
Deep

Learning

Roland

Olsson

The first deep learning success

Classifying handwritten digits

Published test error rates without

preprocessing for the MNIST dataset

 12% for linear discriminants

 3.3% for 40 PCA + quadratic classifier

 1.4% for SVM with Gaussian kernels

 0.35% for NN with 5 hidden layers and

elastic deformations

This is the first time a single type of model can compete with
very many previous state-of-the-art results in machine learning.

Why deep learning?

Problems Best Previous

accuracy

Deep learning

accuracy

Hollywood - Activity recognition 48% 53%

TIMIT - Phoneme Classification 79.2% 80.3%

CIFAR - Object classification 80.5% 82%

NORB – Object classification 94.4% 95%

AVLetters Lip reading 58.9% 65.8%

Paraphrase detection 76.1% 76.4%

…

Other success stories

The single-algorithm hypothesis

Auditory Cortex learns to see

The same piece of brain tissue can process sight or sound or touch

Why deep learning?

The single-algorithm hypothesis

Seeing with your tounge

Frog can learn to use

the 3rd eye

The brain is a general-purpose machine that can be tuned to

specific tasks.

Why deep learning?

A deep neural net for MNIST

Basic architecture for an

autoencoder neural network

Smart meter data

 Hourly data for 2012 and 2013 for about

8000 smart meters at Hvaler

 8760 hours per year and 8000 smart meters

give a total of 70 million instances per year.

 In the future, 2.7 million meters instead of

8000.

 Big data! Avoids overfitting in deep

learning.

Deep neural net for modeling

smart meter data

Use a deep subnet to model each individual

building. For example, reduce the 8760

measurements for 2012 to say 4 parameters.

 Connect this net to a following one that has

one input for each of the previous 48 hours.

 Train, validate and test the last net on data

from 2013 and 2014.

 For each meter, also include geographic

position, temperature, month, day of week

and hour.

Deep neural net technologies

 Sparse initialization.

 Dropout regularization instead of L2.

 Minibatches instead of full batches.

 Optimized momentum schedule

 Massively parallel implementations

 Do not use the NN toolbox in Matlab.

Developing disruptive deep

learning

 Learn from neuroscience e.g. episodic

memory.

 Use automatic programming (ADATE) to

generate:

• New initial connections

• New neuron designs

• New regularization methods

• New error measures

Automatic Design of Algorithms

through

Evolution (ADATE)

A control system example

Driving an autonomous car as fast as possible

 We have implemented a realistic physical

simulation including wind resistance, tire stiffness,

friction and other parameters.

 Driver inputs were chosen to speed and angles to

the five points 20, 40, 60, 80 and 100 meters

ahead of the car and in the middle of the road

 Driver output is steering, gas and brake

 Our methods are applicable to any control system

learning or reinforcement learning scenario

Specification for fast driving of

autonomous cars

 Randomly generated flat tracks with varying

widths and curve angles but constant friction

 Power and torque curves, brakes, car dimensions

etc chosen to match a Golf class car

 16 tracks, each about 3 km long used for training

 96 tracks other tracks from the same probability

distribution used for validation

 Yet another set of 96 tracks used for testing

An example of a random track

Skid marks and acceleration /

braking for the best drivers

ADATE driver ES-NN driver

A simple ADATE generated driver

fun f (Us, Un, Width, DistToCenter,

RotationSlipVelocity, Phi,

Alpha10, Alpha20, Alpha30, Alpha40,

Alpha50) =

vector2d(

tanh((0.3271902841577998 - Us) /

(Us * Alpha30 * Alpha30) -

3.0 * Us)

-

Us,

4.0 * Alpha20 - 2.0 * Phi)

The best ADATE generated driver

fun f (Us, Un, Width, DistToCenter,

RotationSlipVelocity, Phi,

Alpha10, Alpha20, Alpha30, Alpha40,

Alpha50) =

vector2d(

tanh(

(0.310296196852 - tanh(tanh Us)) / (Us * Alpha30 * Alpha30) -

3.0 * Us)

-

(

if Us < 32.9722111893 / 100 andalso Width < 3.99581671721 / 20 then

Us

else

(if Us < 37.006446585587194 / 100 then

~0.1183128271561453 / (Alpha40 * Alpha40)

else

Alpha50) +

Width),

4.0 * Alpha20 - 2.0 * Phi)

Experimental results for car racing

 We have generated driving algorithms using both
automatic programming (ADATE) and neural
networks trained with evolution strategies.

 The best ADATE generated driver has a mean
velocity of 32.4 m/s whereas the best neural
network driver manages 24.3 m/s on our test
tracks.

 Our own attempts to write autonomous vehicle
control algorithms failed miserably whereas
automatic programming generated them easily.

Some features of ADATE

 Synthesis of primitively or generally recursive
programs.

 Automatic invention of help functions where and
when needed.

 “Loose” specifications requiring only evaluation
(grading), not specific outputs.

 Kingdom based on size-evaluation value ordering
and diversification methods.

 Starts with one initial program and grows/shrinks
dynamically.

 ES / RP optimization of floating point constants

