| 1)
(a) | | e people cannot digest lactose when they are adult. They could digest lactose in they were children. | |-----------|------|---| | | | your knowledge of water potential to explain why these adults get diarrhoea when drink milk. | (2 marks) | | (b) | (i) | The equation shows the reaction catalysed by the enzyme lactase. Complete this equation. | | | | Lactose + Glucose + | | | | (2 marks) | | (b) | (ii) | Name the type of chemical reaction shown in this equation. | | | | (1 mark) | | (c) | Lact | ase is an enzyme. Lactose is a reducing sugar. | | (c) | (i) | Describe how you could use the biuret test to distinguish a solution of the enzyme, lactase from a solution of lactose. | | | | | | | | (1 mark) | | (c) | (ii) | Explain the result you would expect with the enzyme. | | | | (1 mark) | 2) The graph shows the effect of substrate concentration on the rate of an enzyme-controlled reaction. Substrate concentration/arbitrary units | (1) Describe what the graph shows about the effect of substrate concentration or
rate of this enzyme-controlled reaction. | | |---|------| | | | | | | | | | | (2 m | arks | | (Extra space) | | | | | | (a) (ii) What limits the rate of this reaction between points A and B? Give the evidence from the graph for this. | ence | | (2 mar | rks) | | (a) | (iii) | Suggest a reason for the shape of the curve between points \boldsymbol{C} and $\boldsymbol{D}.$ | | |-----------|--------|---|---------------------| | | | | | | | | | (1 mark) | | (b) | | ch a curve on the graph to show the rate of this reaction in the presence of petitive inhibitor. | | | (c) | | notrexate is a drug used in the treatment of cancer. It is a competitive inhets the enzyme folate reductase. | (1 mark) ibitor and | | (c) | (i) | Explain how the drug lowers the rate of reaction controlled by folate red | luctase. | | (c) | (ii) | Methotrexate only affects the rate of the reaction controlled by folate rec
Explain why this drug does not affect other enzymes. | | | 2) | | | (1 mark) | | 3)
The | diaore | am shows an epithelial cell from the small intestine. | | | The | diagra | _ | | | | P• | | | | (a) | (i) | Y Name organelle Y. | | | | | | (1 mark) | | (a) | (ii) | There are large numbers of organelle \mathbf{Y} in this cell. Explain how these organelles help the cell to absorb the products of digestion. | | | | | | (2 marks) | | (b) | This diagram shows cell between points | | | ate the actual length of the now your working. | |------------|---|--|--|---| | | | | Answe | rμι
(2 marks | | (c) | Coeliac disease is a structures labelled 2 | | an digestive system | . In coeliac disease, the | | | Although people wi
of amino acids in th | | an digest proteins t | hey have low concentrations | | | Explain why they ha | ave low concentration | ons of amino acids | in their blood. | | | | | | (2 marks) | | 1) | | | | | | | Students investigated the | he effect of different of | concentrations of sod | ium chloride solution on | | | discs cut from an apple | e. They weighed each
utions of different cor | disc and then put on centrations. They le | ne disc into each of a range ft the discs in the solutions | | | | | | | | | centration of sodium
chloride solution
/mol dm ⁻³ | Mass of disc at start/g | Mass of disc at end/g | Ratio of mass at start
to mass at end | | | | | | | | | chloride solution
/mol dm ⁻³ | start/g | end/g | to mass at end | | | chloride solution
/mol dm ⁻³
0.00 | start/g
16.1 | end/g
17.2 | to mass at end | | | chloride solution
/mol dm ⁻³
0.00
0.15 | 16.1
19.1
24.3
20.2 | end/g
17.2
20.2 | 0.94
0.95 | | | 0.00
0.15
0.30
0.45
0.60 | start/g 16.1 19.1 24.3 20.2 23.7 | end/g
17.2
20.2
23.2
18.7
21.9 | 0.94
0.95
1.05
1.08 | | | 0.00
0.15
0.30
0.45 | 16.1
19.1
24.3
20.2 | end/g
17.2
20.2
23.2
18.7 | 0.94
0.95
1.05 | | | chloride solution /mol dm ⁻³ 0.00 0.15 0.30 0.45 0.60 0.75 (a) (i) Calculate the | 16.1
19.1
24.3
20.2
23.7
14.9 | end/g 17.2 20.2 23.2 18.7 21.9 13.7 t the start to the mass um chloride solution. | 0.94
0.95
1.05
1.08 | | | chloride solution /mol dm ⁻³ 0.00 0.15 0.30 0.45 0.60 0.75 (a) (i) Calculate the | start/g 16.1 19.1 24.3 20.2 23.7 14.9 the ratio of the mass and an arrangement of the mass and arran | end/g 17.2 20.2 23.2 18.7 21.9 13.7 t the start to the mass um chloride solution. | 0.94
0.95
1.05
1.08 | | | chloride solution /mol dm ⁻³ 0.00 0.15 0.30 0.45 0.60 0.75 (a) (i) Calculate the placed in the solution of solutio | start/g 16.1 19.1 24.3 20.2 23.7 14.9 the ratio of the mass and the 0.60 mol dm ⁻³ soding soding so gave their results as | end/g 17.2 20.2 23.2 18.7 21.9 13.7 t the start to the mass um chloride solution. Answ | 0.94 0.95 1.05 1.08 1.09 at the end for the disc | | | chloride solution /mol dm ⁻³ 0.00 0.15 0.30 0.45 0.60 0.75 (a) (i) Calculate the placed in the placed in the results as a | start/g 16.1 19.1 24.3 20.2 23.7 14.9 the ratio of the mass and the 0.60 mol dm ⁻³ sodires as ratio? | end/g 17.2 20.2 23.2 18.7 21.9 13.7 t the start to the mass um chloride solution. Answ | 1.09 to mass at end 0.94 0.95 1.05 1.08 1.09 at the end for the disc (1 mark) | ## CHERRY HILL TUITION AQA BIOLOGY AS PAPER 1 (U1:1/3/4/5.JA10+U2:1/7JA11) | (iii) The students were advised that they could improve the reliability of their results
by taking additional readings at the same concentrations of sodium chloride.
Explain how. | by | (iii) | (a) | |--|------|-------|-----| | (2 mark | | | | | (i) The students used a graph of their results to find the sodium chloride solution with the same water potential as the apple tissue. Describe how they did this. | | (i) | (b) | | (2 mark | •••• | | | | (ii) The students were advised that they could improve their graph by taking additional readings. Explain how. | | (ii) | (b) | | (2 marks | | | | 5) (a) The table shows some substances found in cells. Complete the table to show the properties of these substances. Put a tick in the box if the statement is correct. | | Substance | | | | | |--|-----------|----------|-------------|-----------------|--| | Statement | Starch | Glycogen | Deoxyribose | DNA
helicase | | | Substance contains only the elements carbon, hydrogen and oxygen | | | | | | | Substance is made from amino acid monomers | | | | | | | Substance is found in both animal cells and plant cells | | | | | | (4 marks) (b) The diagram shows two molecules of β -glucose. On the diagram, draw a box around the atoms that are removed when the two β -glucose molecules are joined by condensation. (2 marks) ## CHERRY HILL TUITION AQA BIOLOGY AS PAPER 1 (U1:1/3/4/5.JA10+U2:1/7JA11) | (c) (i) | Hydrogen bonds are important in cellulose molecules. Explain why. | | |----------|---|---------------------| | | (2 mark |
(S ₎ | | (c) (ii) | A starch molecule has a spiral shape. Explain why this shape is important to its function in cells. | | | | (1 mark |
() | Yeast is a single-celled eukaryotic organism. When yeast cells are grown, each cell forms a bud. This bud grows into a new cell. This allows yeast to multiply because the parent cell is still alive and the new cell has been formed. Scientists grew yeast cells in a culture. They counted the number of cells present and measured the total concentration of DNA in the culture over a period of 6 hours. Their results are shown in the graph. ## CHERRY HILL TUITION AQA BIOLOGY AS PAPER 1 (U1:1/3/4/5.JA10+U2:1/7JA11) | (a) | Use your knowledge of the cell cycle to explain the shape of the curve for the nu of yeast cells | ımber | |----------|--|--------------| | (a) (i) | between 1 and 2 hours | | | | (1 | 1
1 mark) | | (a) (ii) | between 3 and 4 hours. | | | | (************************************** |
1 mark) | | (b) | Use the curve for the concentration of DNA to find the length of a cell cycle in the yeast cells. Explain how you arrived at your answer. | ese | | | Length of cell cycle | | | | Explanation | | | | (3 | marks) | | | | | | 7 (a) | Many different substances enter and leave a cell by crossing its cell surface mer Describe how substances can cross a cell surface membrane. | nbrane. | | | • | marks) | | | | |