Question			Answer	Marks	Guidance
1	(a)		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound \checkmark from its gaseous ions (under standard conditions) \checkmark	2	IGNORE 'energy needed' OR 'energy required’ ALLOW as alternative for compound: lattice, crystal, substance, solid Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has ' 1 mole of gaseous ions', award 2nd mark but NOT 1st mark
	(b)	(i)		2	Correct species AND state symbols required for both marks $2 \mathrm{e}^{-}$required for left-hand response ALLOW e for e^{-} Mark each marking point independently
		(ii)	(enthalpy change of) formation (of calcium oxide) (enthalpy change of) atomisation of oxygen Second electron affinity (of oxygen)	3	calcium oxide not required for this mark DO NOT ALLOW 'lattice formation' (confusion with LE) atomisation AND oxygen $/ \mathrm{O}_{2} / 1 / 2 \mathrm{O}_{2} / \mathrm{O}$ both required (atomisation of calcium is also in cycle) IGNORE oxygen or oxygen species, e.g. O^{-} DO NOT ALLOW calcium

Question			Answer	Marks	Guidance
1	(b)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=-3454\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks $-635=178+249+590+1145+(-141)+798+\Delta H_{\mathrm{LE}}(\mathrm{CaO})$ OR $\Delta H_{\mathrm{LE}}(\mathrm{CaO})=-635-[178+249+590+1145+(-141)+798]$ OR $-635-2819$ $=-3454 \checkmark\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors 1st mark for expression linking $\Delta H_{\mathrm{LE}}(\mathrm{CaO})$ with ΔH values ALLOW LE for $\Delta H_{\text {LE }}$ ALLOW for 1 mark: -3736 use of +141 instead of -141 (+)3454 all signs reversed $(+) 2184 \quad$ wrong sign before 2819 -2184 wrong sign for 635 -1858 wrong sign for +798 Any other number:CHECK for ECF from 1st marking point Award 1 mark for one transcription error only and everything else correct: e.g. +187 instead of +178 IF any value has been omitted, award zero

Question			Answer	Marks	Guidance
2	(a)	(i)	Time for concentration (of reactant) to fall to half original value	1	ALLOW time for concentration to fall by half DO NOT ALLOW concentration of product to fall by half ALLOW mass OR amount as alternative to concentration ALLOW time for reactant/substance/atoms to decrease by half
		(ii)	At least two half-lives correctly shown on graph AND half-life stated as approx. 54 s 1st order has a constant half-life \checkmark	2	ALLOW half-life in range 50-56 s ALLOW half-life shown on graph Care: Initial concentration is ~ 5.8 and NOT 6.0 For constant half-life, ALLOW 'half lives are the same', 'two half-lives are 54 s', etc. ALLOW 2 tangents drawn, one at half conc of first AND evidence that gradient (\equiv rate) halves
		(iii)	No change \checkmark	1	
	(b)	(i)	Tangent On graph, tangent drawn to curve at $t \sim 40 \mathrm{~s} \checkmark$ Calculation of rate from the tangent drawn e.g. rate $=\frac{5.2}{116}=0.045$ OR $4.5 \times 10^{-2} \checkmark$ Units $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1} \checkmark$ Independent mark	3	Annotate tangent on graph Note: This mark can only be awarded from a tangent ALLOW ECF for tangent drawn at different time from 40 s ALLOW $\pm 10 \%$ of gradient of tangent drawn ALLOW 2 SF up to calculator value ALLOW trailing zeroes, e.g. 0.04 for 0.040 IGNORE ‘-‘ sign for rate Note: IF candidate calculates rate via In 2 method (shown in (ii), consult with TL)

Question			Answer	Marks	Guidance
2	(b)	(ii)	$k=\frac{\text { answer to (b)(i) }}{3.45} \checkmark$ units: $\mathrm{s}^{-1} \checkmark$ Independent mark	2	From $0.045, k=\frac{0.045}{3.45}=0.013$ ALLOW concentration range 3.4-3.5 ALLOW use of unrounded calculator answer from (b)(i) even if different from answer given on (b)(i) answer line Many will keep this value in calculator for (b)(ii) ALLOW $k=\ln 2 / t_{1 / 2}=0.693 /$ half life from (a)(iii) For $54 \mathrm{~s}, k=0.693 / 54=0.013$ ALLOW 2 SF up to calculator value
	(c)		water is in excess OR concentration of $\mathrm{H}_{2} \mathrm{O}$ is very large/does not change \checkmark	1	IGNORE water does not affect the rate
			Total	10	

Question			Answer				Marks	Guidance
3	(b)	(i)		$\mathrm{H}_{2}(\mathrm{~g})$ should H2 H_{2} g lumns f $\mathrm{H}_{2}(\mathrm{~g})$ ns corr	$\mathrm{I}_{2}(\mathrm{~g})$ \square \checkmark ve only ND I_{2} rrect (g) an	\square one box ticked AND HI(g) two marks $\checkmark \checkmark$ $\mathrm{HI}(\mathrm{g})$ correct one mark \checkmark	2	DO NOT ALLOW more than one box ticked in a column (response is a CON)
		(ii)	K_{c} is smaller AND (forward) re	tion is		OR ΔH is negative \checkmark	1	Link to $\Delta H /$ exothermic essential ALLOW reverse reaction is endothermic DO NOT ALLOW equilibrium shifts to the right (CON)
		(iii)	K_{c} is the sam AND K_{c} is temper pressure	ure dep	dent	K_{c} is not changed by	1	ALLOW K_{c} is only changed by temperature IGNORE same number of moles on both side
						Total	9	

	ues	Answer	Marks	Guidance
4	(a)	HCl is a strong acid AND HClO is a weak acid \checkmark HCl : $\mathrm{pH}=-\log 0.14=0.85(2 \mathrm{DP} \text { required }) \checkmark$ HCIO: CHECK THE ANSWER ON ANSWER LINE IF answer = 4.14, award all three calculation marks $K_{\mathrm{a}}=10^{-7.43} \text { OR } 3.7 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ $\left[\mathrm{H}^{+}\right]=\sqrt{K_{\mathrm{a}} \times[\mathrm{HClO}]} \text { OR } \sqrt{K_{\mathrm{a}} \times[\mathrm{HA}]}$ OR $\sqrt{K_{a} \times 0.14}$ OR $\sqrt{3.7 \times 10^{-8} \times 0.14} \checkmark$ $\mathrm{pH}=4.14$ (2 DP required) \checkmark	5	ANNOTATE WITH TICKS AND CROSSES, etc ALLOW HCl completely dissociates AND HClO partially dissociates ALLOW $\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}$ AND $\mathrm{HClO} \rightleftharpoons \mathrm{H}^{+}+\mathrm{ClO}^{-}$ IGNORE HCl is a stronger acid than HClO IGNORE HCl produces more H^{+} IF there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW 2 SF to calculator value: $3.715352291 \times 10^{-8}$, correctly rounded IGNORE 'HCl' if it is clear that it is a 'slip' Always ALLOW calculator value irrespective of working as number may have been kept in calculator. Note: $\mathrm{pH}=4.14$ is obtained from all three values above From no square root, $p H=8.28$. Worth K_{a} mark only

Question		Answer	Marks	Guidance
4	(b)	$2 \mathrm{Al}+6 \mathrm{CH}_{3} \mathrm{COOH} \longrightarrow 2\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \mathrm{Al}+3 \mathrm{H}_{2} \checkmark$ $2 \mathrm{Al}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{H}_{2} \checkmark$	2	IGNORE state symbols ALLOW correct multiples, e.g.: $\mathrm{Al}+3 \mathrm{CH}_{3} \mathrm{COOH} \longrightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \mathrm{Al}+1.5 \mathrm{H}_{2}$ ALLOW any unambiguous formula for $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \mathrm{Al}$, i.e. $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{3} \mathrm{Al}, \mathrm{Al}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{3},\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)_{3} \mathrm{Al}^{3+}$, etc. Note: IF charges are shown, they must be correct with both - and 3+ shown ALLOW multiples, e.g.: $\mathrm{Al}+3 \mathrm{H}^{+} \longrightarrow \mathrm{Al}^{3+}+1.5 \mathrm{H}_{2}$
	(c)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.6(0), award 2 marks \qquad $\left[\mathrm{H}^{+}\right]=\frac{K_{w}}{\left[\mathrm{OH}^{-}\right]} \text {OR } \frac{1.0 \times 10^{-14}}{\left[\mathrm{OH}^{-}\right]} \text {OR } \frac{1.0 \times 10^{-14}}{0.4(0)}$ OR $2.5 \times 10^{-14}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ Correctly calculates $\mathrm{pH}=-\log 2.5 \times 10^{-14}=13.6(0) \checkmark$	2	ALLOW alternative approach using pOH : $\begin{aligned} & \mathrm{pOH}=0.4(0) \checkmark \\ & \mathrm{pH}=14-0.40=13.6(0) \checkmark \end{aligned}$ ALLOW ECF from $\left[\mathrm{H}^{+}\right]$derived using K_{w} and $\left[\mathrm{OH}^{-}\right]$ BUT DO NOT ALLOW an acid pH. ALLOW one or more decimal places

Question			Answer	Marks	Guidance
4	(d)	(i)	A buffer solution minimises pH changes on addition of small amounts of acid/ $/ \mathrm{H}^{+}$or alkali/ $\mathrm{OH}^{-} /$base \checkmark \qquad $\mathrm{HCOOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCOO}^{-} \checkmark$ Equilibrium sign essential	7	ANNOTATE WITH TICKS AND CROSSES, etc ALLOW resists pH changes ALLOW buffer solutions maintains a nearly/virtually constant pH DO NOT ALLOW a response that implies that the pH is actually constant, e.g. does not change pH ; maintains pH \qquad DO NOT ALLOW COOH^{-}OR CHOOH OR COOH DO NOT ALLOW HA $\rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
			For effect of acid and alkali, ALLOW wrong carboxylic acid (e.g. $\mathrm{CH}_{3} \mathrm{COOH}$) OR HA; ALLOW CHOOH for acid (effectively ECF) ALLOW COOH^{-}for base ALLOW responses based on $\mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{COO}^{-}$ DO NOT ALLOW other incorrect formula, e.g. $\mathrm{CH}_{3} \mathrm{OOH}$		ality of written communication, QWC arks are for explaining how the equilibrium system allows buffer solution to control the pH on addition of H^{+}and OH^{-}
			Added alkali HCOOH reacts with added alkali/base $/ \mathrm{OH}^{-}$ OR added alkali/ OH^{-}reacts with $\mathrm{H}^{+} \checkmark$ QWC: Equilibrium shifts forming $\mathrm{HCOO}^{-} \mathrm{OR} \mathrm{H}^{+}$ OR (HCOOH) Equilibrium \rightarrow right \checkmark Added acid HCOO^{-}reacts with added acid $/ \mathrm{H}^{+} \checkmark$ QWC: Equilibrium shifts forming HCOOH OR (HCOOH) Equilibrium \rightarrow left \checkmark		ALLOW HA OR weak acid reacts with added alkali DO NOT ALLOW this mark if there is no equilibrium system shown, e.g. $\mathrm{HCOOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCOO}^{-}$is absent ALLOW A- OR conjugate base reacts with added acid IGNORE salt reacts with added acid DO NOT ALLOW this mark if there is no equilibrium system shown, e.g. $\mathrm{HCOOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCOO}^{-}$is absent

Question			Answer	Marks	Guidance
4	(d)	(ii)	HCOOH reacts with NaOH forming $\mathrm{HCOO}^{-} / \mathrm{HCOONa}$ OR $\mathrm{HCOOH}+\mathrm{NaOH} \rightarrow \mathrm{HCOONa}+\mathrm{H}_{2} \mathrm{O} \checkmark$ Equilibrium sign allowed (Some) $\mathrm{HCOOH} /($ weak) acid remains OR HCOOH/(weak) acid is in excess \checkmark	6	ANNOTATE WITH TICKS AND CROSSES, etc DO NOT ALLOW just 'methanoate/HCOO' forms' formulae or names of reactants also required ALLOW HCOOH $+\mathrm{OH}^{-} \rightarrow \mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O} \checkmark$ IGNORE conjugate base/salt forms IGNORE HCOOH has been partially neutralised
			Calculation CHECK THE ANSWER IF answer = 3.99, award all four	culatio	marks
			$\begin{aligned} & n(\mathrm{HCOOH}) \mathrm{OR}[\mathrm{HCOOH}] \\ & =0.24(0)\left(\mathrm{mol} / \mathrm{mol} \mathrm{dm}^{-3}\right) \checkmark \\ & n(\mathrm{HCOO}){\mathrm{OR}\left[\mathrm{HCOO}^{-}\right] \mathrm{OR}^{-}[\mathrm{HCOONa}]}^{n=0.4(00)\left(\mathrm{mol} / \mathrm{mol} \mathrm{dm}^{-3}\right)^{\checkmark}} \\ & {\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times \frac{[\mathrm{HCOOH}]}{\left[\mathrm{HCOO}^{-}\right]} \checkmark} \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(1.70 \times 10^{-4} \times \frac{0.24}{0.4}\right)=3.99 \end{aligned}$ OR use of Henderson-Hasselbalch equation: $\begin{aligned} & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]} \\ & \text { OR } \mathrm{pH}=-\log K_{\mathrm{a}}+\log \frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]} \\ & =3.77+0.22=3.99 \end{aligned}$		Note: There must be a clear statement that 0.24 and 0.4 apply to moles or concentrations of HCOOH and HCOO^{-}. DO NOT ALLOW these values if unlabelled ALLOW HA/acid and $\mathrm{A}^{-} /$salt for HCOOH and HCOO^{-} DO NOT ALLOW ECF for this mark: 3.99 is the ONLY correct answer ALLOW HA/acid and A^{-}/salt for HCOOH and HCOO^{-} ALLOW $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}-\log \frac{[\mathrm{HCOOH}]}{\left[\mathrm{HCOO}^{-}\right]}$ OR $\mathrm{pH}=-\log K_{\mathrm{a}}-\log \frac{[\mathrm{HCOOH}]}{\left[\mathrm{HCOO}^{-}\right]}$ ALLOW $=3.77-(-0.22)=3.99$ DO NOT ALLOW ECF for this mark: 3.99 is the ONLY correct answer
			Total	22	

Question			Answer	Marks	Guidance
5	(a)		$2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \longrightarrow 2 \mathrm{FeCl}_{3} \checkmark$	1	$\text { ALLOW } 2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \longrightarrow \mathrm{Fe}_{2} \mathrm{Cl}_{6}$ ALLOW multiples, e.g. $\mathrm{Fe}+11 / 2 \mathrm{Cl}_{2} \longrightarrow \mathrm{FeCl}_{3}$ IGNORE state symbols $\text { DO NOT ALLOW } 2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Fe}^{3+}+6 \mathrm{Cl}^{-}$
	(b)		$\mathrm{Fe}^{3+}+3 \mathrm{OH}^{-} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3} \checkmark$	1	IGNORE state symbols $\begin{aligned} & \text { ALLOW }\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \longrightarrow \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O} \\ & \text { ALLOW }\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3}+6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
	(c)	(i)	$2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{Zn} \longrightarrow 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{Zn}^{2+}$ All chemical species correct (IGNORE e^{-}for 1 st mark) \checkmark Balancing with ' 2 ' in front of both Fe complex ions	2	IGNORE state symbols For 1 mark, ALLOW balancing if (aq) species have been used instead of complex ions: $2 \mathrm{Fe}^{3+}+\mathrm{Zn} \longrightarrow 2 \mathrm{Fe}^{2+}+\mathrm{Zn}^{2+}$
		(ii)	redox \checkmark	1	ALLOW reduction AND oxidation CARE: possible confusion with (d)(ii)
	(d)	(i)	Formula of E as $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ shown as product in equation \checkmark Correct balanced equation: $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{CN}^{-} \longrightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$ Notice different charges on complex ions: LHS 3+, RHS 3state symbols not required	2	ALLOW equations with KCN, i.e.: $\begin{aligned} & {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{KCN} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+6 \mathrm{~K}^{+}+6 \mathrm{H}_{2} \mathrm{O}} \\ & {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{~K}^{+}+6 \mathrm{CN}^{-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+6 \mathrm{~K}^{+}+6 \mathrm{H}_{2} \mathrm{O}} \end{aligned}$ ALLOW ECF for an equation showing formation of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ from $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$: $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{CN}^{-} \longrightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+6 \mathrm{H}_{2} \mathrm{O}$ Notice different charges on complex ions: LHS 2+, RHS 4-
		(ii)	ligand substitution \checkmark	1	ALLOW ligand exchange OR ligand replacement CARE: possible confusion with (c)(ii)

Question			Answer	Marks	Guidance
6	(a)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 218, award 2 marks $\begin{aligned} & -256=(6 \times 205)+S\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)-(6 \times 214+6 \times 70) \\ & \text { OR S(C. } \left.\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=-256-(6 \times 205)+(6 \times 214+6 \times 70) \\ & \text { OR }-256+474 \checkmark \\ & =218\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$	2	IF there is an alternative answer, check to see if there is any ECF credit possible. Note that ALL 4 S values must be used for ECF ALLOW 1 mark for -218 ALLOW 1 mark for +730 (products - reactants) Note: -3190 for simple addition of products + reactants scores zero marks
		(ii)	$\begin{aligned} & \Delta G=+2879-298 \times-0.256 \\ & =(+) 2955\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	ALLOW 3 SF: 2960 to calculator value of 2955.288 Award 1 mark for the following: - $\quad \Delta G=2890$ to calculator value of 2885.4 $25^{\circ} \mathrm{C}$ used rather than 298 K : - $\Delta G=79200$ to calculator value of 79167 ΔS not converted from $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ to $\mathrm{kJ} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ - expressions with one transcription error: e.g. +2897 instead of $+2879 ; \quad 0.265$ instead of 0.256 - $\Delta G=2814.036$ use of 218 rather than -256 - Use of 'answer to (a)(i)'/1000 (by ECF)
		(iii)	ΔH is positive OR $\Delta H>0$ AND ΔS is negative OR $T \Delta S$ is negative OR $\Delta S<0$ OR $T \Delta S<0$ AND ΔG will always be positive $\mathrm{OR} \Delta G>0 \checkmark$	1	ALLOW ΔH is endothermic for ΔH is +ve ALLOW ΔG will never be less than 0 DO NOT ALLOW S or H i.e. change in entropy, ΔS and change in enthalpy ΔH are essential

Question			Answer	Marks	Guidance
7	(a)		Definition The e.m.f. (of a half-cell) compared with a (standard) hydrogen half-cell/(standard) hydrogen electrode Standard conditions Temperature of $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ AND (solution) concentrations of $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M}$ AND pressure of 101 kPa OR $100 \mathrm{kPa} \checkmark$	2	ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential as alternative for e.m.f. IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1 atmosphere/1 atm OR $10^{5} \mathrm{~Pa}$ OR 1 bar
	(b)		$2.71 \mathrm{~V} \checkmark$	1	IGNORE any sign
	(c)	(i)	$\begin{aligned} & \mathrm{Al}+3 \mathrm{Fe}^{3+} \longrightarrow \mathrm{Al}^{3+}+3 \mathrm{Fe}^{2+} \checkmark \\ & 2 \mathrm{Al}+3 \mathrm{I}_{2} \longrightarrow 2 \mathrm{Al}^{3+}+6 \mathrm{I}^{-} \checkmark \\ & 2 \mathrm{I}^{-}+2 \mathrm{Fe}^{3+} \longrightarrow \mathrm{I}_{2}+2 \mathrm{Fe}^{2+} \checkmark \end{aligned}$	3	Correct species AND balancing needed for each mark IGNORE state symbols ALLOW equilibrium sign (i.e. assume reaction is to right) ALLOW correct multiples IF there are more than three equations - mark a maximum of three equations - mark incorrect equations first
		(ii)	High activation energy OR slow rate Conditions not standard OR concentrations not $1 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$	2	DO NOT ALLOW 'standard conditions' are different

Question		Answer	Marks	Guidance
(e)	(i)	IO_{3}^{-}has removed/gained electrons from Sn^{2+} $\mathrm{OR} \mathrm{IO}_{3}^{-}$has been reduced to $\mathrm{I}_{2} /$ reduced to 0 $\mathrm{OR} \mathrm{IO}_{3}^{-}$has oxidised $\mathrm{Sn}^{2+} \checkmark$	1	ALLOW $\mathrm{IO}_{3}{ }^{-}$is the oxidising agent as I has been reduced DO NOT ALLOW just $\mathrm{IO}_{3}{ }^{-}$has been reduced DO NOT ALLOW I is the oxidising agent
	(ii)	$5 \mathrm{Sn}^{2+}+2 \mathrm{IO}_{3}^{-}+12 \mathrm{H}^{+} \longrightarrow \mathrm{I}_{2}+5 \mathrm{Sn}^{4+}+6 \mathrm{H}_{2} \mathrm{O}$ All chemical species correct with no extra chemical species \checkmark Correct balancing with no electrons shown \checkmark	2	ALLOW correct multiples $\text { eg } 21 / 2 \mathrm{Sn}^{2+}+\mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+} \rightarrow 1 / 2 \mathrm{I}_{2}+21 / 2 \mathrm{Sn}^{4+}+3 \mathrm{H}_{2} \mathrm{O}$ IGNORE e^{-}for 1st marking point
		Total	15	

CHERRY HILL TUITION OCR A CHEMISTRY A2 PAPER 31 MARK SCHEME

Question			Answer	Marks	Guidance
8	(a)		$\begin{aligned} & \left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2} \checkmark \\ & \left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{8} \checkmark \end{aligned}$	2	ALLOW $4 s$ before 3d, i.e. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{8}$ IF candidate has used subscripts OR caps, DO NOT ALLOW when first seen but credit subsequently, i.e. $1 \mathrm{~s}_{2} 2 \mathrm{~s}_{2} 2 \mathrm{p}_{6} 3 \mathrm{~s}_{2} 3 \mathrm{p}_{6} 3 \mathrm{~d}_{8} 4 \mathrm{~s}_{2}$ $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 D^{8}$ For Ni^{2+} ALLOW $4 \mathrm{~s}^{0}$ in electron configuration
	(b)	(i)	Acts as a base OR alkali AND removes/accepts a proton (from DMGH) \checkmark	1	
		(ii)	$4 \checkmark$	1	
		(iii)	(Each) DMG has 1- charge which cancel 2+ charge on $\mathrm{Ni}^{2+} \checkmark$	1	ALLOW $2 \mathrm{x}-1+2$ = 0 For Ni^{2+}, ALLOW Ni has an oxidation number of (+)2 ALLOW Ni^{2+} cancelled out by $2 \mathrm{DMG}^{-}$ ALLOW 'balanced' for cancelled
		(iv)		1	ALLOW OH for O—H ALLOW $\mathrm{CH}_{3}-$ DO NOT ALLOW - $\mathrm{H}-\mathrm{O}$

Question		Answer	Marks	Guidance
8	(c)	Marks are for correctly calculated values amount of Ni \qquad amount $\mathrm{Ni}(\mathrm{DMG})_{2} \mathbf{O R}$ amount hydrated salt $\mathbf{O R}$ amount Ni^{2+} $=\frac{2.57}{288.7}=8.9(0) \times 10^{-3} \mathrm{~mol} \checkmark$ M values \qquad $M($ hydrated salt $)=\frac{2.50}{8.90 \times 10^{-3}}=\mathbf{2 8 0 . 9}\left(\mathrm{g} \mathrm{mol}^{-1}\right)^{\checkmark}$ $M($ anhydrous salt $)=\frac{1.38}{8.90 \times 10^{-3}}=155.0\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \checkmark$ $\mathrm{H}_{2} \mathrm{O}$ \qquad mass $\mathrm{H}_{2} \mathrm{O}$ $=2.50-1.38=\mathbf{1 . 1 2} \mathbf{g}$ $n\left(\mathrm{H}_{2} \mathrm{O}\right)$ from mass or M values $=\frac{1.12}{18.0}=6.2(2) \times 10^{-2} \text { OR } 280.9-155.0 \sim \mathbf{1 2 5 . 9}$ waters of crystallisation $=\frac{6.22 \times 10^{-2}}{8.90 \times 10^{-3}} \quad=7 \quad \text { OR } \quad \frac{125.9}{18.0} \quad=7$ Anion \qquad Molar mass of anion $=280.9-(58.7+7 \times 18)=96.1\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ OR Molar mass of anion $=155.0-58.7=96.3\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)^{\checkmark}$ Formula \qquad Formula of salt is $\mathrm{NiSO}_{4} \cdot \mathbf{7 \mathrm { H } _ { 2 } \mathrm { O }}$	7 max	ANNOTATE WITH TICKS AND CROSSES, etc Note: The answers incorporate three different approaches to solving this problem. IF candidate attempts calculation via another method, consult your TL ECF answer above ALLOW numerical answers 280.8-280.9 (ALLOW 281) IGNORE further figures ALLOW numerical answers 155.0-155.1 (ALLOW 155) IGNORE further figures ASSUME that 'unlabelled 1.12 g ' applies to $\mathrm{H}_{2} \mathrm{O}$ unless contradicted ALLOW numerical answers 125.7-125.9 (ALLOW 126) ECF answer above 7 as whole number is required Note: Mark for 7 can be credited within formula BUT there must be some relevant working to derive ~ 7, e.g. 6.99 ALLOW numerical answers 96.0-96.4 (ALLOW 96)
		Total	13	

