Questi	ion	Answer	Marks	Guidance
1 (a)		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓ from its gaseous ions (under standard conditions) ✓	2	IGNORE 'energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark
(b)	(i)	Ca ²⁺ (g) + O ²⁻ (g) Ca ²⁺ (g) + O(g) + 2e ⁻ step G	2	Correct species AND state symbols required for both marks 2e ⁻ required for left-hand response ALLOW e for e ⁻ Mark each marking point independently
	(ii)	 (enthalpy change of) formation (of calcium oxide) ✓ (enthalpy change of) atomisation of oxygen ✓ Second electron affinity (of oxygen) ✓ 	3	calcium oxide not required for this mark DO NOT ALLOW 'lattice formation' (<i>confusion with LE</i>) atomisation AND oxygen/O ₂ /½O ₂ /O both required (<i>atomisation of calcium is also in cycle</i>) IGNORE oxygen or oxygen species, e.g. O ⁻ DO NOT ALLOW calcium

Question	Answer	Marks	Guidance
1 (b) (iii)	IF answer = −3454 (kJ mol ⁻¹) award 2 marks	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors
	$-635 = 178 + 249 + 590 + 1145 + (-141) + 798 + \Delta H_{LE}(CaO)$ OR $\Delta H_{LE}(CaO) = -635 - [178 + 249 + 590 + 1145 + (-141) + 798]$ OR $-635 - 2819 \checkmark$ $= -3454 \checkmark (kJ mol^{-1})$		1st mark for expression linking $\Delta H_{LE}(CaO)$ with ΔH values ALLOW LE for ΔH_{LE} ALLOW for 1 mark: -3736 use of +141 instead of -141 (+)3454 all signs reversed (+)2184 wrong sign before 2819 -2184 wrong sign for 635 -1858 wrong sign for +798 Any other number: CHECK for ECF from 1st marking point Award 1 mark for one transcription error only and everything else correct: e.g. +187 instead of +178 IF any value has been omitted, award zero

Questio	n Answer	Marks	Guidance					
1 (c)	 For first 2 marks, IGNORE nuclear attraction OR proton attraction Property AND effect required IGNORE 'atomic' and 'atoms' and 'molecules' and assume that 'size' and 'charge' refers to ions IGNORE LE increases OR LE decreases IGNORE bond strength; strength of ionic bonds 							
	First 2 marks Decrease in (ionic) size AND more negative LE OR more exothermic OR more attraction ✓ Increase in (ionic) charge OR charge density AND more negative LE OR more exothermic OR more attraction ✓ Increase in (ionic) charge OR charge density AND more negative LE OR more exothermic OR more attraction ✓	3	ANNOTATE WITH TICKS AND CROSSES, etc ORA throughout ALLOW pull for attraction IGNORE just 'greater force' (<i>could be repulsion</i>) IGNORE responses in terms of packing IGNORE electron density IGNORE lower/higher LE For 3rd marking point ONLY, IONS is essential; DO NOT ALLOW attraction between atoms or molecules DO NOT ALLOW nuclear attraction					
	Total	12						

G	luest	ion	Answer	Marks	Guidance
2	(a)	(i)	Time for concentration (of reactant) to fall to half original value ✓	1	ALLOW time for concentration to fall by half DO NOT ALLOW concentration of product to fall by half ALLOW mass OR amount as alternative to concentration ALLOW time for reactant/substance/atoms to decrease by half
		(ii)	 At least two half-lives correctly shown on graph AND half-life stated as approx. 54 s ✓ 1st order has a constant half-life ✓ 	2	 ALLOW half-life in range 50–56 s ALLOW half-life shown on graph Care: Initial concentration is ~5.8 and NOT 6.0 For constant half-life, ALLOW 'half lives are the same', 'two half-lives are 54 s', etc. ALLOW 2 tangents drawn, one at half conc of first AND evidence that gradient (≡ rate) halves
		(iii)	No change ✓	1	
	(b)	(i)	Tangent On graph, tangent drawn to curve at $t \sim 40 \text{ s} \checkmark$ Calculation of rate from the tangent drawn e.g. rate = $\frac{5.2}{116}$ = 0.045 OR 4.5 x 10 ⁻² \checkmark Units mol dm ⁻³ s ⁻¹ \checkmark Independent mark	3	Annotate tangent on graph Note: This mark can only be awarded from a tangent <i>ALLOW ECF for tangent drawn at different time from 40 s</i> <i>ALLOW</i> ±10% of gradient of tangent drawn <i>ALLOW</i> 2 SF up to calculator value <i>ALLOW</i> trailing zeroes, e.g. 0.04 for 0.040 IGNORE '-' sign for rate Note: IF candidate calculates rate via ln 2 method (shown in (ii), consult with TL)

G	Question		Answer		Guidance
2	(b)	(ii)	$k = \frac{\text{answer to (b)(i)}}{3.45} \checkmark$ units: s ⁻¹ \checkmark Independent mark	2	From 0.045, $k = \frac{0.045}{3.45} = 0.013$ ALLOW concentration range 3.4–3.5 ALLOW use of unrounded calculator answer from (b)(i) even if different from answer given on (b)(i) answer line <i>Many will keep this value in calculator for (b)(ii)</i> ALLOW $k = \ln 2/t_{1/2} = 0.693/half life from (a)(iii)$ For 54 s, $k = 0.693/54 = 0.013$ ALLOW 2 SF up to calculator value
	(c)		water is in excess OR concentration of H₂O is very large/does not change ✓	1	IGNORE water does not affect the rate
			Tota	l 10	

Question	Answer	Marks	Guidance
Question 3 (a)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 16.8 with 'no units', award 5 marks At equilibrium, $n(I_2)$ OR $[I_2(g)]$ = 4.00 x 10 ⁻³ - 1.70 x 10 ⁻³ = 2.30 x 10 ⁻³ (mol / mol dm ⁻³) \checkmark	Marks 5	Guidance IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc ANNOTATE WITH TICKS AND CROSSES, etc ALLOW ECF throughout For all parts, ALLOW numerical answers from 3 significant figures up to the calculator value ALLOW omission of trailing zeroes, i.e. 3.40 as 3.4 but final numerical answer for K _c must be to 3 SF
	$n(\text{HI}) \text{ OR } [\text{HI}(g)] = 2 \times 1.70 \times 10^{-3} = 3.40 \times 10^{-3} \pmod{/ \text{mol } / \text{mol } \text{dm}^{-3}} \checkmark$ $(\mathcal{K}_{c} =) \frac{(3.40 \times 10^{-3})^{2}}{3.00 \times 10^{-4} \times 2.30 \times 10^{-3}} \checkmark \text{ IGNORE } \mathcal{K}_{c} = \frac{[\text{HI}]^{2}}{[\text{H}_{2}] [\text{I}_{2}]}$ $= 16.8 \text{ (3 SF required)} \checkmark$ no units \checkmark		ALLOW ECF using incorrect values for $[I_2]$ AND [HI] BUT $[H_2]$ in K_c expression must be 3.00×10^{-4} (given in Q) ALLOW ECF from incorrect K_c expression for calculation to 3 SF and units For 'no units' ALLOW 'none' (ORA) OR '—'DO NOT ALLOW space to be left blank Common errors: Use of 1.70×10^{-3} for $n(HI)$ (no factor of x 2) $K_c = 4.19$ (3SF) and no units:4 marksUse of K_c expression used is upside down $K_c = 0.0597$ (3SF) and no units:4 marksNo square for $[HI]^2$ $K_c = 4930$ and dm ³ mol ⁻¹ 4 marks Note: different ECF units

Questi	on	Answer					Marks	Guidance
3 (b)	(i)	i.e. all three o	for H ₂ (g) columns of of H ₂ (g),	AND I ₂ (correct I ₂ (g) and	g) AND H	HI(g) two marks ✓ Trect one mark ✓	2	DO NOT ALLOW more than one box ticked in a column (response is a CON)
	(ii)	K _c is smaller AND (forward) rea		xotherm	ic OR ∆	H is negative ✓	1	Link to ∆ <i>H</i> /exothermic essential ALLOW reverse reaction is endothermic DO NOT ALLOW equilibrium shifts to the right (CON)
	(iii)	AND		endent (DR <i>K</i> _c is r	not changed by	1	ALLOW <i>K</i> _c is only changed by temperature IGNORE same number of moles on both side
						То	otal 9	

(Question	Answer	Marks	Guidance
4	(a)		5	ANNOTATE WITH TICKS AND CROSSES, etc
		HC <i>l</i> is a strong acid AND HC <i>l</i> O is a weak acid \checkmark		ALLOW HC <i>l</i> completely dissociates AND HC <i>l</i> O partially dissociates
		HC <i>l</i> : pH = −log 0.14 = 0.85 (2 DP required) ✓		ALLOW HC $l \rightarrow H^+ + Cl$ AND HC $lO \rightleftharpoons H^+ + ClO^-$
		HC/O: CHECK THE ANSWER ON ANSWER LINE		IGNORE HC <i>l</i> is a stronger acid than HC <i>l</i> O IGNORE HC <i>l</i> produces more H ⁺
		IF answer = 4.14, award all three calculation marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
		$K_{a} = 10^{-7.43} \text{ OR } 3.7 \times 10^{-8} \text{ (mol dm}^{-3)} \checkmark$ $[H^{+}] = \sqrt{K_{a} \times [\text{HCIO}]} \text{ OR } \sqrt{K_{a} \times [\text{HA}]}$ $\text{OR } \sqrt{K_{a} \times 0.14} \text{ OR } \sqrt{3.7 \times 10^{-8} \times 0.14} \checkmark$		ALLOW 2 SF to calculator value: 3.715352291 x 10 ⁻⁸ , correctly rounded IGNORE 'HC <i>l</i> ' if it is clear that it is a 'slip'
		pH = 4.14 (2 DP required) \checkmark		Always ALLOW calculator value irrespective of working as number may have been kept in calculator.
				<i>Note</i> : <i>pH</i> = 4.14 is obtained from all three values above
				From no square root, pH = 8.28. Worth K_a mark only

Question		Answer	Marks	Guidance
4 (b)		$2Al + 6CH_3COOH \longrightarrow 2(CH_3COO)_3Al + 3H_2 \checkmark$	2	IGNORE state symbols ALLOW correct multiples, e.g.: $Al + 3CH_3COOH \longrightarrow (CH_3COO)_3Al + 1.5H_2$ ALLOW any unambiguous formula for $(CH_3COO)_3Al$, <i>i.e.</i> $(CH_3CO_2)_3Al$, $Al(CH_3CO_2)_3$, $(CH_3COO^-)_3Al^{3+}$, etc. Note: IF charges are shown, they must be correct with both – and 3+ shown
		$2Al + 6H^{+} \longrightarrow 2Al^{3+} + 3H_2 \checkmark$		ALLOW multiples, e.g.: Al + $3H^* \longrightarrow Al^{3^+} + 1.5H_2$
(c)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.6(0), award 2 marks $[H^{+}] = \frac{K_{w}}{[OH^{-}]} \text{ OR } \frac{1.0 \times 10^{-14}}{[OH^{-}]} \text{ OR } \frac{1.0 \times 10^{-14}}{0.4(0)}$ OR 2.5 x 10 ⁻¹⁴ (mol dm ⁻³) \checkmark Correctly calculates pH = -log 2.5 x 10 ⁻¹⁴ = 13.6(0) \checkmark	2	ALLOW alternative approach using pOH: pOH = $0.4(0) \checkmark$ pH = $14 - 0.40 = 13.6(0) \checkmark$ ALLOW ECF from [H ⁺] derived using K_w and [OH ⁻] BUT DO NOT ALLOW an acid pH. ALLOW one or more decimal places

G	Quest	ion	Answer	Marks	Guidance
4	(d)	(i)		7	ANNOTATE WITH TICKS AND CROSSES, etc
			A buffer solution minimises pH changes \checkmark		ALLOW resists pH changes ALLOW buffer solutions maintains a nearly/virtually
			on addition of small amounts of acid/H ⁺ or alkali/OH ⁻ /base ✓		constant pH DO NOT ALLOW a response that implies that the pH is actually constant, e.g. does not change pH; maintains pH
			$\begin{array}{rcl} & & \\ & &$		DO NOT ALLOW COOH [−] OR CHOOH OR COOH
			Equilibrium sign essential		DO NOT ALLOW $HA \Rightarrow H^* + A^-$
			For effect of acid and alkali,		Quality of written communication, QWC
			ALLOW wrong carboxylic acid (e.g. CH ₃ COOH) OR HA; ALLOW CHOOH for acid (effectively ECF) ALLOW COOH ⁻ for base		2 marks are for explaining how the equilibrium system allows he buffer solution to control the pH on addition of H^+ and OH ⁻
			ALLOW responses based on COOH \Rightarrow H ⁺ + COO ⁻ DO NOT ALLOW other incorrect formula, e.g. CH ₃ OOH		
			Added alkali HCOOH reacts with added alkali/base/OH [−] OR added alkali/OH [−] reacts with H ⁺ ✓		ALLOW HA OR weak acid reacts with added alkali
			QWC : Equilibrium shifts forming HCOO ⁻ OR H ⁺		DO NOT ALLOW this mark if there is no equilibrium
			OR (HCOOH) Equilibrium \rightarrow right \checkmark		system shown, e.g. HCOOH \Rightarrow H ⁺ + HCOO ⁻ is absent
			Added acid		ALLOW A ⁻ OR conjugate base reacts with added acid
			HCOO [−] reacts with added acid/H ⁺ ✓		IGNORE salt reacts with added acid
			QWC: Equilibrium shifts forming HCOOH		DO NOT ALLOW this mark if there is no equilibrium
			OR (HCOOH) Equilibrium \rightarrow left \checkmark		system shown, e.g. HCOOH \Rightarrow H ⁺ + HCOO ⁻ is absent

Question	Answer	Marks	Guidance
4 (d) (ii)	HCOOH reacts with NaOH forming HCOO ⁻ /HCOONa OR HCOOH + NaOH → HCOONa + H ₂ O ✓ Equilibrium sign allowed (Some) HCOOH/(weak) acid remains OR HCOOH/(weak) acid is in excess ✓ Calculation CHECK THE ANSWER IF answer = 3.99, award all four c	6 alculation	ANNOTATE WITH TICKS AND CROSSES, etc DO NOT ALLOW just 'methanoate/HCOO ⁻ forms' formulae or names of reactants also required ALLOW HCOOH + $OH^- \rightarrow HCOO^- + H_2O \checkmark$ IGNORE conjugate base/salt forms IGNORE HCOOH has been partially neutralised
	$n(\text{HCOOH}) \text{ OR [HCOOH]} = 0.24(0) \text{ (mol / mol dm}^{-3}) \checkmark$ $n(\text{HCOO}^{-}) \text{ OR [HCOO}^{-}] \text{ OR [HCOONa]} = 0.4(00) \text{ (mol / mol dm}^{-3}) \checkmark$ $[\text{H}^{+}] = \mathcal{K}_{a} \times \frac{[\text{HCOOH}]}{[\text{HCOO}^{-}]} \checkmark$		Note: There must be a clear statement that 0.24 and 0.4 apply to moles or concentrations of HCOOH and HCOO ⁻ . DO NOT ALLOW these values if unlabelled ALLOW HA/acid and A ⁻ /salt for HCOOH and HCOO ⁻
	pH = -log [H ⁺] = -log(1.70 × 10 ⁻⁴ × $\frac{0.24}{0.4}$) = 3.99 \checkmark OR use of Henderson-Hasselbalch equation: pH = pK _a + log $\frac{[HCOO^-]}{[HCOOH]}$ OR pH = -logK _a + log $\frac{[HCOO^-]}{[HCOOH]}$ \checkmark		DO NOT ALLOW ECF for this mark: 3.99 is the ONLY correct answer ALLOW HA/acid and A ⁻ /salt for HCOOH and HCOO ⁻ ALLOW pH = $pK_a - \log \frac{[HCOOH]}{[HCOO^-]}$ OR pH = $-\log K_a - \log \frac{[HCOOH]}{[HCOO^-]}$
	= 3.77 + 0.22 = 3.99 ✓ Total	22	ALLOW = 3.77 – (-0.22) = 3.99 DO NOT ALLOW ECF for this mark: 3.99 is the ONLY correct answer

Q	uest	ion	Answer	Marks	Guidance
5	(a)		$2Fe + 3Cl_2 \longrightarrow 2FeCl_3 \checkmark$	1	ALLOW 2Fe + $3Cl_2 \longrightarrow Fe_2Cl_6$ ALLOW multiples, e.g. Fe + $1\frac{1}{2}Cl_2 \longrightarrow FeCl_3$ IGNORE state symbols DO NOT ALLOW 2Fe + $3Cl_2 \longrightarrow 2Fe^{3+} + 6Cl^-$
	(b)		Fe^{3+} + $3OH^- \longrightarrow Fe(OH)_3 \checkmark$	1	IGNORE state symbols ALLOW $[Fe(H_2O)_6]^{3^+} + 3OH^- \longrightarrow Fe(H_2O)_3(OH)_3 + 3H_2O$ ALLOW $[Fe(H_2O)_6]^{3^+} + 3OH^- \longrightarrow Fe(OH)_3 + 6H_2O$
	(c)	(i)	$2[Fe(H_2O)_6]^{3^+} + Zn \longrightarrow 2[Fe(H_2O)_6]^{2^+} + Zn^{2^+}$ All chemical species correct (IGNORE e ⁻ for 1st mark) \checkmark Balancing with '2' in front of both Fe complex ions \checkmark	2	IGNORE state symbols For 1 mark, ALLOW balancing if (aq) species have been used instead of complex ions: $2Fe^{3^+} + Zn \longrightarrow 2Fe^{2^+} + Zn^{2^+}$
		(ii)	redox ✓	1	ALLOW reduction AND oxidation CARE: possible confusion with (d)(ii)
	(d)	(i)	Formula of E as $[Fe(CN)_6]^{3-}$ shown as product in equation \checkmark Correct balanced equation: $[Fe(H_2O)_6]^{3+} + 6CN^- \longrightarrow [Fe(CN)_6]^{3-} + 6H_2O \checkmark$ Notice different charges on complex ions: LHS 3+, RHS 3– state symbols not required	2	ALLOW equations with KCN, i.e.: $[Fe(H_2O)_6]^{3^+} + 6KCN \rightarrow [Fe(CN)_6]^{3^-} + 6K^+ + 6H_2O$ $[Fe(H_2O)_6]^{3^+} + 6K^+ + 6CN^- \rightarrow [Fe(CN)_6]^{3^-} + 6K^+ + 6H_2O$ ALLOW ECF for an equation showing formation of $[Fe(CN)_6]^{4^-} \text{ from } [Fe(H_2O)_6]^{2^+}:$ $[Fe(H_2O)_6]^{2^+} + 6CN^- \longrightarrow [Fe(CN)_6]^{4^-} + 6H_2O$ Notice different charges on complex ions: LHS 2+, RHS 4–
		(ii)	ligand substitution ✓	1	ALLOW ligand exchange OR ligand replacement CARE: possible confusion with (c)(ii)

Question	Answer	Marks	Guidance
5 (e)	F and G : $\begin{bmatrix} \downarrow & \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow &$	3	ALLOW any attempt to show bidentate ligand Bottom line is the diagram below. $\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$
(f)	FeO₄ ^{2−} ✓	1	Formula AND charge needed ALLOW other 2– ions containing: Fe AND O AND Fe has ox no of +6 i.e. ALLOW $Fe_2O_7^{2-}$, $Fe_3O_{10}^{2-}$, etc.
	Total	12	

Ques	tion	Answer	Marks	Guidance	
6 (a)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 218, award 2 marks 	2	IF there is an alternative answer, check to see if there is any ECF credit possible. Note that ALL 4 S values must be used for ECF 	
	(ii)	$\Delta G = +2879 - 298 \times -0.256 \checkmark$ = (+)2955 (kJ mol ⁻¹) \scrimes	2	ALLOW 3 SF: 2960 to calculator value of 2955.288Award 1 mark for the following:• $\Delta G = 2890$ to calculator value of 2885.4 25 °C used rather than 298 K:• $\Delta G = 79200$ to calculator value of 79167 ΔS not converted from $J K^{-1} mol^{-1}$ to $kJ K^{-1}mol^{-1}$ • expressions with one transcription error: e.g. +2897 instead of +2879; 0.265 instead of 0.256• $\Delta G = 2814.036$ use of 218 rather than -256• Use of 'answer to (a)(i)'/1000 (by ECF)	
	(iii)	ΔH is positive OR $\Delta H > 0$ AND ΔS is negative OR $T\Delta S$ is negative OR $\Delta S < 0$ OR $T\Delta S < 0$ AND ΔG will always be positive OR $\Delta G > 0 \checkmark$	1	ALLOW ΔH is endothermic for ΔH is +ve ALLOW ΔG will never be less than 0 DO NOT ALLOW <i>S</i> or <i>H</i> i.e. change in entropy, ΔS and change in enthalpy ΔH are essential	

Quest	tion	Answer	Marks	Guidance
Quest	-	AnswerFIRST, CHECK THE ANSWER ON ANSWER LINEIF answer = 3.12×10^{17} g, award 2 marksamount of CO2 removed= $3.4 \times 10^{18} \times 6 / 2879$ OR 7.09×10^{15} (mol) \checkmark mass of CO2 = $44.0 \times 7.09 \times 10^{15} = 3.12 \times 10^{17}$ g \checkmark	Marks 2	GuidanceALLOW 2 SF $(7.1 \times 10^{15} \text{ (mol)})$ up to calculator value of7.085793678, correctly roundedALLOW 2 SF $(3.1 \times 10^{17} \text{ g})$ up to calculator value, correctly roundedCorrect units required for 2nd mark e.g. 3.12×10^{14} kg; 3.12×10^{11} tonneALLOW 1 mark for 3.1×10^{17} with no unit
				ALLOW ECF from incorrectly calculated amount of CO_2 provided that both 3.4 x 10 ¹⁸ AND 2879 have been used e.g. Omission of x 6 gives 1.181 x 10 ¹⁵ mol CO_2 and 5.196 x 10 ¹⁶ g CO_2
		Tota	7	

Question	Answer	Marks	Guidance
7 (a)	Definition The e.m.f. (of a half-cell) compared with a (standard) hydrogen half-cell/(standard) hydrogen electrode ✓ Standard conditions Temperature of 298 K / 25°C AND (solution) concentrations of 1 mol dm ⁻³ / 1M AND pressure of 101 kPa OR 100 kPa ✓	2	 ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential as alternative for e.m.f. IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1 atmosphere/1 atm OR 10⁵ Pa OR 1 bar
(b)	2.71 V ✓	1	IGNORE any sign
(c) (i)	$Al + 3Fe^{3+} \longrightarrow Al^{3+} + 3Fe^{2+} \checkmark$ $2Al + 3I_2 \longrightarrow 2Al^{3+} + 6I^{-} \checkmark$ $2I^{-} + 2Fe^{3+} \longrightarrow I_2 + 2Fe^{2+} \checkmark$	3	Correct species AND balancing needed for each mark IGNORE state symbols ALLOW equilibrium sign (i.e. assume reaction is to right) ALLOW correct multiples IF there are more than three equations • mark a maximum of three equations • mark incorrect equations first
(ii)	High activation energy OR slow rate ✓	2	
	Conditions not standard OR concentrations not 1 mol dm ⁻³ \checkmark		DO NOT ALLOW 'standard conditions' are different

C	Quest	ion	Answer		Guidance	
7	(d)		ANNOTATE WITH TICKS, CROSSES, etc	4 max	ORA throughout Minimum identification for system 6 is Cl^- Minimum identification for system 7 is ClO^- Note : Cl_2 is unsuitable as an identifier as it features in both system 6 and system 7 IGNORE reference to gaining and losing electrons; oxidation and reduction	
			 General (2 marks – assumed to be acid) (<i>E</i> of) 7 (ClO⁻/Cl₂) is more positive/less negative (than 6) OR E_{cell} is (+)0.27 (V) OR E_{cell} is positive ✓ 		Note : identification of systems 6 and 7 could be from use of relevant half equations/overall equation ALLOW 'greater' or 'higher' for 'more positive'	
			 6 (Cl₂/Cl⁻) moves to left AND 7 (ClO⁻/Cl₂) to right ✓ 		ALLOW correct eqn: $Cl^- + ClO^- + 2H^+ \rightarrow Cl_2 + H_2O$ IGNORE uncancelled electrons ALLOW multiples, e.g. $2Cl^- + 2ClO^- + 4H^+ \rightarrow 2Cl_2 + 2H_2O$	
					Note : IF equilibrium shifts are correct, IGNORE incorrectly balanced equation but CON an equation in wrong direction	
			 In alkali (3 marking points), H⁺ in 7 (ClO⁻/Cl₂) is removed by/reacts with OH⁻/alkali ✓ (<i>E</i> of) 7 (ClO⁻/Cl₂) less positive/more negative (than 6) ✓ 			
			 6 (Cl₂/Cl⁻) moves to right AND 7 (ClO⁻/Cl₂) to left ✓ 		ALLOW correct eqn: $Cl_2 + H_2O \rightarrow Cl^- + ClO^- + 2H^+$ IGNORE uncancelled electrons ALLOW multiples, e.g. $2Cl_2 + 2H_2O \rightarrow 2Cl^- + 2ClO^- + 4H^+$	
					Note : IF equilibrium shifts are correct, IGNORE incorrectly balanced equation but CON an equation in wrong direction	

Question		Answer	Marks	Guidance
(e)	(i)	IO_3^- has removed/gained electrons from Sn^{2+} OR IO_3^- has been reduced to I_2 / reduced to 0 OR IO_3^- has oxidised $Sn^{2+} \checkmark$	1	ALLOW IO_3^- is the oxidising agent as I has been reduced DO NOT ALLOW just IO_3^- has been reduced DO NOT ALLOW I is the oxidising agent
	(ii)	$5Sn^{2+} + 2IO_3^- + 12H^+ \longrightarrow I_2 + 5Sn^{4+} + 6H_2O$ All chemical species correct with no extra chemical species \checkmark Correct balancing with no electrons shown \checkmark	2	ALLOW correct multiples eg $2\frac{1}{2}$ Sn ²⁺ + IO ₃ ⁻ + 6H ⁺ $\rightarrow \frac{1}{2}$ I ₂ + $2\frac{1}{2}$ Sn ⁴⁺ + 3H ₂ O IGNORE e ⁻ for 1st marking point
		Total	15	

G	Question		Answer	Marks	Guidance
8	(a)		(1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁸ 4s ² ✓ (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁸ ✓	2	 ALLOW 4s before 3d, i.e. 1s²2s²2p⁶3s²3p⁶4s²3d⁸ IF candidate has used subscripts OR caps, DO NOT ALLOW when first seen but credit subsequently, i.e. 1s₂2s₂2p₆3s₂3p₆3d₈4s₂ 1s²2s²2p⁶3s²3p⁶4s²3D⁸ For Ni²⁺ ALLOW 4s⁰ in electron configuration
	(b)	(i)	Acts as a base OR alkali AND removes/accepts a proton (from DMGH) ✓	1	
		(ii)	4 ✓	1	
		(iii)	(Each) DMG has 1– charge which cancel 2+ charge on Ni ²⁺ ✓	1	ALLOW $2 \times -1 + 2 = 0$ For Ni ²⁺ , ALLOW Ni has an oxidation number of (+)2 ALLOW Ni ²⁺ cancelled out by 2 DMG ⁻ ALLOW 'balanced' for cancelled
		(iv)	$\begin{array}{c} H_{3}C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1	ALLOW OH for O—H ALLOW CH ₃ — DO NOT ALLOW —H—O

Question	Answer	Marks	Guidance
8 (c)	Marks are for correctly calculated values amount of Ni	7 max	 ANNOTATE WITH TICKS AND CROSSES, etc Note: The answers incorporate three different approaches to solving this problem. IF candidate attempts calculation via another method, consult your TL ECF answer above ALLOW numerical answers 280.8 – 280.9 (ALLOW 281) IGNORE further figures ALLOW numerical answers 155.0 – 155.1 (ALLOW 155) IGNORE further figures ASSUME that 'unlabelled 1.12 g' applies to H₂O unless contradicted ALLOW numerical answers 125.7 – 125.9 (ALLOW 126) ECF answer above 7 as whole number is required Note: Mark for 7 can be credited within formula BUT there must be some relevant working to derive ~7, e.g. 6.99 ALLOW numerical answers 96.0 – 96.4 (ALLOW 96)
	Total	13	