Answer **all** the questions.

1

(a)		oxide' gas, N ₂ O, is formed in the soil by denitrifying bacteria. Give the systematic name for nitrous oxide.	
()	(-)		[1]
	(ii)	One model of the bonding in nitrous oxide includes a dative covalent bond between oxygen atom and the central nitrogen atom. Complete the 'dot-and-cross' diagram molecule of nitrous oxide based on this model.	n the
		Suggest a shape for the molecule.	
		N N O	
		shape	[3]
(b)	Nitr	rate ions, NO ₃ ⁻ , in soil undergo denitrification to nitrous oxide.	
	(i)	Give the oxidation state of nitrogen in:	
		nitrate, NO ₃ ⁻ nitrous oxide	[2]
	(ii)	Balance the half-equation below by writing numbers on the dotted lines.	
		$H^+ + 2NO_3^- +e^- \rightarrow N_2O +H_2O$	[2]
((iii)	Give two reasons why this process can be referred to as reduction .	
		1	
		2	[2]
((iv)	Suggest one reason why denitrification is a problem for crop production.	
			[1]

(c)	com	en an electric spark is passed through a sample of another oxide of nitrogen it decomposes appletely to nitrogen and oxygen. When the oxygen is removed from the mixture, the volume reases by 67%.
	Cald	culate the formula of the oxide of nitrogen, showing your working.
		formula =[2]
(d)	prop	ous oxide is used as a propellant in aerosol cans. It is especially useful as an aerosol cellant for whipped dairy cream because the gas dissolves in fat. Most fats are triglycerides ers of propane-1,2,3-triol).
	(i)	Draw the full structural formula of a triester of propane-1,2,3-triol. Represent the hydrocarbon chains of the carboxylic acids by 'R'.
		[2]
	(ii)	Suggest, in terms of intermolecular bonds, why nitrous oxide is readily soluble in fat.
		[2]

	C ₆ H ₁₂ cyclohexane	air →	C ₆ H ₁₂ O cyclohexanol	nitric acid →	${ m C_6H_{10}O_4}$ hexanedioic acid			
(i)	Draw the skeletal formulae for cyclohexane, cyclohexanol and hexanedioic acid.							
	cyclohexa	ne	cyclohex	anol	hexanedioic acid			
						3		
(ii)	The equation for th	e oxidation	of cyclohexanol	to hexanedio	c acid is shown below.			
	$C_6H_{12}O + 2HNO_3 \rightarrow C_6H_{10}O_4 + 2H_2O + N_2O$							
	The hexanedioic acid is used in the production of nylon and the nitrous oxide is used as an aerosol propellant.							
	Calculate the atom economy of this reaction.							
	(M _r : C ₆ H ₁₂ O, 100; HNO ₃ , 63; C ₆ H ₁₀ O ₄ , 146; H ₂ O, 18; N ₂ O, 44)							

[Total: 22]

2	(CH	here are four isomeric alcohols with formula $\rm C_4H_9OH$. One of the isomers is 't-butanol', $\rm ^{2}H_3)_3COH$, which is sometimes included as an additive to ethanol to make it undrinkable. It has e lowest boiling point of all the $\rm C_4H_9OH$ isomers.						
	(a)	Dra	w the skeletal formula for t-butanol and give its systematic name.					
		nam	ne[2]					
	(b)	The	isomer t-butanol is not readily oxidised because it is a tertiary alcohol.					
		(i)	Explain why t-butanol is classed as a tertiary alcohol.					
			[1]					
		(ii)	Primary and secondary alcohols are readily oxidised by a cidified potassium dichromate (VI).					
			For the reaction of butan-2-ol with acidified potassium dichromate(VI), give:					
			the colour change of the reagent, from					
			to					
			the name of the organic product					
	(c)	t-Bu	stanol is soluble in ethanol because the two molecules form hydrogen bonds together.					
		Dra bon	w a diagram of a molecule of t-butanol and a molecule of ethanol linked by one hydrogen d.					
		Sho	w the relevant partial charges and lone pair.					

(d)	t-Butanol has	a lower	boiling	point than	butan-1-ol.
-----	---------------	---------	---------	------------	-------------

explain this in terms of intermolecular bonds.	
	[3]

(e) t-Butanol reacts with concentrated hydrochloric acid to form 2-chloro-2-methylpropane. Part of the mechanism for this reaction is shown below.

Complete the mechanism by inserting four 'curly arrows'.

[4]

(f) Compound A, an isomer of t-butanol, $C_4H_{10}O$ is added to diesel fuel to improve its performance. The infrared and proton NMR spectra for this compound are shown below.

infrared spectrum of compound A

proton NMR spectrum of compound A

- Use the spectra to identify **compound A**. Draw a structural formula for **compound A**.
- Give **one** piece of evidence for this structure from the infrared spectrum and **two** pieces of evidence from the NMR spectrum (including reference to the splitting patterns).

have draw	nswer you s vn.	moula mak	o it oloul	now the	CVIGOTICO	зарропо	uno oure	iciure you
								[6]

[Total: 22]

3	A novel way of removing carbon dioxide from the involves converting carbon dioxide to carbon mono. The carbon monoxide can be used as a fuel or cor	xide, using the reaction sh	own in equation 3.1 .
	$2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$	$\Delta H = +566 \mathrm{kJ} \mathrm{mol}^{-1}$	equation 3.1

 $K_{\rm c} =$

[1]

(ii) Use the data below to calculate the value for K_c at 2000 K. Give the units of K_c . Give your answer to an **appropriate** number of significant figures.

substance	equilibrium concentration at 2000 K/mol dm ⁻³
CO ₂	1 × 10 ⁻²
СО	2 × 10 ⁻⁸
02	1 × 10 ⁻⁸

ζ ₌	units	.[3]
----------------	-------	------

(c) (i) Calculate the entropy change of the system in equation 3.1 from the data below.

substance	S [⊕] /Jmol ⁻¹ K ⁻¹
CO ₂	+214
CO	+198
O ₂	+204

$$2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$$
 $\Delta H = +566 \text{ kJ mol}^{-1}$ equation 3.1

$$\Delta S_{sys}^{\Theta} = J mol^{-1} K^{-1}$$
 [2]

(ii) Calculate the temperature at which ΔS_{tot} is zero.

$$\Delta S_{\text{tot}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}}$$
 $\Delta S_{\text{surr}} = -\Delta H/T$

(d)		nethod of captu stances such as	•		power	station c	himneys is	to react it	with
	(i)	Write a chemic	al equation for t	he reaction	of carbo	n dioxide	with calciu	m hydroxide	
									[1]
	(ii)	Classify this rea	action by under	lining one te	rm from	those be	low.		
		acid-base	ligand exch	nange	precipi	itation	redox		[1]
	(iii)	Suggest one di	J	J					
								[Tota	l: 16]

ın u	ie ni	neteenth century, chemists had problems determining the structure of benzene.
(a)	(i)	The empirical formula was discovered by burning a known mass of benzene in air. The masses of carbon dioxide and water formed were measured. Calculations showed the empirical formula of benzene to be CH.
		Calculate the mass of carbon dioxide that would be formed by burning 1.00 g of benzene.
		mass of carbon dioxide = g [2]
	(ii)	Determinations of the $M_{\rm r}$ of benzene showed its molecular formula to be ${\rm C_6H_6}$.
		How can the $M_{\rm r}$ of benzene be found today from its mass spectrum?
		[1]
(b)	An	early structure suggested for benzene was $CH_2 = CH - C = C - CH = CH_2$.
	(i)	Draw a full structural formula for this structure.
		Show on the diagram the values of two different bond angles.
		[3]
	(ii)	Benzene was found not to react with HBr at room temperature and pressure.
	` ,	Explain why this cast doubt on the structure given in (i).
		[1]

(c) In 1865, a chemist called Kekulé was trying to work out the structure of benzene.

		e story is that he dozed off and dreamt of a snake biting its own tail. This prompted him to bose a ring of six carbon atoms connected by alternating double and single bonds.
		ctron diffraction data shows that a benzene molecule has a hexagonal shape, with a bondle of 120° and all bond lengths equal.
		plain how Kekulé's structure accounts for some but not all of the evidence from the electronaction data.
/~l\		yadaya tha atrustura of hanzana is often represented as about halour
(d)	NOV	vadays the structure of benzene is often represented as shown below.
	(i)	Explain the meaning of the circle in the centre of the structure, giving the origin and arrangement of the electrons involved.
B		In your answer you should use appropriate technical terms, spelled correctly.
		[4

	(11)		ining several benzene rings are coloured and are used as dyes.
	\wedge	Explain this in terms of y	our answer to (i) and the electron energy levels of the molecules.
B		In your answer you shou	uld make it clear how the points you make are linked together.
			[6]
(e)		dict the number of peaks ge in which the peak(s) w	in the proton NMR spectrum of benzene. Give the chemical shift ill be found.
	nun	nber of peaks	shift range[2]

(f)	Ber	nzene reacts with bromine to give C ₆ H ₅ Br.
	(i)	Give the systematic name for C ₆ H ₅ Br.
		[1]
	(ii)	Write an equation for the reaction of benzene with bromine.
		[1]
	(iii)	This reaction is described as electrophilic substitution.
		Explain what you understand by the term <i>electrophile</i> and describe how bromine behaves as an electrophile in this reaction.
		[3]
		[Total: 28]

5 Folic acid is a vitamin of the B complex. It plays an important part in helping cells multiply. In one series of reactions it is converted to dihydrofolic acid.

$$H_2N$$
 H_2N
 H_3N
 H_4N
 H
 H
 H
 H
 H

dihydrofolic acid

- (a) (i) Draw a ring round a carboxylic acid group in dihydrofolic acid. [1](ii) Name two other functional groups (not the arene ring) in dihydrofolic acid.[2]
 - (iii) Indicate with an arrow the chiral carbon on the dihydrofolic acid structure above. [1]
- **(b)** The dihydrofolic acid is hydrogenated to tetrahydrofolic acid. The structure of tetrahydrofolic acid is shown below.

tetrahydrofolic acid

Indicate with two arrows the positions of the **two** extra hydrogen atoms in this structure, compared with dihydrofolic acid. [2]

(c) The drug trimetrexate is used in cancer treatment as it inhibits the enzyme that catalyses the conversion of dihydrofolic acid to tetrahydrofolic acid.

trimetrexate

	Suggest how trimetrexate inhibits the enzyme but cannot itself be easily hydrogenated.
	[3]
(d)	In the synthesis of trimetrexate, it is necessary to place a methyl group on an aromatic ring Give the reagents and the conditions required to make methylbenzene from benzene.
	[3]

(e) Folic acid behaves as a weak acid and can be represented as HA.

(i)	Write the equation for the ionisation of a weak acid HA in water.	
		[1]
(ii)	Write the terms <i>conjugate acid</i> and <i>conjugate base</i> under the appropriate formulae an acid–base pair in your equation.	for [1]
(iii)	Write the expression for the acidity constant, $K_{\rm a}$, for this reaction.	
	$K_a =$	
(iv)	$K_{\rm a}$ = 5.0 × 10 ⁻³ mol dm ⁻³ for this ionisation of folic acid. Calculate p $K_{\rm a}$.	[1]
(v)	$\label{eq:pka} p \textit{K}_{a} = \dots$ Calculate the pH of a 0.10 mol dm $^{-3}$ solution of this acid.	[1]
	pH =	[2]

	(vi)	In this calculation you made two approximations. Give the approximation which leads to the greatest inaccuracy in your answer.	
		Explain why this approximation causes an inaccuracy.	
		[2]	
(f)	The	folic acid we eat passes into the bloodstream unreacted. The pH of blood is 7.4.	
(-)		culate the value of $\frac{[A^-]}{[HA]}$ for folic acid in the bloodstream.	
		$\frac{[A^-]}{[HA]} = \dots [2]$	
(g)	One	e of the major buffering reactions in the blood is shown below.	
		$CO_2(aq) + H_2O(I) \rightleftharpoons HCO_3^-(aq) + H^+(aq)$	
	(i)	Give the systematic name for HCO ₃ ⁻ .	
		[1]	
	(ii)	Use the equilibrium to explain how the pH of the blood is buffered when a small amount of acid is added.	
		[3]	

- (h) ${\rm NaHCO_3}$ is soluble in water. This is because the ions are hydrated in solution.
 - (i) Draw a labelled diagram of a hydrated sodium ion, showing charges and partial charges.

- (ii) Name the interaction between the sodium ions and the water molecules.

 [1]
- (iii) Complete the enthalpy cycle for the dissolving of NaHCO₃ by writing suitable labels in the boxes provided.

[Total: 32]

[2]

END OF QUESTION PAPER