FACIAL RECOGNITION

Dee Deep-learning neural networks use layers of increasingly
complex rules to categorize complicated shapes such as faces.

Learning

Layer 1: The
computer
identifies pixels
of light and dark.

Roland
Olsson

Layer 2: The
computer learns to
identify edges and
simple shapes.

Layer 3: The computer
learns to identify more
complex shapes and
objects.

Layer 4: The computer
learns which shapes
and objects can be used
to define a human face.

The first deep learning success
Classifying handwritten digits

Published test error rates without
preprocessing for the MNIST dataset

12% for linear discriminants
3.3% for 40 PCA + gquadratic classifier
1.4% for SVVM with Gaussian kernels

0.35% for NN with 5 hidden layers and
elastic deformations

Other success stories

This is the first time a single type of model can compete with
very many previous state-of-the-art results in machine learning.

Hollywood - Activity recognition 48% 53%
TIMIT - Phoneme Classification 79.2% 80.3%
CIFAR - Object classification 80.5% 82%
NORB — Object classification 94.4% 95%
AV L etters Lip reading 58.9% 65.8%

Paraphrase detection 76.1% 76.4%

The single-algorithm hypothesis

Auditory Cortex learns to see

P The same piece of brain tissue can process sight or sound or touch

N~
pmss

The single-algorithm hypothesis

OPTIC TECTUM
FOREBRAIN .

Implating a 3rd eye to frog

Frog can learn to use
the 3 eye

9% HOW THE DEVICE WORKS %\“\\\‘

* on tongue

Inch-long L5
camera ,
hidden in
sunglasses
SR sends image
. to a handheld
: | control unit (-

The control

unit converts
the image into a
low resolution
black, white and
grey picture

4
/4

4 User ‘feels’ the

Image recreated
on a grid of 400
electrodes. Each
one pulses according | %
to how much light is
in that area of

the picture

movement on
their tongue

Seeing with your tounge

The brain is a general-purpose machine that can be tuned to

specific tasks.

&, Brain eventually
"< learnsto'see’ the
= shape detected

1 shape and detects

A deep neural net for MNIST

ald auntput laywer

¢
input layer : '::;

(T84 maurona)

a
L
T

- L} -
-
e,
]

-
 Basic architecture for an

4 autoencoder neural network

_____________________________________ _ L, Decoder!
[So] e s
- : : :
+ Wa Topg
I 500 | RBM: : 5
..................................... : A | i
| 500 | : : :
F - : :
< W3 : [| |
I 1000 | RBM : :
"""""""""""""""""""" : : | 500 |
_____________________________________ ___,E________________ e e ——— WI+£5
| 1000 | A N SN -8 Coadelayear: 20
Tw. i : Wity
2000 J—— : | 500 |
————————————————————————————————————— E : W3+83
[| : [1000
| | | : [2000
RBM ! Encoder H

Pretraining Unrolling Fine-tuning

Smart meter data

Hourly data for 2012 and 2013 for about
8000 smart meters at Hvaler

8760 hours per year and 8000 smart meters
give a total of 70 million instances per year.

In the future, 2.7 million meters instead of
8000.

Big data! Avoids overfitting in deep
learning.

Deep neural net for modeling
smart meter data

Use a deep subnet to model each individual
building. For example, reduce the 8760
measurements for 2012 to say 4 parameters.

Connect this net to a following one that has
one Input for each of the previous 48 hours.

Train, validate and test the last net on data
from 2013 and 2014.

For each meter, also include geographic
position, temperature, month, day of week

Deep neural net technologies

Sparse Initialization.

Dropout regularization instead of L2.
Minibatches instead of full batches.
Optimized momentum schedule
Massively parallel implementations
Do not use the NN toolbox in Matlab.

Developing disruptive deep
learning

Learn from neuroscience e.g. episodic
memory.

Use automatic programming (ADATE) to
generate:

New Initial connections

New neuron designs

New regularization methods

New error measures

Automatic Design of Algorithms
through

A control system example
Driving an autonomous car as fast as possible

We have implemented a realistic physical
simulation including wind resistance, tire stiffness,
friction and other parameters.

= Driver inputs were chosen to speed and angles to
the five points 20, 40, 60, 80 and 100 meters
ahead of the car and in the middle of the road

= Driver output Is steering, gas and brake

= Our methods are applicable to any control system
learning or reinforcement learning scenario

Specification for fast driving of
autonomous cars

Randomly generated flat tracks with varying
widths and curve angles but constant friction

Power and torque curves, brakes, car dimensions
etc chosen to match a Golf class car

16 tracks, each about 3 km long used for training

96 tracks other tracks from the same probability
distribution used for validation

Yet another set of 96 tracks used for testing

An example of a random track

200

O
-200
-400

600 | S~

-800

-1000 [

-1200 [

-1400 [

-1600 [

_1 800 1 1 1 1 1 1 1 1
o 200 400 600 800 1000 1200 1400 1600 1800

Skid marks and acceleration /
braking for the best drivers

ADATE driver ES-NN driver

000000

000000

A simple ADATE generated driver

fun f (Us, Un, Width, DistToCenter,
RotationSlipVelocity, Phi,
Alphal0, Alpha20, Alpha30, Alpha40,
Alpha50) =
vector2d(
tanh((0.3271902841577998 - Us) /
(Us * Alpha30 * Alpha30) -
3.0 * Us)
Us,
4.0 * Alpha20 - 2.0 * Phi)

The best ADATE generated driver

fun f (Us, Un, Width, DistToCenter,
RotationSlipVelocity, Phi,
Alphal0, Alpha20, Alpha30, Alpha40,
Alpha50) =
vector2d(
tanh(
(0.310296196852 - tanh(tanh Us))/ (Us * Alpha30 * Alpha30) -
3.0*Us)

(
if Us <32.9722111893/ 100 andalso Width < 3.99581671721 / 20 then

Us
else
(if Us <37.006446585587194 / 100 then
~0.1183128271561453 / (Alpha40 * Alpha40)
else
Alpha50) +
Width),
4.0 * Alpha20 - 2.0 * Phi)

Experimental results for car racing

We have generated driving algorithms using both
automatic programming (ADATE) and neural
networks trained with evolution strategies.

The best ADATE generated driver has a mean
velocity of 32.4 m/s whereas the best neural
network driver manages 24.3 m/s on our test
tracks.

Our own attempts to write autonomous vehicle
control algorithms failed miserably whereas
automatic programming generated them easily.

Some features of ADATE

Synthesis of primitively or generally recursive
programs.

Automatic invention of help functions where and
when needed.

“Loose” specifications requiring only evaluation
(grading), not specific outputs.

Kingdom based on size-evaluation value ordering
and diversification methods.

Starts with one initial program and grows/shrinks
dynamically.

ES / RP optimization of floating point constants

