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The first deep learning success 

Classifying handwritten digits

Published test error rates without 

preprocessing for the MNIST dataset

 12% for linear discriminants

 3.3% for 40 PCA + quadratic classifier

 1.4% for SVM with Gaussian kernels

 0.35%  for NN with 5 hidden layers and      

elastic deformations



This is the first time a single type of model can compete with 
very many  previous state-of-the-art results in machine learning.

Why deep learning?

Problems Best Previous

accuracy

Deep learning 

accuracy

Hollywood - Activity recognition 48% 53%

TIMIT - Phoneme Classification 79.2% 80.3%

CIFAR - Object classification 80.5% 82%

NORB – Object classification 94.4% 95%

AVLetters Lip reading 58.9% 65.8%

Paraphrase detection 76.1% 76.4%

…

Other success stories



The single-algorithm hypothesis

Auditory Cortex learns to see

The same piece of brain tissue  can process sight or sound or touch

Why deep learning?



The single-algorithm hypothesis

Seeing with your tounge

Frog can learn to use 

the 3rd eye

The brain is a general-purpose machine that can be tuned to 

specific tasks.

Why deep learning?



A deep neural net for MNIST



Basic architecture for an 

autoencoder neural network



Smart meter data

 Hourly data for 2012 and 2013 for about 

8000 smart meters at Hvaler

 8760 hours per year and 8000 smart meters 

give a total of 70 million instances per year.

 In the future, 2.7 million meters instead of 

8000.

 Big data! Avoids overfitting in deep 

learning. 



Deep neural net for modeling 

smart meter data

Use a deep subnet to model each individual 

building. For example, reduce the 8760 

measurements for 2012 to say 4 parameters.

 Connect this net to a following one that has 

one input for each of the previous 48 hours.

 Train, validate and test the last net on data 

from 2013 and 2014.

 For each meter, also include geographic 

position, temperature, month, day of week 

and hour.



Deep neural net technologies

 Sparse initialization.

 Dropout regularization instead of L2.

 Minibatches instead of full batches.

 Optimized momentum schedule

 Massively parallel implementations

 Do not use the NN toolbox in Matlab.



Developing disruptive deep 

learning

 Learn from neuroscience e.g. episodic 

memory.

 Use automatic programming (ADATE) to 

generate:

• New initial connections

• New neuron designs

• New regularization methods

• New error measures



Automatic Design of Algorithms

through 

Evolution (ADATE)



A control system example

Driving an autonomous car as fast as possible

 We have implemented a realistic physical 

simulation including wind resistance, tire stiffness, 

friction and other parameters.

 Driver inputs were chosen to speed and angles to 

the five points 20, 40, 60, 80 and 100 meters 

ahead of the car and in the middle of the road

 Driver output is steering, gas and brake

 Our methods are applicable to any control system 

learning or reinforcement learning scenario



Specification for fast driving of

autonomous cars 

 Randomly generated flat tracks with varying 

widths and curve angles but constant friction

 Power and torque curves, brakes, car dimensions 

etc chosen to match a Golf class car

 16 tracks, each about 3 km long used for training

 96 tracks other tracks from the same probability 

distribution used for validation

 Yet another set of 96 tracks used for testing



An example of a random track



Skid marks and acceleration / 

braking for the best drivers

ADATE driver ES-NN driver



A simple ADATE generated driver

fun f ( Us, Un, Width, DistToCenter,     

RotationSlipVelocity, Phi, 

Alpha10, Alpha20, Alpha30, Alpha40,

Alpha50 )  = 

vector2d(

tanh(  ( 0.3271902841577998 - Us ) / 

( Us * Alpha30 *  Alpha30 ) -

3.0 * Us ) 

-

Us,

4.0 * Alpha20 - 2.0 * Phi )



The best ADATE generated driver

fun f ( Us, Un, Width, DistToCenter,     

RotationSlipVelocity, Phi, 

Alpha10, Alpha20, Alpha30, Alpha40,

Alpha50 )  = 

vector2d(

tanh(

(  0.310296196852 - tanh( tanh Us  )  ) / ( Us * Alpha30 * Alpha30  ) -

3.0 * Us )

-

(

if Us < 32.9722111893 / 100 andalso Width < 3.99581671721 / 20 then

Us

else

( if Us  < 37.006446585587194 / 100 then

~0.1183128271561453 / ( Alpha40 * Alpha40 )

else

Alpha50 ) +

Width ),

4.0 * Alpha20 - 2.0 * Phi )



Experimental results for car racing

 We have generated driving algorithms using both 
automatic programming (ADATE) and neural 
networks trained with evolution strategies.

 The best ADATE generated driver has a mean 
velocity of 32.4 m/s whereas the best neural 
network driver manages 24.3 m/s on our test 
tracks.

 Our own attempts to write autonomous vehicle 
control algorithms failed miserably whereas 
automatic programming generated them easily.



Some features of ADATE

 Synthesis of primitively or generally recursive 
programs.   

 Automatic invention of help functions where and 
when needed.

 “Loose” specifications requiring only evaluation 
(grading), not specific outputs. 

 Kingdom based on size-evaluation value ordering 
and diversification methods.

 Starts with one initial program and grows/shrinks 
dynamically.

 ES / RP optimization of floating point constants


