Question			Answer	Mark	Guidance
1	(a)		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound \checkmark from its gaseous ions \checkmark (under standard conditions)	2	IGNORE 'Energy needed' OR ‘energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE: $\mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{MgCl}_{2}(\mathrm{~s})$ (question asks for words)
	(b)	(i)	Hydration involves bond forming OR bonds are made \checkmark	1	ALLOW statement of any type of bond being formed ALLOW (chloride) ions attract water (molecules) ALLOW a response in terms of hydrogen bonds breaking AND bond making DO NOT ALLOW response stating that energy is required DO NOT ALLOW response that refers to ions in $\mathrm{H}_{2} \mathrm{O}$, eg H^{+}
		(ii)		2	Correct species AND state symbols required for both marks Mark each marking point independently ALLOW response on upper line: $\mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{aq})$ (ie Cl^{-}hydrated before Mg^{2+}) ALLOW $\mathrm{MgCl}_{2}(\mathrm{aq})$

Question			Answer	Mark	Guidance
1	(b)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = - $1921\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks $\begin{aligned} & (-2493)+(-154)=(2 \mathrm{x}-363)+\Delta H_{\text {hyd }}\left(\mathrm{Mg}^{2+}\right)^{\checkmark} \\ & \left.\begin{array}{l} \Delta H_{\text {hyd }}\left(\mathrm{Mg}^{2+}\right)=(-2493)+(-154)-(2 \mathrm{x}-363) \\ =-1921\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{array}\right) \end{aligned}$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors
	(c)		Magnesium ion OR Mg^{2+} is smaller OR Mg^{2+} has greater charge density Mg^{2+} has a stronger attraction to $\mathrm{H}_{2} \mathrm{O}$ OR Mg^{2+} has a stronger bonding with $\mathrm{H}_{2} \mathrm{O} \checkmark$	2	ORA: Calcium ion OR Ca ${ }^{2+}$ is larger OR Ca^{2+} has smaller charge density IGNORE idea of close packing of ions IGNORE 'atomic' and 'atoms' and assume that Mg or Ca refer to ions, ie ALLOW Mg has a smaller (atomic) radius ALLOW Mg has a stronger attraction to $\mathrm{H}_{2} \mathrm{O}$ ORA: e.g. Ca^{2+} has less attraction to $\mathrm{H}_{2} \mathrm{O}$ DO NOT ALLOW Mg atoms have a stronger attraction to $\mathrm{H}_{2} \mathrm{O}$ DO NOT ALLOW stronger attraction/bonding between ions Note: Response must refer to attraction/bonding with $\mathrm{H}_{2} \mathrm{O}$ or this must be implied from the whole response
			Total	9	

Question			Answer	Mark	Guidance
2	(a)		Temperature: (Forward) reaction is exothermic OR gives out heat OR reverse reaction is endothermic OR takes in heat \checkmark Pressure: Right-hand side has fewer number of (gaseous) moles \checkmark ORA Equilibrium Lower temperature/cooling AND increasing pressure shifts (equilibrium position) to the right \checkmark	3	ANNOTATE WITH TICKS AND CROSSES, etc ALLOW K_{c} increases at lower temperatures 3rd mark is for stating that BOTH low temperature and high pressure shift equilibrium to the right (Could be separate statements) Note: ALLOW suitable alternatives for 'to right', e.g.: towards NO_{2} OR towards products OR in forward direction OR increases yield of $\mathrm{NO}_{2} /$ products ALLOW 'favours the right', as alternative for 'shifts equilibrium to right' IGNORE responses in terms of rate
	(b)		$\begin{aligned} & 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \checkmark \\ & 2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HNO}_{3}+\mathrm{HNO}_{2} \end{aligned}$	2	ALLOW multiples, e.g. $2 \mathrm{NH}_{3}+2^{1 ⁄ 2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$ ALLOW $\rightleftharpoons \mathbf{O R} \rightarrow$ in equations
	(c)	(i)	$\left(K_{\mathrm{c}}=\right) \frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.}$	1	Square brackets are essential

Question			Answer	Mark	Guidance
2	(c)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=45 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$, award 5 marks IF answer $=45$ with incorrect units, award 4 marks Equilibrium moles $0.60 \mathrm{~mol} \mathrm{NO}_{2} \checkmark$ 0.20 mol NO AND $0.40 \mathrm{~mol} \mathrm{O}_{2} \checkmark$ Equilibrium concentrations (equilibrium moles $\div 2$) $\left[\mathrm{NO}_{2}\right]=0.30 \mathrm{~mol} \mathrm{dm}$ AND $[\mathrm{NO}]=0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ AND $\left[\mathrm{O}_{2}\right]=0.20 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ Calculation of K_{c} and units $K_{\mathrm{c}}=\frac{0.30^{2}}{0.10^{2} \times 0.20}=45 \checkmark \mathrm{dm}^{3} \mathrm{~mol}^{-1} \checkmark$	5	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc ALLOW ECF throughout Alternative route if concs NO and O_{2} calculated at start: initial concentrations: $0.40 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NO}$ AND $0.35 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{O}_{2} \checkmark$ Equilibrium concentrations: $\left[\mathrm{NO}_{2}\right]=0.30 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ $[\mathrm{NO}]=0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ AND $\left[\mathrm{O}_{2}\right]=0.20 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ For units, ALLOW mol ${ }^{-1} \mathrm{dm}^{3}$ ALLOW ECF using any incorrect values for concentrations OR moles of $\mathrm{NO}, \mathrm{O}_{2}$ AND NO_{2} For ECF, ALLOW 2 significant figures up to calculator value correctly rounded ALLOW ECF from incorrect K_{c} expression for both calculation and units Common ECFs worth less than 5 marks: 22.5 not $\div 2 \quad 3$ marks + unit mark 1.610 .6 for NO_{2} but 0.8 for NO and 0.7 for O_{2} No mark for moles NO and O_{2} 3 marks + unit mark 0.804 As above but also no $\div 2$ No mark for moles NO and O_{2} AND $\div 2 \quad 2$ marks + unit mark
			Total	11	

	Question	Answer	Mark	Guidance
3	3	Evidence of at least two half-lives measured on graph OR within text (would need evidence of two half-lives) Any half-life value stated in range 180-220 s OR constant half-life 1st order \checkmark Note: This is only correct response for order (ie no ECF). If not stated separately, this mark can be awarded from a rate equation, e.g. rate $=k\left[\mathrm{Br}_{2}\right]^{1}$ OR rate $=k\left[\mathrm{Br}_{2}\right]$ Evidence of tangent on graph drawn to line at $t=0 \mathrm{~s}$ e.g.	4	ANNOTATE ALL Q3 WITH TICKS AND CROSSES, etc MARK ON GRAPH OR IN TEXT LOOK FOR STATEMENT ON GRAPH OR WITHIN TEXT ALLOW almost constant half-life \qquad Note: Response may use an alternative approach from half-life for the 1st two marks based on gradients of tangents: 1st mark would be awarded for evidence of two tangents drawn on graph 2nd mark would be awarded for stating that ratio of concentrations = ratio of rates, e.g. gradient of tangent at $0.010 \mathrm{~mol} \mathrm{dm}^{-3}$ has twice the value of gradient of tangent at $0.005 \mathrm{~mol} \mathrm{dm}^{-3}$ MARK TANGENTS ON GRAPH ALLOW some leeway but tangent must coincide with part of curve that is 'straight' (ie between $\left[\mathrm{Br}_{2}\right]=0.010-0.009$ and MUST NOT cross the curve

Question		Answer	Mark	Guidance
3		$\text { rate }=\frac{0.010}{250}=0.000040 \text { OR } 4.0 \times 10^{-5} \checkmark$ units: $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1} \checkmark$	2	ALLOW values from 1 SF (0.00004 OR 4×10^{-5}) up to calculator value, correctly rounded ALLOW range $\sim \frac{0.010}{160}$ to $\frac{0.010}{300}$: i.e. ALLOW a calculated gradient in the range $6 \times 10^{-5}-3 \times 10^{-5}$ from a tangent drawn at $t=0$ IF tangent is drawn on graph at a different time or incorrectly (e.g. crossing curve), then mark rate calculation by ECF using the gradient of the tangent drawn by the candidate (ie not the range above). IF no tangent is drawn ALLOW a value in the range above ONLY Credit only attempts at tangents, not just a random straight line IGNORE a ‘- sign'
		$\text { rate }=k\left[\mathrm{Br}_{2}\right] \text { OR } k=\frac{\text { rate }}{\left[\mathrm{Br}_{2}\right]} \checkmark$ $k=\text { calculated result from } \frac{\text { calculated value for rate }}{0.010} \checkmark$ units: $\mathrm{s}^{-1} \checkmark$	3	DO NOT ALLOW rate $=k[\mathrm{Br}]$, ie Br instead of Br_{2} DO NOT ALLOW just $k\left[\mathrm{Br}_{2}\right]$, ie 'rate =' OR ' $r=$ ' must be present Calculation of \boldsymbol{k} is from candidate's calculated initial rate From $0.00004, k=\frac{0.000040}{0.010}=4 \times 10^{-3} \mathrm{~s}$ Note: IF order with respect to Br_{2} has been shown as 2 nd order, then mark this part by ECF, e.g. if Br_{2} shown to be 2 nd order, rate $=k\left[\mathrm{Br}_{2}\right]^{2}$ $k=$ calculated result from $\frac{\text { calculated value for rate }}{0.010^{2}}$ units: $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ OR $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$ Note: Units mark must correspond to the candidate's stated rate equation, NOT an incorrectly rearranged k expression
		Total	9	

Question			Answer	Mark	Guidance
4	(a)	(i)	proton donor \checkmark	1	ALLOW H^{+}donor
		(ii)	(the proportion of) dissociation \checkmark Correct equation for any of the four acids: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$ OR $\mathrm{CH}_{3} \mathrm{COOH}=\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$ $\mathrm{OR} \mathrm{CH}_{3} \mathrm{COCOOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COCOO}^{-}$ $\mathrm{OR} \mathrm{CH}_{3} \mathrm{CHOHCOOH}=\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{CHOHCOO}^{-} \checkmark$	2	ALLOW a weak acid partly dissociates ALLOW a strong acid totally dissociates ALLOW ionisation for dissociation ALLOW the ability to donate a proton Equilibrium sign required ALLOW equilibria involving $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$ e.g. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$, etc DO NOT ALLOW HA $\rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
		(iii)	weakest: $\mathrm{CH}_{3} \mathrm{COOH}$ acetic acid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ benzoic acid $\mathrm{CH}_{3} \mathrm{CHOHCOOH}$ lactic acid strongest: $\mathrm{CH}_{3} \mathrm{COCOOH} \checkmark$ pyruvic acid	1	ALLOW correct order using any identifier from the table, $i e$, common name, systematic name, structural formula OR $\mathrm{p} K_{\mathrm{a}}$ value
		(iv)	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}_{2}^{+}+\mathrm{CH}_{3} \mathrm{CHOHCOO}^{-} \checkmark$	1	BOTH products AND correct charges required for mark Mark ECF from incorrect order in (iii) See response from (iii) below response to (iv)

Question			Answer	Mark	Guidance
4	(b)	(i)	$\begin{aligned} & 2 \mathrm{CH}_{3} \mathrm{COCOOH}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COCOO}\right)_{2} \mathrm{Ca}+ \\ & 2 \mathrm{H}_{2} \mathrm{O} \checkmark \end{aligned}$ Note: pyruvic acid must have been used here and formula of pyruvic acid and pyruvate must be correct	1	All species AND balancing required for the mark ALLOW $\left(\mathrm{CH}_{3} \mathrm{COCOO}^{-}\right)_{2} \mathrm{Ca}^{2+}$ ALLOW equation showing $2 \mathrm{CH}_{3} \mathrm{COCOO}^{-}+\mathrm{Ca}^{2+}$ IF charges shown, charges must balance, e.g. DO NOT ALLOW $\left(\mathrm{CH}_{3} \mathrm{COCOO}_{2}\right)_{2} \mathrm{Ca}$ IGNORE state symbols if shown ALLOW multiples ALLOW equilibrium sign
		(ii)	$\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}$	1	ALLOW multiples but not same species on both sides ALLOW equilibrium sign IGNORE state symbols if shown ALLOW $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$ $\text { ALLOW } \mathrm{CH}_{3} \mathrm{COCOOH}+\mathrm{OH}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{COCOO}^{-}+\mathrm{H}_{2} \mathrm{O}$
	(c)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=2.11$, award 4 marks $\begin{aligned} & K_{\mathrm{a}}=10^{-\mathrm{pKa}} \\ & =10^{-2.39} \mathrm{OR} 0.00407 \checkmark \\ & K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COCOO} \mathrm{CO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COCOOH}\right]}\left(\text { ALLOW use of } \mathrm{HA}, \mathrm{H}^{+} \text {and } \mathrm{A}^{-}\right) \\ & \text {OR }\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{a}} \times[\mathrm{HA}]\right) \\ & \text { OR }\left[\mathrm{H}^{+}\right]=\sqrt{0.00407 \times 0.0150} \checkmark \\ & \text { (subsumes } 1 \mathrm{st} \mathrm{marking} \mathrm{point)} \\ & {\left[\mathrm{H}^{+}\right]=0.00782\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}} \\ & \mathrm{pH}=-\log 0.00782=2.11 \checkmark \end{aligned}$	4	IF there is an alternative answer, check to see if there is any ECF credit possible using working below IF ECF, ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 0.0041 to calculator value: 0.004073802 IF the $\mathrm{p} K_{\mathrm{a}}$ of a different weak acid has been used use ECF from 2nd marking point ALLOW 0.0078 to calculator value (depending on previous rounding) ALLOW ONLY 2.11 (This is to take into account poor previous rounding) IF candidate has used $0.0150 \mathrm{~mol} \mathrm{dm}^{-3}$ (ie assumes strong acid) ALLOW final mark ONLY by ECF for a pH of 1.82 IF no square root used, $\mathrm{pH}=4.213$ marks

Question			Answer	Mark	Guidance
4	(d)	(i)		1	ALLOW correct structural OR displayed OR skeletal formula OR recognisable mixture of formulae DO NOT ALLOW molecular formula but ALLOW $(\mathrm{COOH})_{2}$ OR $\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}$ ALLOW BUT not $\mathrm{O}-\mathrm{H}-\mathrm{C}$
		(ii)	$\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{HO}_{4}^{-} \checkmark \\ & \mathrm{C}_{2} \mathrm{HO}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \checkmark \end{aligned}$	2	ALLOW in either order ALLOW arrow instead of equilibrium sign ALLOW molecular formulae for this part ALLOW equilibria involving $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$ ALLOW equations using structures

Question	Answer	Mark	Guidance
	ALTERNATIVE approach for concentrations using Henderson-Hasselbalch equation (4 marks) $\begin{aligned} & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \quad \text { OR } \quad-\log K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\ & \log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=3.55-3.86 \quad \text { (subsumes previous } \\ & \text { mark) } \\ & \log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=-0.31 \checkmark \text { (subsumes previous mark) } \\ & \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=10^{-0.31}=\frac{0.490}{1} \text { OR } 0.490 \end{aligned}$		ALLOW use of $\mathrm{CH}_{3} \mathrm{CHOHCOOH}$ AND $\mathrm{CH}_{3} \mathrm{CHOHCOO}^{-}\left(\mathrm{Na}^{+}\right)$ ALLOW use of acid AND salt ALLOW $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} \quad$ OR $\quad-\log K_{\mathrm{a}}-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$ ALLOW $\log \frac{[H A]}{\left[\mathrm{A}^{-}\right]}=3.86-3.55$ (subsumes previous mark) ALLOW $\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}=0.31$ (subsumes previous mark) ALLOW $\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}=10^{0.31}=\frac{2.04}{1}$ OR $\frac{2}{1}$ OR 2 For $\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$, ALLOW 2 SF up to calculator value of 0.48978819 For $\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$, ALLOW 2 SF up to calculator value of 2.041737945 but ALLOW 2 if $10^{-0.31}$ used

Question			Answer			Mark	Guidance		
4	(e)		SUMMARY OF 4(e) MARKING POINTS FOR EACH POSSIBLE ACID CHOSEN FIRST, CHECK THE ANSWER ON ANSWER LINE: IF answer is correct for weak acid chosen, award MP2-MP5 IF there is an alternative answer, check to see if there is any ECF credit possible using working below						
				lactic	pyruvic			acetic	benzoic
			$\mathrm{p} K_{\mathrm{a}}$	3.86	2.39			4.76	4.19
			MP1	lactic AND lactate OR lactic acid AND OH^{-}		No mark		No mark	No mark
			MP2: $\left[\mathrm{H}^{+}\right]$	$10^{-3.55}$ OR 2.82×10^{-4} (calc: 2.81838×10^{-4})					
			$\text { MP3: } K_{\mathrm{a}}$ calc:	$\begin{aligned} & 10^{-3.86} \text { OR } 1.38 \times 10^{-4} \\ & 1.380384265 \times 10^{-4} \end{aligned}$	$\begin{aligned} & 10^{-2.39} \text { OR } 4.07 \times 10^{-3} \\ & 4.073802778 \times 10^{-3} \end{aligned}$			$\begin{aligned} & 10^{-4.76} \text { OR } 1.74 \times 10^{-5} \\ & 1.737800829 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 10^{-4.19} \text { OR } 6.46 \times 10^{-5} \\ & 6.45654229 \times 10^{-5} \end{aligned}$
			MP4: ratio expression	$\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}=\frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}} \quad \text { OR } \quad \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{K_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]}$					
			MP5: $\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$ calc:	$\begin{aligned} & \frac{2.82 \times 10^{-4}}{1.38 \times 10^{-4}} \text { OR } 2.04 \\ & 2.041737945 \end{aligned}$	$\frac{2.82 \times 10^{-4}}{4.07 \times 10^{-3}}$ OR 0.0693 calc: 0.069183097			$\frac{2.82 \times 10^{-4}}{1.74 \times 10^{-5}}$ OR 16.2 calc: 16.21810097	$\begin{aligned} & \frac{2.82 \times 10^{-4}}{6.46 \times 10^{-5}} \text { OR } 4.37 \\ & \text { calc: } 4.365158322 \end{aligned}$
			$\text { OR } \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$ calc:	$\begin{aligned} & \frac{1.38 \times 10^{-4}}{2.82 \times 10^{-4}} \text { OR } 0.489 \\ & 0.489778819 \end{aligned}$	$\begin{aligned} & \frac{4.07 \times 10^{-3}}{2.82 \times 10^{-4}} \text { OR } 14.4 \\ & 14.45439771 \end{aligned}$			$\begin{aligned} & \frac{1.74 \times 10^{-5}}{2.82 \times 10^{-4}} \text { OR } 0.0617 \\ & 0.0616595 \end{aligned}$	$\begin{aligned} & \frac{6.46 \times 10^{-5}}{2.82 \times 10^{-4}} \text { OR } 0.229 \\ & 0.229086765 \end{aligned}$
			TAKE CARE: Calc values are completely unrounded and may differ between brands of calculator Use actual candidate values at each stage using rounding to 2 or more SF. MP5: calculated using 3 SF from MP2 and MP3 calc values for MP5 are completely unrounded (using calculator values from MP2 and MP3) Be slightly flexible as candidates may have written down rounded values but carried on with calculator values - This approach is ACCEPTABLE						
			Total			20			

Question			Answer	Mark	Guidance
5	(a)		process increase decrease $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})$ \checkmark $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ NH NH Cl(s) $+\mathrm{aq} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ \checkmark $4 \mathrm{Na}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$ $2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ \checkmark All 5 correct $\longrightarrow \mathbf{2}$ marks \checkmark $\mathbf{4}$ correct $\longrightarrow \mathbf{1}$ mark	2	
	(b)		ΔH : + AND bonds broken $\Delta S:+$ AND more random/more disorder/more ways of arranging energy \checkmark	2	Sign and reason required for each mark ALLOW forces of attraction/hydrogen bonds are overcome DO NOT ALLOW response in terms of bonds breaking AND bond making (for melting bonds are just broken) DO NOT ALLOW responses implying that bonds within $\mathrm{H}_{2} \mathrm{O}$ molecules are broken IGNORE comments related to ΔG IGNORE comments related to ΔG
	(c)	(i)	$\begin{aligned} & \Delta \mathrm{S}=(3 \times 131+198)-(186+189) \checkmark \\ & \Delta S=(+) 216\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	ALLOW 1 mark for -216 (wrong sign) ALLOW 1 mark for -46 (131 instead of 3×131) ALLOW 1 mark for 594 (sign of 189)

Question			Answer	Mark	Guidance
5	(c)	(ii)	Two from points below: 1. fuel OR fuel cells 2. manufacture of margarine OR hydrogenation of alkenes/unsaturated fats 3. manufacture of ammonia OR 'Haber process' \checkmark 4. manufacture of $\mathrm{HCl} /$ hydrochloric acid 5. reduction of metal ores/metal oxides	1	2 uses for one mark IGNORE hydrogenation of margarine
	(d)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -109, award first 3 marks for calculation At $298 \mathrm{~K}, 91.2=176-T \Delta S$ $\Delta S\left(=\frac{176-91.2}{298}\right)=0.285\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ OR $\Delta S\left(=\frac{176000-91200}{298}\right)=285\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \checkmark$ subsumes 1st marking point At $1000 \mathrm{~K}, \Delta \mathrm{G}=176-1000 \times 0.285$ $=-109\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$ Reaction does take place (spontaneously) because $\Delta G<0$ OR ΔG is -ve \checkmark Note: If no value of ΔG, this mark cannot be awarded.	4	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 0.285 (3 SF) up to calculator value of 0.284563758 ALLOW 285 (3 SF) up to calculator value of 284.563758 ALLOW -109 up to calculator value correctly rounded, i.e. 108.6, -108.56, etc ALLOW ECF from incorrect ΔS, ie calculated value of ΔG from $\Delta G=176-1000 \times$ calculated value of ΔS Answer and reason BOTH needed for mark ALLOW reaction is feasible for 'reaction does take place' Note: If candidate has $a+\Delta G$ value, mark ECF, ie reaction does not take place because $\Delta G>0$ OR ΔG is +ve
			Total	11	

Question			Answer	Mark	Guidance
6	(a)		Ni $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2} \checkmark$ d block: (Ni:) 'd’ is highest energy sub-shell/orbital $\mathrm{Ni}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} \checkmark$ Transition element: has an ion with an incomplete/partially-filled d sub-shell/orbital A ligand donates an electron pair to Ni^{2+} OR metal ion OR metal A complex ion is an ion bonded to ligand(s)/surrounded by ligands \checkmark Coordinate bond/dative covalent mentioned at least once in the right context \checkmark	4 3	ANNOTATE WITH TICKS AND CROSSES, etc Note: Examples must be for Ni , not other d block elements ALLOW $4 s$ before $3 d$, ie $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{8}$ ALLOW [Ar]4s ${ }^{2} 3 d^{8}$ OR [Ar]3d ${ }^{8} 4 s^{2}$ ALLOW upper case D, etc and subscripts, e.g. [Ar]4S $2_{2} 3 D_{8}$ DO NOT ALLOW highest energy shell is ' d ' OR ' d is the outer sub-shell' (4s as well) ALLOW [Ar]3d ${ }^{8}$ ALLOW electron configurations with $4 s^{0}$ ALLOW for example $\mathrm{Ni}^{3+} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{7}$ OR [Ar]3d ${ }^{7}$ No other Ni ions are acceptable ALLOW lone pair forms a coordinate bond to Ni^{2+} (which will also collect the coordinate bond mark) ALLOW diagram of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ complex ion for 2nd marking point
	(b)	(i)	 3D diagram $\checkmark \quad 90^{\circ}$ bond angle \checkmark	2	Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': ALLOW dotted line OR unfilled wedge as alternatives for dotted wedge Accept bonds to $\mathrm{H}_{2} \mathrm{O}$ (does not need to go to ' O ') Accept 90° written by diagram. Charge NOT needed. Square brackets NOT needed

Question			Answer	Mark	Guidance
6	(b)	(ii)	A: $\quad \mathrm{NiCl}_{4}{ }^{2-} \checkmark$ B: $\quad \mathrm{Ni}(\mathrm{OH})_{2} \checkmark$	2	$\begin{aligned} & \text { ALLOW }\left[\mathrm{NiCl}_{4}\right]^{2-} \\ & \text { DO NOT ALLOW Ni(Cl })_{4}{ }^{2-} \\ & \text { ALLOW } \mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \text { OR }\left[\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \end{aligned}$
		(iii)	C: $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \checkmark$	1	Square brackets essential 2+ charge must be outside square brackets ALLOW $\left[\mathrm{Ni}(\mathrm{OH})_{6}\right]^{4-}$
		(iv)	$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{\checkmark}^{2+}+6 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]_{\checkmark}^{2+}+6 \mathrm{H}_{2} \mathrm{O}$	2	1 mark for each side of equation ALLOW equilibrium sign ALLOW ECF from (iii) for the following: $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ (wrong number of NH_{3}) Any 6 coordinate Ni^{2+} complex with NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ ligands, e.g. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+},\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$, etc ALLOW from $\left[\mathrm{Ni}(\mathrm{OH})_{6}\right]^{4-}$, $\begin{array}{r} {\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{OH}^{-}} \\ \mathrm{OR}\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ni}(\mathrm{OH})_{6}\right]^{4-}+6 \mathrm{H}_{2} \mathrm{O} \\ {\left[\mathrm{Ni}(\mathrm{OH})_{6}\right]^{4-}+6 \mathrm{NH}_{4}^{+}} \end{array}$
	(c)	(i)	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \checkmark$	1	ALLOW atoms in any order
		(ii)	$4 \checkmark$	1	
		(iii)	One mark for each structure 2nd structure must be correct mirror image of 1st structure	2	Charge and N atom labels NOT needed ALLOW any attempt to show bipy. Bottom line is the diagram on the left. 1 mark for 3D diagram with ligands attached for ONE stereoisomer. Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper: ALLOW structures with Ni in centre

Question			Answer	Mark	Guidance
6	(c)	(iv)	3 marks available 1st mark Correct 4,4'-bipy structure shown separately or within attempted structure with $\mathrm{Ni}^{2+} \checkmark$ 2 marks The remaining 2 marks are available for a section of the polymer with repeat unit identified as follows: IF Ni is bonded to $4 \mathrm{H}_{2} \mathrm{Os}$ (bond to O) with a bond to N end of two 4,4'-bipy structure OR IF each \mathbf{N} of 4,4'-bipy is bonded to a Ni bonded to 4 $\mathrm{H}_{2} \mathrm{Os}$ (bond to O), award 1 mark \checkmark IF correct repeat unit is shown, award 2 marks $\checkmark \checkmark$	3	ALLOW aromatic rings Charge NOT needed. Square brackets NOT needed Bonds around Ni do NOT need to be shown 3D Accept bonds to $\mathrm{H}_{2} \mathrm{O}$ (does NOT need to go to 'O') ALLOW the following structure for repeat unit for all 2nd and 3rd marks: $\underbrace{2}$
			Total	21	

Question			Answer	Mark	Guidance
7	(a)		Definition The e.m.f. (of a half-cell) compared with a standard hydrogen half-cell/standard hydrogen electrode \checkmark Standard conditions Temperature of $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ AND (solution) concentrations of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ AND pressure of 101 kPa OR $100 \mathrm{kPa} \checkmark$	2	ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential as alternative for e.m.f. IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1 atmosphere/1 atm OR $10^{5} \mathrm{~Pa}$ OR 1 bar
	(b)		1.25 (V) \checkmark	1	IGNORE any sign
	(c)	(i)	$\mathrm{Cd}+2 \mathrm{NiO}(\mathrm{OH})+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Cd}(\mathrm{OH})_{2}+2 \mathrm{Ni}(\mathrm{OH})_{2}$ LHS: correct species and correctly balanced RHS: correct species and correctly balanced \checkmark	2	2 marks for correct equation ALLOW NiOOH OR NiO ${ }_{2} \mathrm{H}$ ALLOW \rightleftharpoons sign for equation (ie assume reaction goes from left to right) ALLOW 1 mark for correctly balanced equation with e^{-}and/or OH^{-}shown $\begin{aligned} & \text { e.g.: } \mathrm{Cd}+2 \mathrm{NiO}(\mathrm{OH})+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}+2 \mathrm{e}^{-} \longrightarrow \\ & \mathrm{Cd}(\mathrm{OH})_{2}+2 \mathrm{Ni}(\mathrm{OH})_{2}+2 \mathrm{OH}^{-}+2 \mathrm{e}^{-} \end{aligned}$ ALLOW 1 mark for balanced correct reverse equation with OH^{-}AND e^{-}cancelled: $\mathrm{Cd}(\mathrm{OH})_{2}+2 \mathrm{Ni}(\mathrm{OH})_{2} \longrightarrow \mathrm{Cd}+2 \mathrm{NiO}(\mathrm{OH})+2 \mathrm{H}_{2} \mathrm{O}$
		(ii)	oxidation: Cd from 0 to $+2 \checkmark$ '+' sign not required reduction: Ni from +3 to $+2 \checkmark$ '+' sign not required	2	ALLOW Cd ${ }^{0} \rightarrow \mathrm{Cd}^{2+} \quad$ (shows 0 and 2+) ALLOW Ni ${ }^{3+} \rightarrow \mathrm{Ni}^{2+}$ ALLOW ECF from (c)(i) equation written 'wrong way around'.
	(d)	(i)	reverse reactions to charging OR $\begin{aligned} & \mathrm{Cd}(\mathrm{OH})_{2}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cd}+2 \mathrm{OH}^{-} \\ & \mathrm{Ni}(\mathrm{OH})_{2}+\mathrm{OH}^{-} \longrightarrow \mathrm{NiO}(\mathrm{OH})+\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-} \end{aligned}$ OR reaction that is reverse to reaction given in $\mathbf{c}(\mathbf{i})$: $\mathrm{Cd}(\mathrm{OH})_{2}+2 \mathrm{Ni}(\mathrm{OH})_{2} \longrightarrow \mathrm{Cd}+2 \mathrm{NiO}(\mathrm{OH})+2 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	If half-equations are given, then BOTH equations required ALLOW \rightleftharpoons sign for equation (ie assume reaction goes from left to right)

Question		Answer	Mark	Guidance
$\mathbf{7}$	(d)	(ii)	$\begin{array}{l}4 \mathrm{OH}^{-} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \checkmark \\ 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-} \checkmark\end{array}$	$\mathbf{2}$

Note: These are the only correct responses\end{array}\right]\)

Question		Answer	Mark	Guidance
8		step 1 $\begin{aligned} & \mathrm{Cu}+4 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{NO}_{3}^{-}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OR} \mathrm{Cu}+2 \mathrm{H}^{+}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OR} \mathrm{Cu}+4 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ step 2 2 equations with 1 mark for each $\mathrm{Cu}^{2+}+\mathrm{CO}_{3}^{2-} \longrightarrow \mathrm{CuCO}_{3} \checkmark$ $2 \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \checkmark$ step 4 $2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \longrightarrow 2 \mathrm{Cul}+\mathrm{I}_{2} \checkmark$	4	ANNOTATE ALL Q8 WITH TICKS AND CROSSES, etc ALLOW multiples throughout IGNORE state symbols throughout ALLOW Cu($\left.\mathrm{NO}_{3}\right)_{2}$ for $\mathrm{Cu}^{2+}+2 \mathrm{NO}_{3}{ }^{-}$ AWARD 2 MARKS for a combined equation: $\mathrm{Cu}^{2+}+2 \mathrm{H}^{+}+2 \mathrm{CO}_{3}^{2-} \longrightarrow \mathrm{CuCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \checkmark \checkmark$ DO NOT ALLOW $2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ ALLOW $2 \mathrm{Cu}^{2+}+4 \mathrm{KI} \longrightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}+4 \mathrm{~K}^{+}$ ALLOW Cu ${ }^{2+}+\mathrm{I}^{-} \longrightarrow \mathrm{Cu}^{+}+1 / 2 \mathrm{I}_{2}$

