
Deep

Learning

Roland

Olsson

The first deep learning success

Classifying handwritten digits

Published test error rates without

preprocessing for the MNIST dataset

 12% for linear discriminants

 3.3% for 40 PCA + quadratic classifier

 1.4% for SVM with Gaussian kernels

 0.35% for NN with 5 hidden layers and

elastic deformations

This is the first time a single type of model can compete with
very many previous state-of-the-art results in machine learning.

Why deep learning?

Problems Best Previous

accuracy

Deep learning

accuracy

Hollywood - Activity recognition 48% 53%

TIMIT - Phoneme Classification 79.2% 80.3%

CIFAR - Object classification 80.5% 82%

NORB – Object classification 94.4% 95%

AVLetters Lip reading 58.9% 65.8%

Paraphrase detection 76.1% 76.4%

…

Other success stories

The single-algorithm hypothesis

Auditory Cortex learns to see

The same piece of brain tissue can process sight or sound or touch

Why deep learning?

The single-algorithm hypothesis

Seeing with your tounge

Frog can learn to use

the 3rd eye

The brain is a general-purpose machine that can be tuned to

specific tasks.

Why deep learning?

A deep neural net for MNIST

Basic architecture for an

autoencoder neural network

Smart meter data

 Hourly data for 2012 and 2013 for about

8000 smart meters at Hvaler

 8760 hours per year and 8000 smart meters

give a total of 70 million instances per year.

 In the future, 2.7 million meters instead of

8000.

 Big data! Avoids overfitting in deep

learning.

Deep neural net for modeling

smart meter data

Use a deep subnet to model each individual

building. For example, reduce the 8760

measurements for 2012 to say 4 parameters.

 Connect this net to a following one that has

one input for each of the previous 48 hours.

 Train, validate and test the last net on data

from 2013 and 2014.

 For each meter, also include geographic

position, temperature, month, day of week

and hour.

Deep neural net technologies

 Sparse initialization.

 Dropout regularization instead of L2.

 Minibatches instead of full batches.

 Optimized momentum schedule

 Massively parallel implementations

 Do not use the NN toolbox in Matlab.

Developing disruptive deep

learning

 Learn from neuroscience e.g. episodic

memory.

 Use automatic programming (ADATE) to

generate:

• New initial connections

• New neuron designs

• New regularization methods

• New error measures

Automatic Design of Algorithms

through

Evolution (ADATE)

A control system example

Driving an autonomous car as fast as possible

 We have implemented a realistic physical

simulation including wind resistance, tire stiffness,

friction and other parameters.

 Driver inputs were chosen to speed and angles to

the five points 20, 40, 60, 80 and 100 meters

ahead of the car and in the middle of the road

 Driver output is steering, gas and brake

 Our methods are applicable to any control system

learning or reinforcement learning scenario

Specification for fast driving of

autonomous cars

 Randomly generated flat tracks with varying

widths and curve angles but constant friction

 Power and torque curves, brakes, car dimensions

etc chosen to match a Golf class car

 16 tracks, each about 3 km long used for training

 96 tracks other tracks from the same probability

distribution used for validation

 Yet another set of 96 tracks used for testing

An example of a random track

Skid marks and acceleration /

braking for the best drivers

ADATE driver ES-NN driver

A simple ADATE generated driver

fun f (Us, Un, Width, DistToCenter,

RotationSlipVelocity, Phi,

Alpha10, Alpha20, Alpha30, Alpha40,

Alpha50) =

vector2d(

tanh((0.3271902841577998 - Us) /

(Us * Alpha30 * Alpha30) -

3.0 * Us)

-

Us,

4.0 * Alpha20 - 2.0 * Phi)

The best ADATE generated driver

fun f (Us, Un, Width, DistToCenter,

RotationSlipVelocity, Phi,

Alpha10, Alpha20, Alpha30, Alpha40,

Alpha50) =

vector2d(

tanh(

(0.310296196852 - tanh(tanh Us)) / (Us * Alpha30 * Alpha30) -

3.0 * Us)

-

(

if Us < 32.9722111893 / 100 andalso Width < 3.99581671721 / 20 then

Us

else

(if Us < 37.006446585587194 / 100 then

~0.1183128271561453 / (Alpha40 * Alpha40)

else

Alpha50) +

Width),

4.0 * Alpha20 - 2.0 * Phi)

Experimental results for car racing

 We have generated driving algorithms using both
automatic programming (ADATE) and neural
networks trained with evolution strategies.

 The best ADATE generated driver has a mean
velocity of 32.4 m/s whereas the best neural
network driver manages 24.3 m/s on our test
tracks.

 Our own attempts to write autonomous vehicle
control algorithms failed miserably whereas
automatic programming generated them easily.

Some features of ADATE

 Synthesis of primitively or generally recursive
programs.

 Automatic invention of help functions where and
when needed.

 “Loose” specifications requiring only evaluation
(grading), not specific outputs.

 Kingdom based on size-evaluation value ordering
and diversification methods.

 Starts with one initial program and grows/shrinks
dynamically.

 ES / RP optimization of floating point constants

