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The first deep learning success 

Classifying handwritten digits

Published test error rates without 

preprocessing for the MNIST dataset

 12% for linear discriminants

 3.3% for 40 PCA + quadratic classifier

 1.4% for SVM with Gaussian kernels

 0.35%  for NN with 5 hidden layers and      

elastic deformations



This is the first time a single type of model can compete with 
very many  previous state-of-the-art results in machine learning.

Why deep learning?

Problems Best Previous

accuracy

Deep learning 

accuracy

Hollywood - Activity recognition 48% 53%

TIMIT - Phoneme Classification 79.2% 80.3%

CIFAR - Object classification 80.5% 82%

NORB – Object classification 94.4% 95%

AVLetters Lip reading 58.9% 65.8%

Paraphrase detection 76.1% 76.4%

…

Other success stories



The single-algorithm hypothesis

Auditory Cortex learns to see

The same piece of brain tissue  can process sight or sound or touch

Why deep learning?



The single-algorithm hypothesis

Seeing with your tounge

Frog can learn to use 

the 3rd eye

The brain is a general-purpose machine that can be tuned to 

specific tasks.

Why deep learning?



A deep neural net for MNIST



Basic architecture for an 

autoencoder neural network



Smart meter data

 Hourly data for 2012 and 2013 for about 

8000 smart meters at Hvaler

 8760 hours per year and 8000 smart meters 

give a total of 70 million instances per year.

 In the future, 2.7 million meters instead of 

8000.

 Big data! Avoids overfitting in deep 

learning. 



Deep neural net for modeling 

smart meter data

Use a deep subnet to model each individual 

building. For example, reduce the 8760 

measurements for 2012 to say 4 parameters.

 Connect this net to a following one that has 

one input for each of the previous 48 hours.

 Train, validate and test the last net on data 

from 2013 and 2014.

 For each meter, also include geographic 

position, temperature, month, day of week 

and hour.



Deep neural net technologies

 Sparse initialization.

 Dropout regularization instead of L2.

 Minibatches instead of full batches.

 Optimized momentum schedule

 Massively parallel implementations

 Do not use the NN toolbox in Matlab.



Developing disruptive deep 

learning

 Learn from neuroscience e.g. episodic 

memory.

 Use automatic programming (ADATE) to 

generate:

• New initial connections

• New neuron designs

• New regularization methods

• New error measures



Automatic Design of Algorithms

through 

Evolution (ADATE)



A control system example

Driving an autonomous car as fast as possible

 We have implemented a realistic physical 

simulation including wind resistance, tire stiffness, 

friction and other parameters.

 Driver inputs were chosen to speed and angles to 

the five points 20, 40, 60, 80 and 100 meters 

ahead of the car and in the middle of the road

 Driver output is steering, gas and brake

 Our methods are applicable to any control system 

learning or reinforcement learning scenario



Specification for fast driving of

autonomous cars 

 Randomly generated flat tracks with varying 

widths and curve angles but constant friction

 Power and torque curves, brakes, car dimensions 

etc chosen to match a Golf class car

 16 tracks, each about 3 km long used for training

 96 tracks other tracks from the same probability 

distribution used for validation

 Yet another set of 96 tracks used for testing



An example of a random track



Skid marks and acceleration / 

braking for the best drivers

ADATE driver ES-NN driver



A simple ADATE generated driver

fun f ( Us, Un, Width, DistToCenter,     

RotationSlipVelocity, Phi, 

Alpha10, Alpha20, Alpha30, Alpha40,

Alpha50 )  = 

vector2d(

tanh(  ( 0.3271902841577998 - Us ) / 

( Us * Alpha30 *  Alpha30 ) -

3.0 * Us ) 

-

Us,

4.0 * Alpha20 - 2.0 * Phi )



The best ADATE generated driver

fun f ( Us, Un, Width, DistToCenter,     

RotationSlipVelocity, Phi, 

Alpha10, Alpha20, Alpha30, Alpha40,

Alpha50 )  = 

vector2d(

tanh(

(  0.310296196852 - tanh( tanh Us  )  ) / ( Us * Alpha30 * Alpha30  ) -

3.0 * Us )

-

(

if Us < 32.9722111893 / 100 andalso Width < 3.99581671721 / 20 then

Us

else

( if Us  < 37.006446585587194 / 100 then

~0.1183128271561453 / ( Alpha40 * Alpha40 )

else

Alpha50 ) +

Width ),

4.0 * Alpha20 - 2.0 * Phi )



Experimental results for car racing

 We have generated driving algorithms using both 
automatic programming (ADATE) and neural 
networks trained with evolution strategies.

 The best ADATE generated driver has a mean 
velocity of 32.4 m/s whereas the best neural 
network driver manages 24.3 m/s on our test 
tracks.

 Our own attempts to write autonomous vehicle 
control algorithms failed miserably whereas 
automatic programming generated them easily.



Some features of ADATE

 Synthesis of primitively or generally recursive 
programs.   

 Automatic invention of help functions where and 
when needed.

 “Loose” specifications requiring only evaluation 
(grading), not specific outputs. 

 Kingdom based on size-evaluation value ordering 
and diversification methods.

 Starts with one initial program and grows/shrinks 
dynamically.

 ES / RP optimization of floating point constants


