Cherry Hill Tuition A Level Chemistry OCR (A) Paper 1. Mark Scheme

Mark Schemes

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 1. Mark Scheme

CONTENTS

Advanced GCE Chemistry A (H434)
 Advanced Subsidiary GCE Chemistry A (H034)

MARK SCHEME FOR THE UNITS

Unit/Content Page
F321 Atoms, Bonds and Groups 1
F322 Chains, Energy and Resources 13
F324 Rings, Polymers and Analysis 33
Grade Thresholds 45

F321 Atoms, Bonds and Groups

Question		Expected Answers	Marks	Additional Guidance
1	(a)	Mass of the isotope compared to $1 / 12$ th OR mass of the atom compared to $1 / 12$ th (the mass of a) carbon-12 OR ${ }^{12} \mathrm{C}$ (atom) \checkmark	2	IGNORE Reference to average OR weighted mean (i.e. correct definition of relative atomic mass will score both marks) ALLOW mass of a mole of the isotope/atom with $1 / 12$ th the mass of a mole OR 12 g of carbon-12 for two marks. ALLOW 2 marks for: 'Mass of the isotope OR mass of the atom compared to ${ }^{12} \mathrm{C}$ atom given a mass of 12.0' i.e. 'given a mass of 12 ' $\mathbf{O R} \mathbf{C 1 2}$ is 12 communicates the same idea as $1 / 12$ th.' ALLOW 12C OR C12 ALLOW 2 marks for: mass of the isotope mass of 1/12th mass of carbon-12 i.e. fraction is equivalent to 'compared to' ALLOW 1 mark for a mix of mass of atom and mass of mole of atoms, i.e. 'mass of the isotope/mass of an atom compared with 1/12th the mass of a mole OR 12 g of carbon-12.' DO NOT ALLOW mass of 'ions' OR mass of element
	(b)	$\begin{aligned} & \frac{(151 \times 47.77)+(153 \times 52.23)}{100} \\ & \text { OR } \\ & 72.1327+79.9119 \\ & \text { OR } \\ & 152.0446 \text { (calculator value) } \checkmark \\ & A_{\mathrm{r}}=152.04 \checkmark \end{aligned}$	2	ALLOW Correct answer for two marks ALLOW One mark for ECF from transcription error in first sum provided final answer is to 2 decimal points and is to between 151 and 153 and is a correct calculation of the transcription

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 1. Mark Scheme
Mark Scheme

| Question | | Expected Answers | Marks | Additional Guidance |
| :--- | :--- | :--- | :--- | :---: | :---: |
| (c) | (i) | ${ }^{153}$ Eu has (2) more neutrons
 OR
 ${ }^{153}$ Eu has 90 neutrons AND ${ }^{151}$ Eu has 88 neutrons \checkmark | ALLOW There are a different number of neutrons
 IGNORE Correct references to protons / electrons
 DO NOT ALLOW Incorrect references to protons / electrons | |
| | (ii) | (It has the) same number of protons AND electrons
 OR
 Both have 63 protons and 63 electrons \checkmark | $\mathbf{1}$ | ALLOW Same number of protons AND same electron configuration
 DO NOT ALLOW 'Same number of protons' without reference to
 electrons (and vice versa) |

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 1. Mark Scheme
F321
Mark Scheme

Questio	Expected Answers	Marks	Additional Guidance
(d)	Xe has a bigger atomic radius OR Xe has more shells \checkmark Xe has more shielding The nuclear attraction decreases OR Outermost electrons of Xe experience less attraction (to nucleus) OR Increased shielding / distance outweighs the increased nuclear charge ORA throughout	3	ALLOW Xe has more energy levels ALLOW Xe has electrons in higher energy level ALLOW Xe has electrons further from nucleus IGNORE Xe has more orbitals OR more sub-shells DO NOT ALLOW 'different shell' or 'new shell' ALLOW More screening There must be a clear comparison ie more shielding OR increased shielding. i.e. DO NOT ALLOW Xe 'has shielding' ALLOW Xe has more electron repulsion from inner shells ALLOW Xe has less nuclear pull IGNORE Xe has less effective nuclear charge DO NOT ALLOW nuclear charge for nuclear attraction
	Total	9	

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 1. Mark Scheme

Mark Scheme

Question			Expected Answers	Marks	Additional Guidance
2	(a)	(i)	The H^{+}ion in an (nitric) acid has been replaced by a metal ion OR by a Ca^{2+} ion \checkmark	1	DO NOT ALLOW it has been produced by the reaction of an acid and a base as this is stated in the question. IGNORE references to replacement by $\mathrm{NH}_{4}{ }^{+}$ions or positive ions. ALLOW H OR Hydrogen for H^{+}; DO NOT ALLOW Hydrogen atoms ALLOW Ca OR Calcium for Ca^{2+}. DO NOT ALLOW Calcium atoms ALLOW 'metal' for 'metal ion
		(ii)	$\begin{aligned} & 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ & \text { Formulae } \checkmark \\ & \text { Balance AND states } \checkmark \end{aligned}$	2	ALLOW multiples ALLOW (aq) OR (s) for $\mathrm{Ca}(\mathrm{OH})_{2}$
		(iii)	Accepts a proton OR accepts $\mathbf{H}^{+} \checkmark$	1	ALLOW H ${ }^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ ALLOW OH ${ }^{-}$reacts with $\mathbf{H}^{+} \mathbf{O R ~ O H}$ takes \mathbf{H}^{+} ALLOW OH^{-}'attracts' \mathbf{H}^{+}if 'to form water' is seen DO NOT ALLOW OH ${ }^{-}$neutralises H^{+}('neutralises' is in the question)
	(b)	(i)	Calculates correctly $\frac{0.0880 \times 25.0}{1000}=2.20 \times 10^{-3} \mathrm{~mol}$ OR 0.00220 mol	1	ALLOW 0.0022 OR $2.2 \times 10^{-3} \mathrm{~mol}$
		(ii)	Calculates correctly $\frac{0.00220}{2}=1.10 \times 10^{-3} \mathrm{~mol}$ OR $0.00110 \mathrm{~mol} \checkmark$	1	ALLOW 0.0011 OR $1.1 \times 10^{-3} \mathrm{~mol}$ ALLOW ECF for answer (i)/2 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes
		(iii)	$\begin{aligned} & \frac{0.00110 \times 1000}{17.60}=0.0625 \mathrm{~mol} \mathrm{dm}^{-3} \\ & \text { OR } 6.25 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3} \checkmark \end{aligned}$	1	ALLOW 0.063 OR $6.3 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ ALLOW ECF for answer (ii) $\times 1000 / 17.60$ OR ECF from (i) for answer (i)/2 $\times 1000 / 17.60$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 1. Mark Scheme
Mark Scheme

(c)	(i)	(The number of) Water(s) of crystallisation \checkmark	1	IGNORE hydrated OR hydrous
	(ii)	142.1 $x=\frac{(322.1-142.1)}{18.0}=10 \checkmark$	2	ALLOW 142 ALLOW M_{r} expressed as a sum ALLOW ECF from incorrect M_{r} and x is calculated correctly ALLOW ECF values of x from nearest whole number to calculator value ALLOW 2 marks if final answer is 10 without any working
		Total	10	

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 1. Mark Scheme

Question			Expected Answers	Marks	Additional Guidance
3	(a)	(i)	(Electrostatic) attraction between oppositely charged ions.	1	IGNORE force IGNORE references to transfer of electrons MUST be ions, not particles
		(ii)	Mg shown with either 8 of 0 electrons AND S shown with 8 electrons with 2 crosses and 6 dots (or vice versa) Correct charges on both ions \checkmark	2	Mark charges on ions and electrons independently For first mark, if 8 electrons are shown around the Mg then 'extra electrons' around S must match the symbol chosen for electrons around Mg Shell circles not required IGNORE inner shell electrons Brackets are not required
	(b)	(i)	Electron pairs in covalent bonds shown correctly using dots and crosses in a molecule of the $\mathrm{F}_{2} \mathrm{O} \checkmark$ Lone pairs correct on O and both F atoms \checkmark	2	Must be 'dot-and-cross' circles for outer shells NOT needed IGNORE inner shells Non-bonding electrons of O do not need to be shown as pairs Non-bonding electrons of F do not need to be shown as pairs
		(ii)	Predicted bond angle 104-105 There are 2 bonded pairs and 2 lone pairs Lone pairs repel more than bonded pairs	3	ALLOW $103-105^{\circ}\left(103^{\circ}\right.$ is the actual bond angle) ALLOW responses equivalent to second marking point. e.g. There are 4 pairs of electrons and 2 of these are lone pairs ALLOW 'bonds' for 'bonded pairs' DO NOT ALLOW 'atoms repel' DO NOT ALLOW electrons repel ALLOW LP for 'lone pair' ALLOW BP for bonded pair ALLOW LP repel more if bonded pairs have already been mentioned

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 1. Mark Scheme

Question		Expected Answers	Marks	Additional Guidance
(c)	(i)	(At least) two $\mathbf{N H}_{3}$ molecules with correct dipole shown with at least one H with δ^{+}and one N with δ^{-} (Only) one hydrogen bond from N atom on one molecule to a H atom on another molecule \checkmark Lone pair shown on the N atom and hydrogen bond must hit the lone pair \checkmark	3	DO NOT ALLOW first mark for ammonia molecules with incorrect lone pairs DO NOT ALLOW first mark if $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{2}$ or NH is shown ALLOW hydrogen bond need not be labelled as long as it clear the bond type is different from the covalent $\mathrm{N}-\mathrm{H}$ bond ALLOW a line (i.e. looks like a covalent bond) as long as it is labelled 'hydrogen bond) ALLOW 2-D diagrams ALLOW two marks if water molecules are used. One awarded for a correct hydrogen bond and one for the involvement of lone pair
	(ii)	Liquid $\mathrm{H}_{2} \mathrm{O}$ is denser than solid \checkmark In solid state $\mathrm{H}_{2} \mathrm{O}$ molecules are held apart by hydrogen bonds OR ice has an open lattice \checkmark OR $\mathrm{H}_{2} \mathrm{O}$ has a relatively high boiling point OR melting point \checkmark (relatively strong) hydrogen bonds need to be broken OR a lot of energy is needed to overcome hydrogen bonds OR hydrogen bonds are strong \checkmark	2	ORA ALLOW ice floats for first mark ALLOW higher melting OR boiling point than expected DO NOT ALLOW $\mathrm{H}_{2} \mathrm{O}$ has a high melting / boiling point ALLOW other properties caused by hydrogen bonding not mentioned within the specification E.g. high surface tension - strong hydrogen bonds on the surface
		Total	13	

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 1. Mark Scheme
Mark Scheme

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 1. Mark Scheme

Mark Scheme

Question			Expected Answers	Marks	Additional Guidance
5	(a)	(i)	Potassium AND argon \checkmark	1	ALLOW K and Ar
		(ii)	They are arranged in increasing atomic number OR Neither would show properties OR trends of rest of group OR Neither would show properties OR trends of rest of period OR They are arranged by electron configuration \checkmark	1	ALLOW any correct property difference e.g. This would place a reactive metal in the same group as noble gases ALLOW they do not fit in with the rest of the group
	(b)	(i)	$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO} \checkmark$	1	ALLOW multiples. Correct species must be seen IGNORE state symbols
		(ii)	Fizzes OR bubbles OR gas produced OR effervescing \checkmark Mg dissolves OR Mg disappears OR a solution is formed	2	DO NOT ALLOW 'carbon dioxide gas produced' DO NOT ALLOW 'hydrogen produced' without 'gas' ALLOW 'it for Mg' IGNORE Mg reacts IGNORE temperature change IGNORE steam produced
		(iii)	Quicker OR more vigorous OR gets hotter	1	MUST be a comparison of a reaction observation, not just 'more reactive' ALLOW any comparison of greater rate including more bubbles etc. DO NOT ALLOW more gas produced

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 1. Mark Scheme
Mark Scheme

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 1. Mark Scheme
F321
Mark Scheme

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 1. Mark Scheme

Calculates correctly:
Mol of $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}=\frac{5.29}{211.6}=0.0250$
Calculates correctly:
Mol of gas $=5 / 2 \times 0.0250=0.0625 \checkmark$

Calculates correctly:
Volume of gas $=24.0 \times 0.0625=1.50 \mathrm{dm}^{3} \checkmark$

Mark Scheme

\square
3
ALLOW 0.025

ALLOW ECF for first answer $\times 2.5$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

ALLOW ECF for second answer $\times 24(.0)$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

DO NOT ALLOW ECF of first answer $\times 24(.0)$ (which gives 0.6(0) dm^{3}) as this has not measured the volume of any gas, simply
0.0250 mol of solid $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ converted into a gas
i.e. This answer would give one mark

ALLOW $1.5 \mathrm{dm}^{3}$

ALLOW ECF producing correct volume of NO_{2} only
i.e. $1.2(0) \mathrm{dm}^{3}$ would give two marks

OR
ALLOW ECF producing correct volume of O_{2} only i.e. $0.3(0) \mathrm{dm}^{3}$ would give two marks

