3, type:

PREPARE MACROMODEL FIRST FOR PASS 1, SMITH'S NEXT FOR PASS 3;

In the above example, all equations contained in FIRST belong to the current user, and all equations

contained in NEXT belong to Smith.

A macromodel may have any number of scalars, i.e. scalar variables having no time dimension,

contained within it. These scalars may be defined in three ways. First, the left hand side of an equation

definition may contain either a time dependent variable or a scalar variable; a scalar variable appearing on

the right hand side of some equation may have been defined by appearing on the left hand side of a previous

equation.

Second, the user may choose to maintain his own list of parameter definitions and initialize scalar

values by searching the parameter list. The SEARCH PARAMETER LIST command performs this

function for the user. A parameter list is an ordinary MASH list of symbols, with the exception that the

names of symbols in the list are paired; the first element of the pair is a scalar variable name, and the

22 The process of applying all microanalytic operating characteristics to the micro population may be organized
in several processing cycles, each of which applies a subset of the operating characteristics to the entities in the
micro population, in a known order. This organization is described more fully in chapter 3.

50

second element is its associated value.23 For example, the following command defines a MASH list that

can be interpreted as a parameter list:

DEFINE LIST BASICPAR AS PI, 3.14159, BETA, 0.075, MULT, 3.42, AUTOREGC, 0.3,

LABORSHARE, 0.71, ALPHA, 0.92, ADJ, -2.3;

Suppose that, after having prepared model SAMUELSON above, the scalars in the model were to be

initialized with the values in parameter list BASICPAR. The command:

SEARCH PARAMETER LIST BASICPAR;

would retrieve the list BASICPAR and match each name in it with the name of every undefined scalar in the

macromodel(s) prepared previously. If a match occurred, the next element of the parameter list will be

assigned as the scalar's initial value. The above command would therefore set BETA to 0.075 and ALPHA

to 0.92.

As many searches of different parameter lists as desired may be performed in sequence. However, the

first name match initializes the value of the scalar; subsequent matches are ignored. Parameter lists

belonging to other owners may also be searched.

As mentioned previously, MASH provides numeric options -- which may be selected by the user --

for executing various functions that are not (yet) incorporated in the command language. One such option

types the name and value of each scalar defined during a search procedure on the user's terminal.

Finally, if the value of a scalar is undefined at the time it is required for evaluating an expression, the

user is asked to supply its value on-line with the request, for example: 24

PLEASE ENTER ALPHA:

23 Since a parameter list is syntactically no different from any other MASH list, any use of the CHANGE command
to alter either names or values should make no assumptions that pairing of symbols is automatic or that values are
unique.

24 At present the only acceptable response to this inquiry is to enter a numeric value which is to be associated
initially with this parameter. A desirable extension would provide for an alternate response -- a search command
naming a parameter list. Oversights in the command sequence could then be corrected without resetting the
sequence of computation back to the beginning of the simulation.

51

The ASSOCIATE and TRACK commands provide a flexible way to link variables in the

macromodel with time series in the MASH time series data bank. ASSOCIATE binds variable names, for

which there may be several alternative data series, to time series names, while TRACK provides for

temporary substitution of input values to the model.

In the absence of any ASSOCIATE or TRACK commands, the time series associated with a

macromodel variable is assumed to have the same name as the variable and to belong to the current user.25

Thus, for macromodel SAMUELSON above, it is assumed that the user who simulates with this model has

time series in his dictionary named Y, C, I, and G. For example, whenever a value for G(T) is required to

evaluate equation NATINCOME, an attempt will be made to retrieve it from a time series named G in the

current user's dictionary. The same logic applies to Y, C, and I, although new values will also be

calculated and stored for these time series. Thus, the default link between a macromodel and the dictionary

of a user is that the names of the variables and time series are identical.

The ASSOCIATE command allows a user to associate, or bind, any macromodel variable with any

time series in his dictionary. For example, the command:

ASSOCIATE G WITH GOVSPENDl;

will have the effect that whenever a value of G(T) is required for calculation, the value of GOVSPENDl(T)

will be retrieved from the user's data bank and used instead. Likewise, if the following command were

executed:

ASSOCIATE Y WITH NIUSA;

then values of the macromodel variable Y would be retrieved from the current user's series NIUSA, and

values of Y that were computed by the macromodel would be stored in NIUSA. Association therefore sets

up a two-way communications path between a user's own time series and variables in a macromodel.

Associations are also possible between macromodel variables and time series belonging to other

users, provided that the variables are exogenous in the model. Such associations should not be specified for

endogenous variables, since the association would result in a modification of the contents of a time series

25 In the absence of any association or tracking commands referencing an endogenous variable, values for that
series in the data bank will be replaced by the new values for the variable as they are computed. To avoid only
partially overlaying a previously computed series by values of an endogenous variable, an option is available for
first erasing the series associated with endogenous variables when the series is first referenced during or before the
initial year of simulation.

52

belonging to someone else. For example, if the desired values of the exogenous government spending

variable are stored in Smith's time series named FRUGALGOVT, then the command:

ASSOCIATE G WITH SMITH'S FRUGALGOVT;

will cause the values of Smith's series FRUGALGOVT to be used as exogenous values for variable G.

More than one association may be specified in an ASSOCIATE command; associations may be

strung out in the same command. For example, the last two examples could be combined in the command:

ASSOCIATE Y WITH NIUSA, G WITH SMITH'S FRUGALGOVT;

Time series belonging to any owner may be used for association with exogenous variables. If a series

belonging to HISTORIC is used for this purpose, the possessive "'S" may be dropped from the command.

Multiple ASSOCIATE commands may be executed for a macro model simulation. In addition, new

associations may be specified during the execution of a simulation. Associations are stored in order of entry

and searched in reverse order; thus new associations supersede old associations that reference the same

variable.

Tracking provides a mechanism for the substitution of an alternate series of values for endogenous

variables other than those previously generated by the macro model. Suppose, for example, that after the

macromodel SAMUELSON was prepared, the following command was executed:

TRACK I FROM 1942 THROUGH 1945 USING HISTORIC INVESTMENT;

In the absence of any ASSOCIATE commands, the equation INVEST would compute values of I(T)

and would store them in a time series named I in the current user's dictionary. The procedure for retrieving

values of I(T) for computing Y(T) in equation NATINCOME would be altered, however. If T were in the

range 1942-1945 inclusive, then the value of I(T) would be retrieved from the time series named

INVESTMENT belonging to the owner HISTORIC; if T were not in the range 1942-1945 inclusive, the

value of I(T) would be retrieved from the time series named I belonging to the current user. The above

tracking command has selectively altered the source of endogenous value variables entering into the

calculation of the right hand sides of equations in the macromodel -- without altering the mechanism for

storing the values computed for these variables. Tracking may also be applied to exogenous variables if it

desired to piece together exogenous inputs for a variable from several sources.

53

Tracking may also be used to substitute selective values on the basis of other conditions. For

example, the TRACK command may be used to link an endogenous variable with a time series containing

values for that variable prior to the beginning of simulation. In macromodel SAMUELSON, the values of

C(T-l) and Y(T-l) must be known when T is the initial year to be simulated, and the simulation will not

produce these values. One way to define these initial conditions is to let these variables track their historic

equivalents before the first year in which the simulation produces values. For example, suppose that

HISTORIC owns actual series for national income called GNI and for consumption called CONS. Then the

following commands direct the simulation system to retrieve values for Y and C from series GNI and

CONS owned by HISTORIC when T is less than its value during the first year to be simulated:

TRACK Y BEFORE START USING HISTORIC GNI;

TRACK C BEFORE START USING HISTORIC CONS;

If any other owner's name were used, the possessive form would be required, e.g. SMITH'S GNI; the owner

HISTORIC is the exception to this rule.

Tracking may be performed for all years during a simulation, for a range of years, or for just one

year. Tracking commands may specify defaults, such as tracking from a different source before the start of a

simulation; another default condition is when the value would be missing in the absence of tracking.

Variables may be tracked either from a time series in the MASH dictionary or at the user's console. This

latter option may be useful in a simulation exercise in which the user (policy maker) is an interactive part

of the experiment.26 Notice that one TRACK command may contain more than one tracking specification

clause.

A variable may have an arbitrary number of tracking instructions associated with it. Tracking

instructions are stored sequentially in the order in which they are received, and the table is searched in

reverse order for interpreting them. Thus, tracking commands entered later override earlier specifications.

ASSOCIATE and TRACK commands interact in the following manner. When the value of a time

series variable is required to evaluate the right hand side of an equation, the tracking table is searched in

26 The ability to "track," or take input values from the user's console, has implications transcending macromodel
simulation. It provides an environment for a wide variety of on-line gaming activities. For example, given the
ability to share the MASH dictionary files among concurrently running MASH users, it would not be difficult to
use the environment provided to construct a business gaming model in which a number of players vied for
maximizing market shares, profits, or some other objective function by concurrently interacting with such a
model.

54

reverse order of entity to find an instruction that applies to that variable in that year. If the search is

successful, the content of the tracking command determines the source of the input value. If the search

fails, then the associate command table is searched in reverse order of entry for the first entry containing that

variable name. If that search is successful, then the corresponding time series name is used as the source of

the value. If the search fails, then a series belonging to the current user and having a name identical to the

variable name is used as the source of the value. If the source series is found not to exist, then the user is

queried for the input value at the terminal.

When the value of a time series variable appears on the left hand side of an equation and is computed,

then the tracking table procedure is bypassed, and the association table is used to determine in which time

series the new value is to be stored.

The SHOW command contains options to show the user the current state of part or all of the current

macromodel(s) that have been prepared. The TABLE option displays the macromodels prepared. The

EQUATIONS option displays the names of the equations and their pointers to the storage in which the

Polish string equivalent of the equation is stored. The STACK option displays the Polish string

representation of the equations. The SCALARS option displays the current values of all scalar variables in

the models. The CONSTANT option displays the list of constants (literal values) included in all equations.

The ASSOCIATIONS option displays the association table, in the order in which associations were entered.

The TRACKING option displays the tracking instructions in order of entry.

Time series in the MASH dictionary may be displayed individually using the DISPLAY command

and in groups using the TYPE command. For example, suppose that it was desired to display the outputs

from a simulation experiment using the SAMUELSON model described above, and that there has been no

association or tracking during the run. The relevant series would then be named Y, G, C, and I. The

command:

TYPE SERIES Y, G, C, I;

would produce a table of values for the four series for all years in which any were defined. Alternatively, a

table could be defined as a list of these series, and the series referred to by their table name, e.g.:

DEFINE TABLE RESULTS AS Y, G, C, I;

TYPE TABLE RESULTS;

55

If it was desired to compare the simulation outputs with the historical series, and the corresponding names

in HISTORIC's dictionary were NATINC, GOVT, CONS, and INVEST, then the appropriate command

would be:

TYPE SERIES Y, HISTORIC NATINC, G, HISTORIC GOVT, C, HISTORIC CONS,

I, HISTORIC INVEST;

Alternatively, the series list could be defined as a table and be referenced indirectly.

If no time range is included in the TYPE command, all values in all series named are displayed. The

TYPE command allows typing to be restricted to a range of years specified.27 For example:

TYPE FROM 1950 THROUGH 1960 TABLE RESULTS;

Series are generally typed in groups of five, with the year in the leftmost column. Each series is headed

with its name and the name of its owner.

Although MASH does not now contain commands that perform analyses of time series data, it does

provide an export function that allows series to be sent to other computer programs for these procedures.

For example, suppose it is desired to perform analyses of the four output series from macromodel

SAMUELSON. If the analyses can be done conveniently using the PLANETS program [B6], then the

command:

EXPORT TO PLANETS IN FILE RUNl SERIES Y, C, I, G;

will create a PDP-10 character file named RUNl.DAT. This file will contain the series Y, C, I, and G in a

form that can be read directly by the PLANETS READ statement.

The existence of this "escape function" removes much of the burden of providing time series analysis

functions from MASH and allows the user greater variety and depth of software with which to do his

analyses. This is especially true within a discipline oriented time sharing environment that allows rapid

selection and execution of a substantial number of specialized application programs.

27 The SET command contains options for specifying a default typing range and for specifying the number of
series columns that are typed in parallel.

56

This completes the list of MASH commands for specifying macroeconomic models. The next

section describes the system simulation functions and their applicability to both the macroeconomic

submodel and the microeconomic submodel.

Simulation Functions

Simulation consists of the application of a set of processes, often referred to as functions or

operating characteristics, to an initial simulation state. Repeated application of the simulation processes

produces changes to the initial state; these changed states are referred to as simulated states. Alterations to

either the initial simulation state or the set of simulation processes or both is likely to lead to different

simulated states. Interest in applying simulation techniques to models is often focused upon, but not

restricted to, the following: (1) exploring the characteristics of model solutions and analyzing those

solutions; (2) observing how alterations in the model, i.e. the set of processes, alter the simulated states

when applied to the same initial population; and (3) observing how solutions of the same model depend

upon the size and composition of the entities in the initial state. In discrete simulations such as those

supported by MASH, it may be of interest to observe effects both upon individual entities and upon

aggregated attributes of the population.

The MASH simulation system contains a number of commands providing functions for specifying

simulation experiments and controlling their execution. These commands and their meanings are specified

below, with examples of how to execute a simulation experiment within MASH.

Simulation Specification. The specification of a simulation experiment consists of the specification

of an initial simulation state and the set of processes included within the object model. In addition, certain

outputs obtained during the simulation process may also be considered a part of the model.

Within MASH, the initial simulation state consists of an initial population representing a specific

calendar year at the micro level, and a set of time series values at the macro level. At the micro level, the

object model consists of a set of micro operating characteristics; at the macro levels, the model consists of a

set of equations, associations, tracking commands, and scalar values. Since some of these commands may

be issued during a simulation run, it should be noted that a model's specification may not necessarily be

complete at the beginning of the run, nor is it unalterable during its execution.

Initial micro populations for microsimulation are created by a series of commands described in a

previous section, culminating with a CREATE command. Micro populations are referred to by name; their

57

names consist of numbers from 1 to 99. A calendar year is associated with each micro population. For

example, if the command:

SET INITIAL YEAR TO 1966;

were issued while creating a population, MASH assumes that population data represents the state of the

population in 1966. The first application of simulation to the model will then produce a simulated state

which is to be associated with the calendar year 1967.

Macro models, on the other hand, have no initial year included as part of their description. If a

simulation experiment consisting of only a macro model is to be described, then the SET INITIAL YEAR

command must be used to define the year prior to the first year for which simulated values are to be

calculated. If the above command had been given prior to such a run, the value of the reserved macro model

variable T would be 1967 during the first solution of the macro model.

Two basic commands are used to specify the object and duration of a microsimulation. The

population to which the model's operating characteristics are to be applied must first be named, for

example:

SIMULATION POPULATION IS 34;

Population 34 is now available for both simulation and browsing activity.

Then, the length of the simulation is specified by the PROCEED command. For example, to

advance the micro population through simulated time through 1975, the following command is used:

PROCEED THROUGH YEAR 1975;

The user may proceed to the beginning or end of processing associated with a simulated calendar year, a

specific pass through the micro population, any interview unit, family or person in the population, or any

macromodel, or any equation in any macromodel. New PROCEED commands take precedence over those

entered earlier in the session.

If a macro model is prepared before the execution of the first PROCEED command, then the

simulation will include macro submodels after the micro model passes specified in the PREPARE

command. If no PREPARE command has been given prior to a PROCEED, then the simulation will be a

58

pure micro simulation. If no micro population has been named for simulation, then the simulation

apparatus would execute at most the macro models set up by the PREPARE and associated commands.

Some limited flexibility of choice of micro model exists within the command language, and

additional commands are being considered. For the purpose of referencing characteristics at the command

language level, each characteristic has been assigned a mnemonic name such as BIRTH, DEATH,

WORKING, and TAXES. Using these mnemonics, operating characteristics may be omitted selectively

from a micro model whose modules have been incorporated into MASH at "load time." After a

characteristic has been dropped from a model, it may be reactivated. 28

The ALLOW and PREVENT commands permit the user to include and exclude specific operating

characteristics and other functions in an existing micro model. For example, to remove the labor force

operating characteristics and tax calculations from the existing micro model, type:

PREVENT WORKING, TAXES;

To reactivate them in the model, type:

ALLOW WORKING, TAXES;

Any list of operating characteristic mnemonics may appear in either of these commands. At the beginning

of a simulation run, the default condition is that all operating characteristics are allowed.

The option of removing certain characteristics from a simulation run satisfies several purposes.

First, if a simulation experiment does not require that certain characteristics be executed, significant

computer time may be saved by excluding it. Exercising the logical option to bypass the characteristic

during execution is considerably simpler in the short run than reassembling the other operating

characteristic modules and relinking and loading a new version of MASH. It also allows the same "rich"

model to be used by several investigators and provides them all with the option of omitting what they do

not want in their particular work. Furthermore, such partial models allow a good deal of investigation into

the nature of certain simulation effects, which can be very important as the model increases in complexity.

An observed result generally depends upon a number of processes in the model. By holding certain

processes in control or by omitting them entirely, their partial contributions to the result may be studied.

28 Future commands will address the functions of extending the modular model construction concept to the
command language level and allowing the parameters of characteristics to be modified at simulation run time.

59

Most operating characteristic program modules are associated with summary program modules that

provide two types of output, individual entity results and aggregate summaries. Individual entity results

consist of one or a few lines of summary output for each time the characteristic operates upon a micro

entity. Aggregate summaries generally consist of counts and tables summarizing the effects of the

characteristic and are produced at the end of a micro pass, simulated year, or simulation run. Both types of

output result from programming within the summary program module.

The WATCH command is used to produce micro output from one or more operating characteristics.

For example, to initiate typing micro output from the birth and death operating characteristics, type:

WATCH BIRTHS, DEATHS;

Each time the birth and death characteristics are applied to a person, one or more lines of output are

produced on the user's console. Each characteristic produces somewhat different output, and the numbers are

in general not labelled; their interpretation depends upon specific knowledge of the program module.

However, data displayed generally include the entity's name, basic demographic data whether the event did or

did not occur, i.e. whether a baby was born to the woman or whether the person died, the random number

upon which the decision was made, the probability of the event occurring, and other supporting numbers.

Thus, a knowledge of the micro output produced by a characteristic can be quite useful in debugging it and

in examining its behavior in some detail.

For each operating characteristic which results in either an event occurring or not occurring, e.g.

birth and death, "success" and "failure" conditions are defined for the event. Thus a successful application of

the birth characteristic to a woman is one which results in a birth; likewise a "successful" application of the

death characteristic to a person is one which results in the person dying. Applications that are not

"successful" are said to be "thwarted," or unsuccessful. The WATCH command can be used to display

information for only those micro events that are successful or thwarted. For example, to display micro

information for only those births and divorces that actually occur, type:

WATCH SUCCESSFUL BIRTHS, DIVORCES;

To display micro information for deaths that do not occur, type:

WATCH THWARTED DEATHS;

A watch command may be cancelled by a CANCEL command, which is explained below.

60

The structure of summary program modules also allows for summary information to be retained and

displayed both by year and for the entire simulation. Such an option is useful, since not all information

regarding the history of a process can be reconstructed from cross section data. Perhaps the simplest

example comes from the death operating characteristic; it is not possible to deduce the effect of mortality

upon the population last year from a cross section of this year's population, since those persons who died

are no longer in the population. Each of these summary procedures must be specially programmed in a

summary program module associated with an operating characteristic program module.

To display aggregate summary information retained by an operating characteristic, the SUMMARIZE

command is used. For example, to obtain a summary of the marriage characteristic's performance at the end

of each year, type:

SUMMARIZE MARRIAGE YEARLY;

Summaries may be obtained of any combination of operating characteristics for which summary modules

exist, both yearly and at the end of the simulation run.

Both commands to display micro results and macro summaries may be cancelled in whole or in part

using the CANCEL command. For example, to cancel watching all divorces that take place, type:

CANCEL WATCHING SUCCESSFUL DIVORCES;

To stop the yearly summary output produced by the marriage characteristic, for example, type:

CANCEL YEARLY SUMMARY OF MARRIAGE;

The user may turn on or off any summary options at any time during the course of a simulation run.

Simulation Control and Execution. Once a simulation process has been specified, its execution can

be automatic if the user wishes. The PROCEED command is the basic simulation execution command,

and the command:

PROCEED THROUGH 1973;

61

will apply the current model's characteristics through simulated time until the simulation state represents

the year 1973. No other instructions are required.

If the results desired from a simulation experiment can be obtained by allowing the experiment to

proceed as defined, then only the above PROCEED command is required. However, there may be times

when it is desirable to view aspects of the simulation process as they occur. MASH takes advantage of its

interactive computing environment to allow the user to perform incremental simulation, i.e. to simulate to

a certain point, then perform other functions such as browsing, and then resume the simulation.

Incremental simulation is supported by the conditional form of the PROCEED command.

The PROCEED command allows a user to proceed either up to or through the processing of any

micro entity or macro entity in the model specified. Entities are specified by type and by name. For

example:

PROCEED TO INTUNIT 491;

PROCEED THROUGH FAMILY 824;

PROCEED TO NEXT PERSON;

PROCEED THROUGH YEAR 1973;

PROCEED TO PASS 2;

PROCEED TO MACROMODEL 1;

PROCEED THROUGH EQUATION 7;

Whenever the named entity is either about to be processed or processing has concluded -- depending upon

the choice of TO or THROUGH -- control is returned to the user and a prompting asterisk is typed.

Simulation may be resumed by typing another PROCEED command.

In the above forms of PROCEED, macromodel numbers correspond to the number of the pass which

they follow, and equation numbers are taken from the table of equations assembled from all macromodels.

The SHOW MACROMODEL EQUATIONS command will display the equation numbers that can be used

in the PROCEED command. The use of the optional naming device NEXT causes the simulation to

proceed to or through the next entity to be processed of the type named, regardless of its name.

The simulation of micro or macro models may be interrupted at any time by entering a MASH

command during execution of the simulation. 29 The interruption will be invoked either prior to processing

29 To generate such an interrupt, it is sufficient to press the "carriage return" key, which is equivalent to entering
a blank command line. The actual command text may then be entered on subsequent lines after the interrupt
message has been received.

62

a person or an equation, depending upon the submodel being operated upon at the time the interrupt was

sensed. A message is typed indicating the status of the simulation in computational time, i.e. the entities

being processed and the processing pass as well as the simulated year. The simulation may be continued by

executing a PROCEED command.

A simulated population, i.e. one that is the product of applying an object model to an initial

population and advancing its state through simulated time, may be saved in the user's "permanent" on-line

storage. In general, such a population only has meaning if the simulation is interrupted at the end of a

calendar year or has proceeded to completion. The command:

SAVE POPULATION;

performs this function. The name of the population is unchanged.

Saving the population, however, is not sufficient to save the complete simulation state, since much

of the information about the run is kept within the program copy being used for the run. The complete

simulation state may be saved by saving both the population and the program state at that time. The

command:

TERMINATE SIMULATION;

executes any end of simulation processing that may exist such as session summary calculation, and then

saves the population.

A variety of other commands of the "housekeeping" class are available to the MASH user, but are of

lesser general interest than those described above. For example, since the PDP-10 monitor system does not

support any checkpoint facility at this time, MASH contains such a facility. For example, the command:

CHECKPOINT AFTER 1961(T) THROUGH 1964(T), 1965, 1966(T) THROUGH 1969(T), 1970;

constructs temporary checkpoints for the years 1961-1964 and 1966-1969 and permanent checkpoints for the

years 1965 and 1970. Each checkpoint consists of a series of machine readable files which: (1) contain the

complete status of the simulation exercise at the end of the specified simulation year, including the status of

the entire micro population; and (2) can be easily restarted to continue the exercise. Temporary checkpoints

63

are erased by subsequent temporary checkpoints, while permanent checkpoint information remains until

deleted by its owner.

Similarly, the REPORT STATUS OF command has a variety of options that allow a user to obtain

information about various aspects of the current exercise. Status types include options selected,

checkpoints scheduled, values of current simulation pointers, approximate position in the computational

sequence, and names of macromodels prepared. A more complete description of such commands is included

in Appendix 2.

The above command descriptions in this chapter illustrate the use of many of the MASH commands

available to the user, but are not comprehensive or exhaustive. Comprehensive descriptions of the entire

command repertoire (as of the beginning of 1975) are contained in Appendix 2. Nevertheless, it is hoped

that these descriptions illustrate the scope and the comparative advantage of MASH as a user-oriented

system for microanalytic simulation.

