Answer all questions.

1 This question involves the use of kinetic data to deduce the order of a reaction and calculate a value for a rate constant.

The data in **Table 1** were obtained in a series of experiments on the rate of the reaction between compounds **A** and **B** at a constant temperature.

Table 1

Experiment	Initial concentration of A / mol dm ⁻³	Initial concentration of B / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.12	0.26	2.10×10^{-4}
2	0.36	0.26	1.89×10^{-3}
3	0.72	0.13	3.78×10^{-3}

0 1 . 1	Show how these data can be used to deduce the rate expression for the real between A and B .	action
		marks]

The data in **Table 2** were obtained in two experiments on the rate of the reaction between compounds **C** and **D** at a constant temperature.

Table 2

Experiment	Initial concentration of C / mol dm ⁻³	Initial concentration of D/ mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
4	1.9×10^{-2}	3.5×10^{-2}	7.2×10^{-4}
5	3.6 × 10 ⁻²	5.4 × 10 ⁻²	To be calculated

$$rate = k[\mathbf{C}]^2[\mathbf{D}]$$

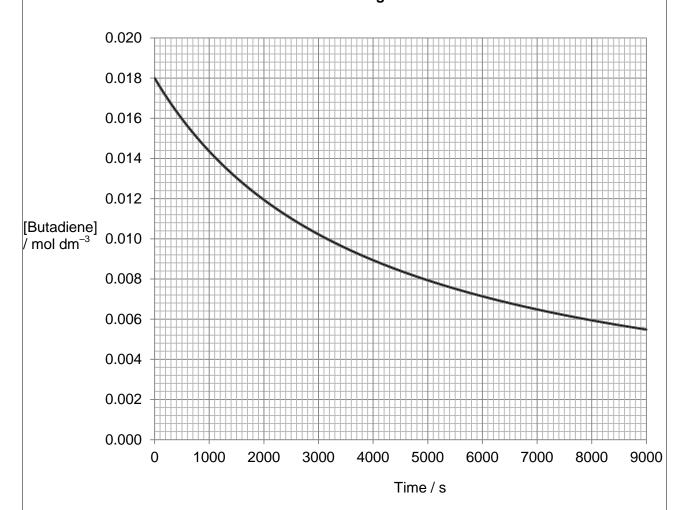
0	1	2	Use the data from experiment $\bf 4$ to calculate a value for the rate constant, $\bf k$, at the	his
			temperature. Deduce the units of <i>k</i> .	
			[3 mar	·ks1

k = _____ Units = ____

[1 mark]

Initial rate = $\frac{1}{3}$ mol dm⁻³ s⁻¹

Question 1 continues on the next page


0 1 . 4	The rate equation for a reaction is		
	$rate = k[\mathbf{E}]$		
	Explain qualitatively why doubling the temperature has a much greater effective the rate of the reaction than doubling the concentration of E .		
0 1 . 5	A slow reaction has a rate constant $k = 6.51 \times 10^{-3} \text{ mol}^{-1} \text{ dm}^3$ at 300 K.		
	Use the equation $\ln k = \ln A - E_a/RT$ to calculate a value, in kJ mol ⁻¹ , for	the	
	activation energy of this reaction.		
	The constant $A = 2.57 \times 10^{10} \text{ mol}^{-1} \text{ dm}^3$. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.		
	The gas constant $N = 0.510 \text{K}^{-1}$ mor .	[2 marks]	
	Activation energy =		

2 Butadiene dimerises according to the equation

$$2C_4H_6 \longrightarrow C_8H_{12}$$

The kinetics of the dimerisation are studied and the graph of the concentration of a sample of butadiene is plotted against time. The graph is shown in **Figure 1**.

Figure 1

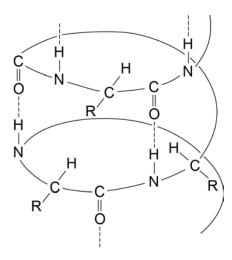
0 2 • **1** Draw a tangent to the curve when the concentration of butadiene is 0.0120 mol dm⁻³.

[1 mark]

0 2 . 2	The initial rate of reaction in this experiment has the value $4.57 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1}$.	
	Use this value, together with a rate obtained from your tangent, to justify order of the reaction is 2 with respect to butadiene.	that the [5 marks]
	Turn over for the next question	

3	Isooctane (C_8H_{18}) is the common name for the branched-chain hydrocarbon that burns smoothly in car engines. The skeletal formula of isooctane is shown in Figure 2 .					
		Fi	gure 2			
				`		
0 3 . 1	Give the IUPAC r	ame for isooct	ane.			[1 mark]
0 3 . 2	Deduce the numb	er of peaks in	the ¹³ C NMR	spectrum of i	sooctane.	[1 mark]
Only one a	nswer is allowed.					
Completely	fill in the circle alor	ngside the app	oropriate ansv	wer.		
CORRECT MET	HOD WRONG N	METHODS 🕸 🥨				
If you want	to change your ans	swer you must	cross out yo	ur original ans	wer as shown	ı. 💌
	to return to an ansv					
	5	0				
	6	0				
	7	0				
	8	0				

0 3 . 3	Isooctane can be formed, together with propene and ethene, in a reaction in one molecule of an alkane that contains 20 carbon atoms is cracked.	n which
	Using molecular formulas, write an equation for this reaction. [1	l mark]
0 3 . 4	How do the products of the reaction in Question 3.3 show that the reaction is example of thermal cracking?	s an I mark]
0 3 . 5	Deduce the number of monochloro isomers formed by isooctane. Draw the structure of the monochloro isomer that exists as a pair of optical isomers. [2]	marks]
	Number of monochloro isomers	
	Structure	
0 3 . 6	An isomer of isooctane reacts with chlorine to form only one monochloro compound.	
	Draw the skeletal formula of this monochloro compound.	l mark]
	Question 3 continues on the next page	


0 3 . 7	A sample of a monochlorooctane is obtained from a comet. The chlorine in the monochlorooctane contains the isotopes 35 Cl and 37 Cl in the ratio 1.5 : 1.0 Calculate the $M_{\rm r}$ of this monochlorooctane. [2 marks]
	$M_{\rm r} = $
0 3 . 8	Isooctane reacts with an excess of chlorine to form a mixture of chlorinated compounds. One of these compounds contains 24.6% carbon and 2.56% hydrogen by mass. Calculate the molecular formula of this compound. [3 marks]
	Molecular formula =

4	Alcohol A (CH ₃) ₂ CHCH(OH)CH ₃ undergoes reactions separately with acidified potassium dichromate(VI) and with concentrated sulfuric acid.		
0 4 . 1	Deduce the IUPAC name for alcohol A .	[1 mark]	
0 4 . 2	Draw the structure of the organic product, B , reaction with acidified potassium dichromate(
0 4 . 3	Two isomeric alkenes, C and D , are formed with concentrated sulfuric acid. Name the mechanism for this dehydration real		
0 4 . 4	Draw the structure of each isomer.	[2 marks]	
	Isomer C	Isomer D	

0 4 . 5	Name the type of structural isomerism shown by C and D .	[1 mark]
0 4 . 6	List alcohol A , product B and isomer C in order of increasing boiling point.	[1 mark]
0 4 . 7	Draw the structure of the isomer of A that is not oxidised by acidified potassium dichromate(VI).	[1 mark]
0 4 . 8	Draw the structure of the isomer of A that cannot be dehydrated to form a by reaction with concentrated sulfuric acid.	
		[1 mark]
	Turn over for the next question	

Figure 3 shows a simplified representation of the arrangement of some amino acids in a portion of a protein structure in the form of an α -helix.

Figure 3

0 5 . 1 Name the type of protein structure in Figure 3.

[1 mark]

0 5 . 2 Explain the origin of the interaction represented by the dotted lines in Figure 3. [4 marks]

The tripeptide shown in **Figure 4** is formed from the amino acids glycine, threonine and lysine.

Figure 4

0 6 . 1 Draw a separate circle around **each** of the asymmetric carbon atoms in the tripeptide in **Figure 4**.

[1 mark]

0 6 . 2 Draw the zwitterion of glycine.

[1 mark]

0 6 . **3** Draw the structure of the species formed when glycine reacts with an excess of bromomethane.

[1 mark]

0 6 . 4 Deduce the IUPAC name of threonine.

[1 mark]

0 6 . 5 Draw the structure of the species formed by lysine at low pH.

[1 mark]

7	Repeating units of two polymers, P and Q , are shown in Figure 5 .
	Figure 5
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	P Q
0 7 . 1	Draw the structure of the monomer used to form polymer P . Name the type of polymerisation involved. [2 marks]
	Monomer
	Type of polymerisation
0 7 . 2	Draw the structures of two compounds that react together to form polymer Q . [2 marks]
	Structure of compound 1
	Structure of compound 2

0 7 . 3	Suggest an environmental advantage of polymer Q over polymer P . Justify your answer. Advantage Justification	[3 marks]
	Turn over for the next question	

8 The anticancer drug cisplatin operates by reacting with the guanine in DNA.

Figure 6 shows a small part of a single strand of DNA. Some lone pairs are shown.

Figure 6

0 8 . 1 The DNA chain continues with bonds at X and Y.

State the name of the sugar molecule that is attached to the bond at X.

[1 mark]

0 8 . 2	Messenger RNA is synthesis The bases in one strand of D		
	Figure 7 shows two bases us	sed in RNA.	
		Figure 7	
	H H N N N N N N N N N N N N N N N N N N	O N N N O	[rest of molecule]
	Base A	Base B	
	Suggest which of the bases a messenger RNA is synthesis Explain how the base that yo	ed.	
	Question 8 cor	ntinues on the next page	

08.3	Cisplatin works because one of the atoms on guanine can form a co-ordinate bond with platinum, replacing one of the ammonia or chloride ligands. Another atom on another guanine can also form a co-ordinate bond with the same platinum by replacing another ligand. On Figure 6 , draw a ring round an atom in guanine that is likely to bond
	to platinum. [1 mark]
0 8 . 4	An adverse effect of cisplatin is that it also prevents normal healthy cells from replicating.
	Suggest one way in which cisplatin can be administered so that this side effect is minimised.
	[1 mark]

9 1,4-diaminobenzene is an important intermediate in the production of polymers such as Kevlar and also of polyurethanes, used in making foam seating.

A possible synthesis of 1,4-diaminobenzene from phenylamine is shown in **Figure 8**.

Figure 8

0 9 . 1 A suitable reagent for step 1 is CH₃COCI

Name and draw a mechanism for the reaction in step 1.

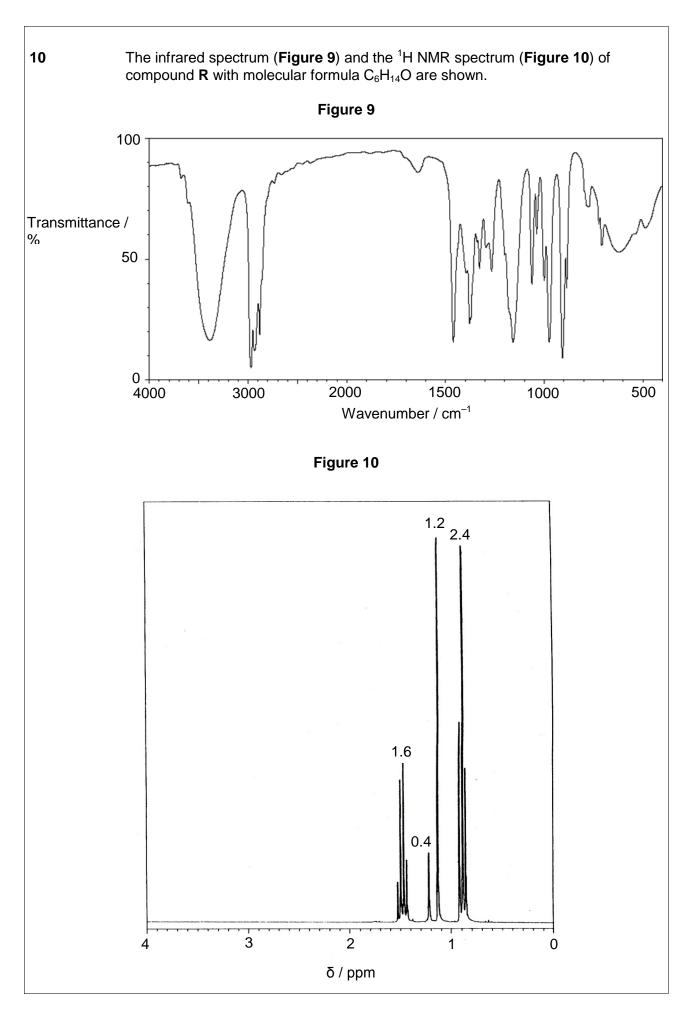
[5 marks]

Name of mechanism	

Mechanism

0 9 . 2	The product of step 1 was purified by recrystallisation as follows.
	The crude product was dissolved in the minimum quantity of hot water and the hot solution was filtered through a hot filter funnel into a conical flask. This filtration removed any insoluble impurities. The flask was left to cool to room temperature . The crystals formed were filtered off using a Buchner funnel and a clean cork was used to compress the crystals in the funnel . A little cold water was then poured through the crystals .
	After a few minutes, the crystals were removed from the funnel and weighed. A small sample was then used to find the melting point.
	Give reasons for each of the following practical steps. [4 marks]
	The minimum quantity of hot water was used
	The flask was cooled to room temperature before the crystals were filtered off
	The crystals were compressed in the funnel
	A little cold water was poured through the crystals
	Question 9 continues on the next page

0	9	3	The melting point of the sample in Question 9.2 was found to be slightly lower than
			a data-book value.
			Suggest the most likely impurity to have caused this low value and an


Suggest the most likely impurity to have caused this low value and an improvement to the method so that a more accurate value for the melting point would be obtained.

[2 marks]

Figure 8 is repeated here to help you answer the following questions.

Figure 8

0 9 . 4	In an experiment starting with 5.05 g of phenylamine, 4.82 g of purified prowere obtained in step 1.	oduct
	Calculate the percentage yield in this reaction. Give your answer to the appropriate number of significant figures.	[3 marks]
	Percentage yield =	%
0 9 . 5		ted
	sulfuric acid, which react together to form a reactive intermediate. Write an equation for the reaction of this intermediate in step 2.	[1 mark]
0 9 . 6	Name a mechanism for the reaction in step 2.	[1 mark]
0 9 . 7	Suggest the type of reaction occurring in step 3.	[1 mark]
09.8	Identify the reagents used in step 4.	[1 mark]

1 0	The relative integration values for the NMR peaks are shown on Figure 10 .	
	Deduce the structure of compound R by analysing Figure 9 and Figure 10 . Explain each stage in your deductions.	
	Use Table A and Table B on the Data Sheet.	
	[8 ma	rks]
	Turn over for the next question	

11	Butanone is reduced in a two-step reaction using NaBH ₄ followed by dilute hydrochloric acid.
1 1 . 1	Write an overall equation for the reduction of butanone using [H] to represent the reductant. [1 mark]
1 1 . 2	By considering the mechanism of the reaction, explain why the product has no effect on plane polarised light. [6 marks]

12	But-1-ene reacts with a reagent of the form HY to form a saturated compound.
1 2 . 1	Suggest a reagent of the form HY which reacts with but-1-ene. [1 mark]
1 2 . 2	Name and draw a mechanism for the reaction in Question 12.1. [5 marks]
	Name of mechanism
	Mechanism
1 2 . 3	Explain how three isomeric products are formed when HY reacts with but-1-ene. [3 marks]
	END OF CHESTIONS
	END OF QUESTIONS