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Abstract 

Introduction: There are now a number genes, known to be associated with familial primary 

brain calcification (PFBC), causing the so called ‘Fahr's’ disease or syndrome. These are 

SCL20A2, PDGF-B, PDGFRB and XPR1. In this systematic review, we analyse the clinical 

and radiological features reported in genetically confirmed cases with PFBC. We have 

additionally reviewed pseudohypoparathyroidism which is a close differential diagnosis of 

PFBC in clinical presentation and is also genetically determined. 

Methods: We performed a Medline search, from 1st Jan 2012 through to 7th November 2016, 

for publications with confirmed mutations of SCL20A2, PDGF-B, PDGFRB, and XPR1 and 

found twenty papers with 137 eligible cases. A second search was done for publications of 

cases with Pseudohypoparathyroidism or pseudopseudohypoparathyroidism, and found 18 

publications with 20 eligible cases.  

Results: SLC20A2 was the most common gene involved with 75 out of 137 cases included 

with PFBC (55%) followed by PDGFB (31%) and PDGFRB (11%). Statistically significant 

correlation was found between the presence of parkinsonism with SLC20A2 mutations, 

headache in PDGFB and generalised tonic-clonic seizures in patients with 

pseudohypoparathyroidism.  

Conclusion: We combine statistical analysis and clinical inference to suggest a diagnostic 

algorithm based on the observations in this study to help with investigation of a patient with 

neurological features and brain calcification. 
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1. Background 

Physiological calcification in brain can be seen in up to 20% of routine CT scans [1, 2]. 

Pathological brain calcification can be due to parathyroid disorders, phacomatosis, and 

secondary to infections, inflammation or haemorrhage. Idiopathic calcification, has 

traditionally been described as ‘Fahr's disease’, based on Theodor Fahr’s report 

“IdiopathischeVerkalkung der Hirngefässe” or idiopathic calcification of cerebral vessels [3]. 

It is unlikely though that the case described in that paper was ‘primary’ and although the 

calcification was not mainly in the basal ganglia, Fahr’s name has been associated with 

primary basal ganglia calcification despite previous, possibly more accurate description by 

Delacour. The familial basis of primary brain calcification was initially suggested by Boller 

et al. who used the term familial idiopathic cerebral calcification in their 1977 paper with the 

same name[4]. The understanding of familial ‘idiopathic’ or ‘primary’ brain calcification has 

advanced dramatically in the recent years with discovery of four causative gene mutations 

namely SCL20A2, PDGF-B, PDGFRB, and XPR1 (Figure 1). There is an emerging need for a 

reappraisal of key concepts in the understanding of brain calcification. These include 

definition, familial association, nomenclature and disease phenotype that has evolved in the 

light of new genetic findings.  

Nomenclature 

The nomenclature of Fahr's disease is complicated by the fact that at least 35 names have 

been used in publications referring to brain calcification mainly limited to the basal ganglia 

[5]. “Fahr’s disease” is still the most commonly used term. A similar term “Fahr’s syndrome” 

first appeared in literature in 1982 [6] to describe the constellation of neuropsychiatric 

features and calcification. The use of term “disease” for the “primary” or idiopathic 

calcification and “syndrome” to reflect the clinical/radiological picture, when a secondary 
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cause is found, has been suggested. “Fahr’s syndrome” and “Fahr’s disease” have also been 

used interchangeably in some articles[7] and case reports[8, 9].  Some authors ascribe the 

attribution of Fahr’s name to this disorder a ‘misnomer’[5]. The other names for the same 

syndrome have been used to reflect location or aetiology such as ‘primary’ or ‘idiopathic’ 

brain calcification. These include bilateral striatopallidodentate calcification or calcinosis 

(BSPDC) and idiopathic basal ganglia calcification (IBGC) respectively [5]. Considering the 

complicated terms used to describe location of the calcification, the term primary familial 

‘brain’ calcification (PFBC) has been proposed[10] to replace other terms used such as Fahr's 

disease and IBGC.[10] For the purpose of the search and analysis we have included a broad 

range of terms used to describe cases with brain calcification, including “Fahr’s disease” and 

“Fahr’s syndrome” but for purpose of discussion we prefer to use PFBC which is more 

contemporary to current literature on the subject [11].  

The causes of brain calcification include disorders of parathyroid such as 

hypoparathyroidism. Some cases with brain calcification are due to other metabolic 

disturbances [12-15].  Hypoparathyroidism characterized by parathyroid hormone (PTH) 

deficiency leads to impaired calcium metabolism and has been linked to brain calcification. 

In cases with pseudohypoparathyroidism and pseudopseudohypoparathyroidism the 

Parathyroid glands produce PTH but the uptake of PTH is impaired. Both 

pseudohypoparathyroidism and pseudopseudohypoparathyroidism have been linked to 

mutations in GNAS and STX16. There have been very few reports of genetically determined 

pseudohypoparathyroidism and pseudopseudohypoparathyroidism. There may be other yet 

unidentified genetic causes of pseudohypoparathyroidism and 

pseudopseudohypoparathyroidism and it is possible that not all are caused by GNAS and 

STX16 mutations. The clinical manifestations of these are quite like the cases reported as 

Fahr’s syndrome or PFBC; such as progressive movement disorders with or without cognitive 
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decline and psychiatric features. The characteristic metabolic profile associated with 

hypoparathyroidism is not seen and cases with pseudohypoparathyroidism do not have 

reduced PTH levels and are difficult to detect clinically. However, one may suspect 

pseudohypoparathyroidism clinically, based on some characteristic skeletal changes, 

particularly in the fingers but genetic testing is needed to confirm the diagnosis. Conversely, 

some other neuro-genetic and disorders with DNA repair defects that are associated with 

basal ganglia calcification but manifest clinical features or demographic profile that is quite 

unlike PFBC. One such example is Aicardi-Goutières Syndrome which is an early-onset 

encephalopathy characterized by basal-ganglia calcification, white matter abnormalities, and 

a chronic cerebrospinal fluid (CSF) lymphocytosis and is characterized by an interferon 

signature [16]. We included cases with pseudohypoparathyroidism which most closely 

resemble PFBC in our analysis mainly for differential diagnosis but the cases with 

phacomatosis, DNA repair defects and hypoparathyroidism were excluded.  

Pathophysiology of genetically determined brain calcification 

With the discovery of new genes for basal ganglia calcification the understanding of 

mechanisms of calcification has improved significantly. This understanding though is far 

from complete. Calcium, like most minerals has quite complex metabolism in human cells 

and pathogenesis of the brain calcification related to the four reported genes is incompletely 

understood. A summary of this understanding is presented below. 

Located at 8p11.21, the Solute Carrier family 20 (Phosphate Transporter), Member 2 or the 

SLC20A2 gene encodes the type III sodium-dependent inorganic phosphate (Pi) transporter 2 

(PiT2) [17]. Mutations in SLC20A2 are inherited in an autosomal dominant manner. 

Inorganic phosphate transport is crucial to cellular calcium and phosphate homeostasis and 

the impairment in the function of PiT2 [17] can contribute to the deposition of calcium 
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phosphate in the vascular extracellular matrix [18].  Although calcification is limited to brain 

in cases reported with SLC20A2, its role of in homeostasis for inorganic phosphate is evident 

in several other tissues around the body including bone, parathyroid, and kidneys [19, 20]. 

The pathophysiology of calcification associated with SLC20A2 has been studied using 

Slc20a2-knockout (KO) mice. Slc20a2-KO mice indeed have a high CSF [Pi] which supports 

a role of PiT2 in Pi export from the CSF as one of the mechanisms with possible therapeutic 

implications[21].  

Xenotropic and Polytropic Retrovirus receptor or XPR1gene is located at 1q25.3. In 

families,the mutations are inherited  as autosomal dominant. The gene is closely linked to 

PiT2, encoding a retroviral receptor with a role in phosphate export from the cells [18]. It 

directly affects phosphate homeostasis intracellularly and dysfunction of this mechanism can 

contribute to calcium deposition.  

PDGFRΒ is another gene implicated in PFBC encodes for one of the two receptors for 

platelet-derived growth factor (PDGF) with subunit ß (PDGFB), its major ligand. PDGFRΒ 

is crucial in maintaining the blood brain barrier (BBB) and loss of function mutations can 

potentially lead to altered permeability in pericytes surrounding the brain blood vessels that 

can potentially lead to calcium deposition [22-24]. Mutations in both PDGFB and PDGFRB 

have autosomal dominant mode of inheritance. The PDGFB is involved in pericyte 

recruitment, Blood brain barrier (BBB) regulation and angiogenesis [25].  Loss of calcium 

regulation through the BBB possibly leads to progressive calcinosis [25]. It has also been 

proposed that the PDGF proteins can have regulatory functions on phosphate transporters 

XPR1 and PiT in the brain [23]. The possible interactions between the mechanisms of 

calcium deposition related to PiT2, pericytes and BBB remain to be elucidated.  
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Brain calcification can also be seen in disorders with PTH resistance. Loss of function of 

GNAS (also known as Guanine Nucleotide Binding Protein (G Protein), Alpha Stimulating 

Activity Polypeptide 1) on the maternal allele is known to cause basal ganglia calcification 

though this is not considered as PFBC. GNAS is a complex imprinted locus that produces 

multiple transcripts through alternative splicing and promoters [26].  GNAS mutations can 

result in a group of pseudohypoparathyroid disorders which include 

pseudohypoparathyroidism type Ia, pseudohypoparathyroidism type Ic, 

pseudopseudohypoparathyroidism and McCune-Albright syndrome.  

Pseudohypoparathyroidism type Ib is usually due to imprinting/methylation defects in GNAS 

mentioned above leading to loss of function on the maternal allele but can also be seen due to 

STX16 mutations [27]. These disorders are known to have distinct clinical features such as 

brachydactyly, short stature, skeletal abnormalities (except in Pseudohypoparathyroidism 

type Ib) [28]. This distinction is mainly driven by the understanding that in cases with 

pseudohypoparathyroidism type 1a with loss of function in GNAS, there is generalized 

hormonal resistance to parathyroid hormone (PTH), TSH and gonadotrophins.  

With the clear differences in the genetic pathomechanisms it is reasonable to expect some 

differences in the clinical features of patients with different genetic mutations. Here in this 

systematic review we review the clinical presentations in the genetically confirmed PFBC 

and pseudohypoparathyroidism which is a close differential diagnosis.  

2. Methods 

Systematic review of the literature was performed per the PRISMA guidelines (Preferred 

Reporting Items for Systematic Reviews and Meta-analyses). The first search included all 

publications in English from 1st Jan 2012 (when genes for PFBC were discovered) through to  

7th November 2016. The following search terms were applied: Brain calcification, cerebral 
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calcification, fahr* disease, fahr* syndrome, idiopathic basal ganglia calcification, primary 

familial basal ganglia calcification, bilateral striatopallidodentate calcification OR calcinosis, 

IBGC OR PFBC OR BSPDC AND SLC20A2, PDGFB, PDGFRΒ OR XPR1. Inclusion 

criteria included a positive genetic test result of SLC20A2, PDGFB, PDGFRΒ or XPR1 

mutation and brain calcification seen on CT or MRI. 

We carried out a second search that included all publications in English up until 7th 

November 2016 using search terms: Pseudohypoparathyroid*, 

pseudopseudohypoparathyroid*, GNAS* OR STX16; AND brain calcification OR cerebral 

calcification. Inclusion criteria for a study were clinically confirmed 

pseudohypoparathyroidism, brain calcification seen on neuroimaging, normal parathyroid 

testing with or without confirmed GNAS mutation. We excluded phacomatosis, DNA repair 

defects and cases with brain calcification due to other secondary causes. 

Demographic data, including age at onset, duration, sex, clinical features at presentation, 

radiological features on available neuroimaging and blood investigations (parathyroid 

hormone and calcium) were recorded when available in cases with a genetic diagnosis. 

Statistical analysis of associations between demographic, clinical and radiological 

characteristics of SLC20A2, PDGFB, PDGFRΒ, XPR1 and pseudohypoparathyroidism was 

performed using IBM SPSS (version 20). Continuous data was compared between groups 

using two-tailed t-tests (two groups). Comparison of categorical data was performed with 

Pearson Chi2 analysis; threshold for all statistical significance was p < 0.05. This article does 

not contain any studies with human or animal subjects performed by any of the authors. 

 

3. Results 
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We identified 20 publications which satisfied the inclusion criteria [17, 18, 22, 23, 29-44] for 

review (Supplementary figure). We collated information on 137 cases, either sporadic or 

from 34 families, with demographic and clinical characterisation found in Table 1. To further 

investigate the hypothesis that pseudohypoparathyroidism represents a comparable phenotype 

as a form of genetic brain calcification, we identified 18 publications with data on 20 patients 

which satisfied the inclusion criteria for review [12, 15, 45-60]. Apart from two families with 

two affected individuals in each, all cases of pseudohypoparathyroidism with cerebral brain 

calcification present were reported as sporadic. There were no clinical reports of 

pseudopseudohypoparathyroidism secondary to GNAS mutations within the search 

parameters. 

 3.1. Demographic characteristics and information availability 

SLC20A2 was the most common gene involved with 75 out of 137 cases included with PFBC 

(55%) followed by PDGFB (31%) and PDGFRB (11%) (Table1). Only 53.5% patients with 

PFBC had a clearly recorded age of onset. Age at presentation was better recorded with rate 

of 91% across all cases. The details of PFBC cases and the comparison with 

Pseudohypoparathyroid cases are presented in Table 1.  

3.2. Clinical phenotype and distinctive clinical features  

The breakdown of clinical presentation for symptomatic patients, divided into neurological or 

psychiatric presentation is presented in Table 2.  Individual clinical symptoms are presented 

in Table 2 and Figure 2. Almost a quarter (24%) of cases in the studies included was 

asymptomatic.  

Through group-wise, then individual-wise analysis, we identified certain clinical features 

occurred significantly more frequently with a genetic abnormality compared to the other 
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mutations combined (Chi2 analysis, p <0.05). Thus, parkinsonism was more commonly 

observed in SCL20A2 (21% of cases) and headache was more common in PDGFB (32.5% of 

cases). Generalised tonic-clonic seizures (GTCS) were significantly more in 

pseudohypoparathyroidism (65% of cases).   

Parkinsonism was seen in 16% of all the included cases; however, the details of specific 

parkinsonian features were sparse. Hyperkinetic movement disorders were reported seen in 

20% though a breakdown of hyperkinetic movement disorder was not available in all the 

cases (details in Figure 2).  

Cognitive impairment was seen in 15% of all the cases and although 67% of XPR1 cases had 

cognitive impairment, this difference did not reach statistical significance. Depression was 

the most frequent psychiatric feature in 7% of all cases and present in 33% of PDGFRB cases 

but statistical analysis showed that frequency of depression, and other psychiatric features, 

was comparable across the groups (p>0.05). 

3.3. Radiological phenotype and distinctive features  

Basal ganglia calcification was present in all of cases with the PFBC and gene mutations but 

this was not true for pseudohypoparathyroidism as 95% had calcification of the basal ganglia. 

Other areas that reported cerebral calcification include the thalamus, cerebellum (and 

specifically dentate nucleus), subcortical grey matter or grey-white junction and cortical areas 

(Figure 2). The thalamus and dentate nucleus was significantly more frequently reported as 

an area of brain calcification in SCL20A2 cases compared to other mutations combined when 

tested with Chi2 analysis (p <0.05). This result may be affected by reporting bias, which will 

be discussed below. All other areas of cerebral calcification are comparable across all 

mutation groups (p>0.05) but only PDGFB mutations were noted to have cysts in the white 

matter with leucodystrophy like presentation in 2 cases[61]. 
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4. Discussion 

We discuss here the results from this analysis and summarize the current information for each 

genetic cause of PFBC and pseudohypoparathyroidism. It has been suggested that clinical 

features among the commonly reported mutations were psychiatric signs (72.7%, 76.5%, and 

80% for PDGFB, SLC20A2, and PDGFRB, respectively), movement disorders (45.5%, 

76.5%, and 40%), and cognitive impairment (54.6%, 64.7%, and 40%)[62].  

SLC20A2  

With regards to age of onset, SCL20A2 cases were older than PDGFRB and 

pseudohypoparathyroid cases (38.6 vs. 25.3 and 20.1). This observation is limited by the fact 

that there is only 54.3% data availability for age of onset. Although presentation with 

hyperkinetic movement disorders is characteristic of all genetic forms of PFBC, parkinsonism 

(21%) was significantly more common with SCL20A2 mutations. However, details of 

parkinsonian features regarding presence of tremor, bradykinesia or gait disorder were not 

always mentioned. There is marked heterogeneity in presentation, including not otherwise 

specified “hyperkinetic movement disorder” (19%), dystonia (13%), chorea (12%), and 

cerebellar ataxia (8%). In the newly redefined IBGC2 kindred linked to SLC20A2, gait and 

upper limb ataxia, slurred speech, hyperreflexia, intellectual impairment has been 

described[42]. Depression appears to be the most common psychiatric features though 

anxiety, agitation, psychosis, has been also reported in small number of cases. Headache has 

been reported in a small number of cases without a clearer classification of the headache 

characteristics. Involvement of thalamus and dentate nucleus was significantly more frequent 

in SCL20A2 cases than in other genetic PFBC on imaging. Thus, patients with late onset 

movement disorder with signs of parkinsonism and calcification in basal ganglia, thalamus 

and dentate are possibly best candidates to be screened for this mutation.  
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PDGFB 

The mutations in the PDGFB gene are the second most common cause of PFBC. Clinically, 

cases reported with PDGFB mutations have hyperkinetic movements (19%) (not further 

specified), dystonia (9%), chorea (14%) and ataxia (14%) which appeared more commonly 

than parkinsonism (7%) and seizures (5%). This difference did not reach statistical 

significance which could be due to heterogeneity of the clinical description of hyperkinetic 

movement disorders. Similar to other genetic mutations, basal ganglia and cerebellum are 

commonly calcified. Subcortical calcification is relatively common (47%) and one of the 

reported cases have cortical calcification. The cases with PDGFB mutations have been most 

commonly described to have headache (29%) (p<0.05). The implications of this are discussed 

in greater detail below.  

PDGFRΒ  

There is limited number of cases published with clinical details on cases with abnormalities 

in PDGFRB gene. The age of onset and age at presentation is earliest compared to other 

mutations. Headache and depression seemed commoner in this group but this finding did not 

reach statistical significance. More studies are needed to better understand characteristics of 

this group. 

XPR1 

Recently, mutations in the XPR1 gene have been identified as a cause of PFBC. XPR1 

mutations seem to present with higher incidence of cognitive dysfunction (66.7%) and 

cortical calcium deposition (Figure 2). Parkinsonism, dysarthria and chorea have been seen 

but no cases have been reported with headache, dystonia or cerebellar ataxia. More studies 

are needed to better understand characteristics of this group. 
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Pseudohypoparathyroidism 

In comparison to PFBC cases, these cases had a higher likelihood of seizures (GTCS) and a 

notable absence of reported psychiatric features and headache. The reason for including this 

group in our study and analysis is supported by the overall similarity in neurological 

presentation of these cases to genetically determined PFBC as there was no statistically 

significant difference in movement disorders and cognitive changes between PFBC and 

pseudohypoparathyroidism.  There was a trend of higher frequency of hyperkinetic 

movement disorders in comparison to parkinsonism but that was not statistically significant 

However, recognition of seizures as a key clinical feature may help differentiating this 

disorder when investigating families or sporadic cases with brain calcification and 

neurological features. It is known that hypocalcaemia is one of the causes of seizures specific 

to this group [45], but low calcium levels were not recorded as the cause of seizures in most 

of the reported patients included in this study. The cases with pseudohypoparathyroidism 

differ from hypoparathyroidism in many ways such as levels of PTH and calcium and 

presence of skeletal abnormalities. The absence of psychiatric features in this group is 

interesting, considering that psychiatric complaints are well documented in the literature for 

cases of hypoparathyroidism and other parathyroid disorders. It may be worthwhile 

separating this group out from the parathyroid disorders considering the pathomechanism, 

genetic mutations and clinical features for better identification in clinic and research studies.  

PFBC with no known mutations 

Nicolas et al reported clinical and radiological profile of 47 cases with no mutations in 

PDGFRB or SLC20A2 [62]. The cases with no mutations seemed to have a higher chance of 

seizures and considering our observation in pseudohypoparathyroidism cases, screening all 

cases with PFBC for this condition may be a useful. Overall the clinical and radiological 
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features of these cases were quite like the cases with genetically confirmed mutations in 

SLC20A2 or PDGFRB [62].  

Not all cases with PFBC have mutations and the figures vary but up to 65% cases may not 

have a known mutation [62]. There may be two reasons for this. Firstly, it may be possible 

that there are still unidentified mutations that are responsible for PFBC. Secondly, it is 

possible that there has been some inconsistency in how the genes have been tested. For 

example, the identification that IBGC 1 and more recently IBGC2 loci map to SLC20A2, 

supports the idea that clinical identification is very important [42]. We did not include the 

PFBC cases without mutations in our study which was mainly to help identify the phenotypic 

genotypic association, but it comparing the clinical and radiological findings between 

mutation carriers and non-mutation carriers with PFBC might be useful. Grutz et al., have 

proposed and tested an algorithm based on sites of calcification and individual’s age to 

predict the chances of positive genetic finding in PFBC [42]. They divided the brain into four 

sites defined as follows: i) basal ganglia (including the caudate nucleus, putamen, and globus 

pallidus), ii) thalamus and subthalamic nucleus iii) cerebellum, and iv) cortical region and 

suggest that presence of  

i) At least one site with bilateral calcification in individuals between 20 and 40 years 

of age, and  

ii) At least two sites with bilateral calcification in individuals between 41-70 years of 

age [62].  

Together with this algorithm, which helps identify the positive genetic cases, the algorithm 

we propose below enhances the possibility of finding the right gene based on the clinical 

features.  
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Analysis 

Here we confirm and extend previous descriptions including a comprehensive review of a 

large patient cohort with SCL20A2 or PDGFRΒ mutation by the French IBG group.[63] 

Tadic et al. (2015) performed a similar systematic, thorough review of SCL20A2, PDGFB 

and PDGFRΒ cases, but not the XPR1 mutation, discussing the need for more robust and 

uniform data-collection in future PFBC cases. There are some small differences in frequency 

of clinical features reported in both studies compared to this systematic review and likely 

represent different patient selection. 

This study has some limitations and we acknowledge the potential errors of genotype-

phenotype characterisation using systematic review but feel it is a robust technique when 

reviewing such rare diseases. This method should be used to continually update our clinical 

knowledge as new cases are discovered and more data can be included in analysis. We 

support previous suggestions for a more uniform reporting style with key clinical data fields 

included in future research studies. The low number of cases for certain mutations, including 

XPR1 and pseudopseudohypoparathyroidism, is a form of statistical bias. Selection bias is 

another avenue for error within a systematic review. [11, 64]  

It has been suggested that the functional abnormalities leading to movement disorders, 

cognitive and psychiatric features in brain calcification probably result from the disruption of 

the basal ganglia-thalamocortical circuits.[65] In terms of genotype-phenotype correlation, 

one may hypothesise that the clinical presentation can vary depending on location of calcium 

deposits (e.g. striatum, cortical areas or dentate nucleus). This correlation does not seem 

absolute. There has been at least one study using [18F] FDG-PET that found areas of cortical 

hypometabolism, in the areas that did not have calcifications or other morphological changes 

and this correlated to the patient’s neuropsychological symptoms [29]. It is therefore 
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plausible that calcium deposition may not be the only pathophysiological mechanism in 

patients with the genetic mutations and highlights the importance of future studies 

investigating asymptomatic patients.  

It has been noted that patients with the PDGFB mutations had headache. However, on closer 

analysis, this symptom did not co-segregate in most of the families suggesting an absence of 

causal relationship. There is quite marked clinical heterogeneity of familial PFBC cases and 

~40% of the patients carrying basal ganglia calcification did not show any symptoms as 

reported on a large case series[66]. 

Although this co-segregation may be incidental, or reflective of data collection (selective 

bias), one may bear in mind that calcium and parathyroid abnormalities have been recorded 

in patients of headache with Idiopathic intracranial hypertension (IIH) [67, 68]. In one study 

ten percent of IIH patients had abnormalities in calcium (Ca) serum level: six had 

hypocalcemia and 1 had hypercalcemia[68]. A better documentation of calcium, parathyroid 

hormone status and CSF pressure or at least fundus examination might help with better 

characterization of headaches in genetic mutations leading to brain calcification.  

There are some key limitations in the current understanding of brain calcification that this 

review highlights. Interestingly none of the genes involved in the calcium metabolic pathway 

have been described as a cause of the PFBC syndrome [69].  Phosphate transport seems to be 

an important part of the process of calcification in PFBC.  SLC20A2 gene encodes type III 

sodium-dependent inorganic phosphate (Pi) transporter 2 (PiT2)[17] and the impairment in 

the function of PiT2 [17] can contribute to the deposition of calcium phosphate in the 

vascular extracellular matrix [18].  A recent study in Slc20a2-knockout (KO) mice 

demonstrated high CSF [Pi]. The hyperphosphatemia in CSF possibly reflects impaired 
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phosphate export from the CSF [21]. These studies support a pathophysiological link between 

SLC20A2 mutations and defective phosphate transport that might be responsible for PFBC.  

XPR1 also closely links to PiT2 [18] and considering the observation of CSF increase of 

phosphate in Slc20a2-knockout animal models, it is quite likely that impairment in the 

function of PiT2 and inorganic phosphate (Pi) transport is the main cause of PFBC at least in 

IBGC 1, 2, 3, and 6.  

PDGFRΒ is another gene implicated in PFBC encodes for one of the two receptors for 

platelet-derived growth factor (PDGF) with subunit ß (PDGFB), its major ligand. PDGFB is 

a cell-surface tyrosine kinase receptor, which plays an essential role in various signalling 

pathways involved in the regulation of cell proliferation, differentiation, survival, and 

migration. The PDGF in the endothelial cells and pericytes seem to have a different 

mechanism of action with the same consequence of calcium deposition around the blood 

vessels in brain[70].  It has been proposed that the integrity of the BBB is compromised in 

PDGFRB, which secondarily induces vascular and perivascular calcium depositions [22]. In a 

study of the correlation between calcification induced by Pi, PDGF-BB was shown to 

increase the expression of PiT-1 in the endoplasmic reticulum in primary cultures of rat aortic 

vascular smooth muscle cells. This could thereby mediate an increase in the Pi influx into the 

smooth muscle cell, therefore facilitating the formation of calcium phosphate deposits in the 

new generated matrix vesicles[71]. Although PiT1 is possible more in abundance in the 

vascular endothelium and possibly equally ore more important for phosphate transportation, 

interestingly, SLC20A1 gene, which codes for the phosphate transporter 1 (PiT1), has been 

screened but not been found in PFBC patients [69]. 

 

The calcium deposition in PFBC starts in the endothelial and smooth muscle cells of blood 

vessels in the Globus pallidus which are most susceptible to build calcium deposits in 
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response to various metabolic triggers [72]. Calcifications limited to Globus pallidum can be 

also be linked to ageing and are prevalent in people over 60 years of age (5.5–20 %)[2]. 

Drawing from some studies on vascular smooth muscle cells and aortic valve calcification, 

hyperphosphatemia is an important contributor to vascular calcification [72, 73]. Elevated 

phosphate induces calcification of smooth muscle cells (SMC) in vitro and inhibition of 

phosphate transport by phosphonoformic acid blocks phosphate-induced calcification, 

implicating sodium-dependent phosphate cotransporters (PiT 1 and PiT 2) in this process. 

This can have potential therapeutic implications considering that Slc20a2-knockout (KO) 

mice have already been shown to have hyperphosphatemia in the CSF.  

It seems that there is interplay of the genetic factors contributing to calcium deposition but 

more experimental work is needed to understand this.  

5. Conclusion 

Our analysis of genotype-phenotype correlation in brain calcification related to genetic 

mutations suggests that although there is significant overlap in terms of clinical and 

radiological features, there may be certain features significantly associated with specific 

mutations.   

With regards to significant distinctive neurological features, parkinsonism was more common 

with SLC20A2 mutations, headache with PDGFB and generalised tonic-clonic seizures were 

seen in pseudohypoparathyroidism. Radiologically, calcification of the thalamus was 

significantly more common with SCL20A2 mutations. 

Some features that differed across groups were not statistically significance however we feel 

the association may still be noteworthy. For example, with regards to psychiatric features, 

depression was more often reported in PDGFRB (p>0.05). Cognitive impairment and 
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parkinsonism tended to occur with late onset of disease (>45 years) while younger onset 

cases more commonly had hyperkinetic movement disorders such as chorea and dystonia. 

Like other neurodegenerative conditions it is possible that patients with PFBC may have 

different clinical presentation at different ages with the same pathological process.  

In summary, using systematic review we have identified several distinct features which may 

aid the clinical diagnostic process. Based on the existing knowledge (figure 3a) and 

observations made in this analysis we propose a schematic plan (figure 3b) to investigate 

patients with brain calcification and neurological or psychiatric features.    
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Legend for figures:  

Figure 1a Simple schematic representation of mechanisms responsible for brain calcification  

Figure 1 b Schematic representation of the postulated mechanisms in genetically mediated 

microvascular calcium deposition in the brain. The scheme shows a cross section through a 

blood vessel in the brain demonstrating the location of pericytes and neural tissue. PDGF B 

and PDGF RB are located in the pericytes and loss of gene function can cause age-dependent 

phenotypic change in pericytes that ultimately provokes the formation of microvascular 

calcification. Phosphate uptake through the inorganic phosphate transporter type III is 

impaired in SLC20A2 and XPR1 mutations. Parathormone uptake is facilitated through G 

Protein coupled cyclic AMP activity which can be lost in GNAS1 mutations.    

PiT2 – inorganic phosphate transporter 2, PTH- Parathormone  

Figure 2 Histogram showing (A) clinical presentation by category (neurological, psychiatric 

or asymptomatic), (B) psychiatric presentation by symptom, and (C) neurological 

presentation by symptom. (D). Histogram showing calcification on CT head imaging by 

anatomical location.   

Genetic mutations leading to cerebral calcification present with neurological symptoms more 

frequently than psychiatric symptoms or being asymptomatic. Depression is the most 

common psychiatric symptom. Parkinsonism (14.7%), a hyperkinetic movement disorder 

(20.5%) and cognitive impairment (13.9%) were the most frequent neurological symptoms 

across all mutations. GTCS, parkinsonism and headache were associated with 

Pseudohypoparathyroidism, SLC20A2 and PDGFB mutations, respectively, at statistically 

significant higher frequency compared to other mutations combined when tested with 

Chi2 analysis (« indicating p <0.05). Note that chorea and dystonia represent further 

breakdown of the hyperkinetic movement disorder category. 

Basal ganglia calcification is most consistently observed (99.26% of all cases). Cerebellar 

calcification is the next most frequently calcified area across all mutations (50% of all cases). 

Dentate nucleus calcification is described with SCL20A2 mutations at statistically significant 

higher frequency compared to other mutations combined (*p <0.05). 

CT – computerised tomography GTCS = generalised tonic clonic seizures 

  

Figure 3a. Causes of brain calcification 

Figure 3b. Schematic plan of investigation of brain calcification. 

Supplementary figure 1 Search strategy and included studies. 

 

 


