1) (a)		e people cannot digest lactose when they are adult. They could digest lactose in they were children.
		your knowledge of water potential to explain why these adults get diarrhoea when drink milk.
		(2 marks)
(b)	(i)	The equation shows the reaction catalysed by the enzyme lactase. Complete this equation.
		Lactose + Glucose +
		(2 marks)
(b)	(ii)	Name the type of chemical reaction shown in this equation.
		(1 mark)
(c)	Lact	ase is an enzyme. Lactose is a reducing sugar.
(c)	(i)	Describe how you could use the biuret test to distinguish a solution of the enzyme, lactase from a solution of lactose.
		(1 mark)
(c)	(ii)	Explain the result you would expect with the enzyme.
		(1 mark)

2)

The graph shows the effect of substrate concentration on the rate of an enzyme-controlled reaction.

Substrate concentration/arbitrary units

 (1) Describe what the graph shows about the effect of substrate concentration or rate of this enzyme-controlled reaction. 	
(2 m	arks
(Extra space)	
(a) (ii) What limits the rate of this reaction between points A and B? Give the evidence from the graph for this.	ence
(2 mar	rks)

(a)	(iii)	Suggest a reason for the shape of the curve between points \boldsymbol{C} and $\boldsymbol{D}.$	
			(1 mark)
(b)		ch a curve on the graph to show the rate of this reaction in the presence of petitive inhibitor.	
(c)		notrexate is a drug used in the treatment of cancer. It is a competitive inhets the enzyme folate reductase.	(1 mark) ibitor and
(c)	(i)	Explain how the drug lowers the rate of reaction controlled by folate red	luctase.
(c)	(ii)	Methotrexate only affects the rate of the reaction controlled by folate rec Explain why this drug does not affect other enzymes.	
2)			(1 mark)
3) The	diaore	am shows an epithelial cell from the small intestine.	
The	diagra	_	
	P•		
(a)	(i)	Y Name organelle Y.	
			(1 mark)
(a)	(ii)	There are large numbers of organelle \mathbf{Y} in this cell. Explain how these organelles help the cell to absorb the products of digestion.	
			(2 marks)

(b)	This diagram shows cell between points			ate the actual length of the now your working.
			Answe	rμι (2 marks
(c)	Coeliac disease is a structures labelled 2		an digestive system	. In coeliac disease, the
	Although people wi of amino acids in th		an digest proteins t	hey have low concentrations
	Explain why they ha	ave low concentration	ons of amino acids	in their blood.
				(2 marks)
1)				
	Students investigated the	he effect of different of	concentrations of sod	ium chloride solution on
	discs cut from an apple	e. They weighed each utions of different cor	disc and then put on centrations. They le	ne disc into each of a range ft the discs in the solutions
	centration of sodium chloride solution /mol dm ⁻³	Mass of disc at start/g	Mass of disc at end/g	Ratio of mass at start to mass at end
	chloride solution /mol dm ⁻³	start/g	end/g	to mass at end
	chloride solution /mol dm ⁻³ 0.00	start/g 16.1	end/g 17.2	to mass at end
	chloride solution /mol dm ⁻³ 0.00 0.15	16.1 19.1 24.3 20.2	end/g 17.2 20.2	0.94 0.95
	0.00 0.15 0.30 0.45 0.60	start/g 16.1 19.1 24.3 20.2 23.7	end/g 17.2 20.2 23.2 18.7 21.9	0.94 0.95 1.05 1.08
	0.00 0.15 0.30 0.45	16.1 19.1 24.3 20.2	end/g 17.2 20.2 23.2 18.7	0.94 0.95 1.05
	chloride solution /mol dm ⁻³ 0.00 0.15 0.30 0.45 0.60 0.75 (a) (i) Calculate the	16.1 19.1 24.3 20.2 23.7 14.9	end/g 17.2 20.2 23.2 18.7 21.9 13.7 t the start to the mass um chloride solution.	0.94 0.95 1.05 1.08
	chloride solution /mol dm ⁻³ 0.00 0.15 0.30 0.45 0.60 0.75 (a) (i) Calculate the	start/g 16.1 19.1 24.3 20.2 23.7 14.9 the ratio of the mass and an arrangement of the mass and arrangement of the mass arran	end/g 17.2 20.2 23.2 18.7 21.9 13.7 t the start to the mass um chloride solution.	0.94 0.95 1.05 1.08
	chloride solution /mol dm ⁻³ 0.00 0.15 0.30 0.45 0.60 0.75 (a) (i) Calculate the placed in the solution of the solutio	start/g 16.1 19.1 24.3 20.2 23.7 14.9 the ratio of the mass and the 0.60 mol dm ⁻³ soding soding so gave their results as	end/g 17.2 20.2 23.2 18.7 21.9 13.7 t the start to the mass um chloride solution. Answ	0.94 0.95 1.05 1.08 1.09 at the end for the disc
	chloride solution /mol dm ⁻³ 0.00 0.15 0.30 0.45 0.60 0.75 (a) (i) Calculate the placed in the placed in the results as a	start/g 16.1 19.1 24.3 20.2 23.7 14.9 the ratio of the mass and the 0.60 mol dm ⁻³ sodires as ratio?	end/g 17.2 20.2 23.2 18.7 21.9 13.7 t the start to the mass um chloride solution. Answ	1.09 to mass at end 0.94 0.95 1.05 1.08 1.09 at the end for the disc (1 mark)

CHERRY HILL TUITION AQA BIOLOGY AS PAPER 1 (U1:1/3/4/5.JA10+U2:1/7JA11)

(iii) The students were advised that they could improve the reliability of their results by taking additional readings at the same concentrations of sodium chloride. Explain how.	by	(iii)	(a)
(2 mark			
(i) The students used a graph of their results to find the sodium chloride solution with the same water potential as the apple tissue. Describe how they did this.		(i)	(b)
(2 mark	••••		
(ii) The students were advised that they could improve their graph by taking additional readings. Explain how.		(ii)	(b)
(2 marks			

5)

(a) The table shows some substances found in cells. Complete the table to show the properties of these substances. Put a tick in the box if the statement is correct.

	Substance				
Statement	Starch	Glycogen	Deoxyribose	DNA helicase	
Substance contains only the elements carbon, hydrogen and oxygen					
Substance is made from amino acid monomers					
Substance is found in both animal cells and plant cells					

(4 marks)

(b) The diagram shows two molecules of β -glucose.

On the diagram, draw a box around the atoms that are removed when the two β -glucose molecules are joined by condensation.

(2 marks)

CHERRY HILL TUITION AQA BIOLOGY AS PAPER 1 (U1:1/3/4/5.JA10+U2:1/7JA11)

(c) (i)	Hydrogen bonds are important in cellulose molecules. Explain why.	
	(2 mark	 (S ₎
(c) (ii)	A starch molecule has a spiral shape. Explain why this shape is important to its function in cells.	
	(1 mark	 ()

Yeast is a single-celled eukaryotic organism. When yeast cells are grown, each cell forms a bud. This bud grows into a new cell. This allows yeast to multiply because the parent cell is still alive and the new cell has been formed.

Scientists grew yeast cells in a culture. They counted the number of cells present and measured the total concentration of DNA in the culture over a period of 6 hours. Their results are shown in the graph.

CHERRY HILL TUITION AQA BIOLOGY AS PAPER 1 (U1:1/3/4/5.JA10+U2:1/7JA11)

(a)	Use your knowledge of the cell cycle to explain the shape of the curve for the nu of yeast cells	ımber
(a) (i)	between 1 and 2 hours	
	(1	1 1 mark)
(a) (ii)	between 3 and 4 hours.	
	(**************************************	 1 mark)
(b)	Use the curve for the concentration of DNA to find the length of a cell cycle in the yeast cells. Explain how you arrived at your answer.	ese
	Length of cell cycle	
	Explanation	
	(3	marks)
7 (a)	Many different substances enter and leave a cell by crossing its cell surface mer Describe how substances can cross a cell surface membrane.	nbrane.
	•	marks)