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Abstract

We develop a test for weak instruments in linear instrumental variables regression
that is robust to heteroskedasticity, autocorrelation, and clustering. Our test statistic
is a scaled non-robust first stage F statistic. Instruments are considered weak when
the Two-Stage Least Squares (TSLS) or the Limited Information Maximum Likelihood
(LIML) Nagar bias is large relative to a benchmark. We apply our procedures to the
estimation of the Elasticity of Intertemporal Substitution, where our test cannot reject
the null of weak instruments in a larger number of countries than the test proposed in
Stock and Yogo (2005).

Keywords: F Statistic; Heteroskedasticity; Autocorrelation; Clustered; Elasticity
of Intertemporal Substitution.
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1. INTRODUCTION

This paper proposes a simple test for weak instruments that is robust to heteroskedastic-

ity, serial correlation, and clustering. Staiger and Stock (1997) and Stock and Yogo (2005)

developed widely used tests for weak instruments under the assumption of conditionally

homoskedastic serially uncorrelated model errors. However, applications with heteroskedas-

ticity, time series autocorrelation, and clustered panel data are common. Our proposed

test provides empirical researchers with a new tool to assess instrument strength for those

applications.

The practical relevance of heteroskedasticity in linear instrumental variable (IV) regression

has been by highlighted before by Antoine and Lavergne (2012), Chao and Newey (2012)

and Hausman (2012). We show, more generally, that departures from the conditionally ho-

moskedastic serially uncorrelated framework affect the weak instrument asymptotic distri-

bution of both the Two-Stage Least Squares (TSLS) and the Limited Information Maximum

Likelihood (LIML) estimators. Consequently, heteroskedasticity, autocorrelation, and/or

clustering can further bias estimators and distort test sizes when instruments are potentially

weak. At the same time, the first stage may falsely indicate that instruments are strong.

Under strong instruments, both TSLS and LIML are asymptotically unbiased, while such

is generally not the case when instruments are weak. We follow the standard Nagar (1959)

methodology to derive a tractable proxy for the asymptotic estimator bias that is defined for

both TSLS and LIML. Our procedure tests the null hypothesis that the Nagar bias is large

relative to a “worst-case” benchmark. Our benchmark coincides with the Ordinary Least

Squares (OLS) bias benchmark when the model errors are conditionally homoskedastic and

serially uncorrelated, but differs otherwise.

Our proposed test statistic, which we call the effective F statistic, is a scaled version of the

non-robust first stage F statistic. The null hypothesis for weak instruments is rejected for
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large values of the effective F. The critical values depend on an estimate of the covariance

matrix of the OLS reduced form regression coefficients, and on the covariance matrix of the

reduced form errors, which can be estimated using standard procedures.

We consider two different testing procedures, generalized and simplified; both are asymp-

totically valid. Critical values for both procedures can be calculated either by Monte-Carlo

methods, or by a curve-fitting methodology by Patnaik (1949). The generalized testing pro-

cedure applies to both TSLS and LIML, and has increased power, but is computationally

more demanding. In contrast, the simplified procedure applies only to TSLS. The simplified

procedure is conservative, because it protects against the worst type of heteroskedasticity,

serial correlation, and/or clustering in the second stage.

Empirical researchers frequently report the robust F statistic as a simple way of adjusting the

Staiger and Stock (1997) and Stock and Yogo (2005) pre-tests for heteroskedasticity, serial

correlation, and clustering, and compare them to the homoskedastic critical values. To the

best of our knowledge, there is no theoretical or analytical support for this practice, as

cautioned in Baum et al. (2007). Our proposed procedures adjust the critical values. While

our proposed test statistic corresponds to the robust F statistic in the just identified case, it

differs in the over-identified case.

Our baseline implementation tests the null hypothesis that the Nagar bias exceeds 10% of

a“worst-case” bias with a size of 5%. The simplified procedure for TSLS has critical values

between 11 and 23.1 that depend only on the covariance matrix of the first stage reduced

form coefficients. Thus a simple, asymptotically valid rule of thumb is available for TSLS

that rejects when the effective F is greater than 23.1.

We apply weak instrument pre-tests to a well-known empirical example, the IV estimation

of the Elasticity of Intertemporal Substitution (EIS) (Yogo, 2004; Campbell, 2003). Our

empirical results are consistent with Yogo (2004)’s finding that the EIS is small and close

to zero. However, for several countries in our sample, conditionally homoskedastic serially
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uncorrelated pre-tests indicate strong instruments, while our proposed test cannot reject the

null hypothesis of weak instruments.

There is a large literature on inference when IVs are weak; see Stock et al. (2002) and

Andrews and Stock (2006) for overviews. Our paper is closest to Staiger and Stock (1997)

and Stock and Yogo (2005). Zhan (2010) provides another interesting approach, which,

unlike ours, proposes to test the null hypothesis of strong instruments. Bun and de Haan

(2010) point out the invalidity of pre-tests based on the first stage F statistic in two particular

examples of non-homoskedastic and serially correlated errors, but do not provide a valid pre-

test.

Robust methods for inference about the coefficients of a single endogenous regressor when

IVs are weak and errors are heteroskedastic and/or serially correlated are also available

(Andrews and Stock, 2006; Kleibergen, 2007). A pre-test for weak instruments followed by

standard inference procedures can be less computationally demanding, and the use of this

two-stage decision rule is widespread because of its simplicity. We therefore view this paper

as complementary to robust inference methods.

It is well-known that pre-tests can induce uniformity problems (Leeb and Poetscher, 2005;

Guggenberger, 2010a,b). However, Stock and Yogo (2005) have shown that in the condition-

ally homoskedastic and serially uncorrelated case the first stage F statistic can be used to

control the Wald test size distortion. In this case, uniformity problems are therefore not a

first order concern.

The rest of the paper is organized as follows. Section 2 introduces the model, and presents

the generalized and simplified testing procedures. Section 3 derives asymptotic distributions,

and shows that conditional heteroskedasticity and serial correlation can effectively weaken

instruments in an illustrative example. Section 4 derives the expressions for the TSLS and

LIML Nagar biases, and describes the test statistic and critical values. Section 5 discusses

the implementation of the critical values by Monte Carlo simulation and Patnaik (1949)’s
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methodology. Section 6 applies the pre-testing procedure to the IV estimation of the EIS.

Section 7 concludes. All proofs are collected in Appendix A.

2. MODEL AND SUMMARY OF TESTING PROCEDURE

2.1 Model and Assumptions

We consider a linear IV model in reduced form with one endogenous regressor and K instru-

ments

y = ZΠβ + v1 (1)

Y = ZΠ + v2 (2)

The structural parameter of interest is β ∈ R, while Π ∈ RK denotes the unknown first

stage parameter vector. The sample size is S and the econometrician observes the data set

{ys, Ys,Zs}S
s=1. We denote observations of the outcome variable, the endogenous regressor,

and the vector of instruments by ys, Ys and Zs, respectively. The unobserved reduced form

errors have realizations vjs, j ∈ {1, 2}. We stack the realized variables in matrices y ∈ RS,

Z ∈ RS×K , and vj ∈ RS, j ∈ {1, 2}.

Our analysis extends straightforwardly to a model with additional exogenous regressors. In

the presence of additional exogenous regressors, TSLS and LIML estimators are unchanged if

we replace all variables by their projection errors onto those exogenous regressors. TSLS and

LIML are also invariant to normalizing the instruments to be orthonormal. We can therefore

assume without loss of generality that there are no additional exogenous regressors, and that

Z′Z/S = IK . When implementing the pre-test, an applied researcher needs to normalize the

data.

We model weak instruments by assuming that the IV first stage relation is local to zero,
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following the modeling strategy in Staiger and Stock (1997).

Assumption LΠ. (Local to Zero) Π = ΠS = C/
√
S, where C is a fixed vector C ∈ RK .

Additional high-level assumptions allow us to derive asymptotic distributions for IV estima-

tors and F statistics. TSLS and LIML estimators and first stage F statistics depend on the

statistics Z′vj/
√
S, and estimates of the covariance matrices W and Ω as defined below.

Assumption HL. (High Level) The following limits hold as S → ∞.

1.




Z′v1/
√
S

Z′v2/
√
S


 d→ N2K(0,W) for some positive definite W =




W1 W12

W′
12 W2




2. [v1,v2]
′[v1,v2]/S

p→ Ω for some positive definite Ω ≡




ω2
1 ω12

ω12 ω2
2




3. There exists a sequence of positive definite estimates {Ŵ(S)}, measurable with respect

to {ys, Ys,Zs}S
s=1, such that Ŵ(S)

p→ W as S → ∞

Assumption HL is satisfied under various primitive conditions on the joint distribution of

(Z,v1,v2); see Supplementary Materials C.2 for examples. Assumption HL.1 is satisfied

as long as a Central Limit Theorem holds for Z′vj/
√
S. Assumption HL.2 holds under a

Weak Law of Large Numbers for [v1,v2]
′[v1,v2]/S. Assumption HL.3 assumes that we can

consistently estimate the covariance matrix W from the observable variables.

Assumption HL allows for a general form of W, similarly to the models in Müller (2011)

and Mikusheva (2010). This is our key generalization from the model in Staiger and Stock

(1997), who require W to have the form Ω⊗IK . The Kronecker form arises naturally only in

the context of a conditionally homoskedastic serially uncorrelated model. Our generalization

is therefore relevant for practitioners working with heteroskedastic, time series, or panel data,

and it is consequential for econometric practice.
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2.2 Implementing the Testing Procedure

2.2.1 Generalized Test

The generalized testing procedure can be implemented in four simple steps. When rejecting

the null, the empirical researcher can conclude that the estimator Nagar bias is small relative

to the benchmark. Under the null hypothesis, the Nagar bias of TSLS or LIML is greater

than a fraction τ of the benchmark. Critical values for the effective F statistic depend on

the desired threshold τ , the desired level of significance α, and estimates for the matrices

Ŵ, Ω̂. Critical values also vary between TSLS and LIML. In our numerical results, we focus

on τ = 10% and α = 5%.

1. If there are additional exogenous regressors, replace all variables by their projection

residuals onto those exogenous regressors. Normalize instruments to be orthonormal.

2. Obtain Ŵ as the estimate for the asymptotic covariance matrix of the reduced form

OLS coefficients. Standard statistical packages estimate this matrix (divided by the

sample size S) under different distributional assumptions. For cross-sectionally het-

eroskedastic applications, use a heteroskedasticity robust estimate; for time series ap-

plications, use a heteroskedasticity and autocorrelation consistent (HAC) estimate; and

for panel data applications, use a “clustered” estimate.

3. Compute the test statistic, the Effective F Statistic

F̂eff ≡ 1

S

Y′ZZ′Y

tr
(
Ŵ2

) (3)

where tr(·) denotes the trace operator.
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4. Estimate the effective degrees of freedom

K̂eff ≡

[
tr
(
Ŵ2

) ]2
(1 + 2x)

tr
(
Ŵ′

2Ŵ2

)
+ 2xtr

(
Ŵ2

)
max eval(Ŵ2)

(4)

where x = Be(Ŵ, Ω̂)/τ for e ∈ {TSLS,LIML} (5)

Here, max eval(Ŵ2) denotes the maximum eigenvalue of the lower diagonal K × K

block of the matrix Ŵ. The function Be(Ŵ, Ω̂) is closely related to the supremum of

the Nagar bias relative to the benchmark; see Theorem 1.2. The numerical implemen-

tation of Be(Ŵ, Ω̂) is discussed in Remark 5, Theorem 1. A fast numerical MATLAB

routine is available for the function Be(Ŵ, Ω̂).

The generalized test rejects the null hypothesis of weak instruments when F̂eff exceeds

a critical value that can be obtained by either of the following procedures:

a) Monte Carlo methods, as described in Section 5;

b) Patnaik (1949)’s curve-fitting methodology; Patnaik critical values obtain as the

upper α quantile of χ2
bKeff

(
xK̂eff

)
/K̂eff , where χ2

bKeff

(
xK̂eff

)
denotes a non-

central χ2 distribution with K̂eff degrees of freedom and noncentrality parameter

xK̂eff . Table 1 tabulates 5% Patnaik critical values.

2.2.2 Simplified Test

A simplified conservative version of the test is available for TSLS. The simplified procedure

follows the same steps, but sets x = 1/τ in Step 4. For a given effective degrees of freedom

K̂eff , the simplified 5% critical value can be conveniently read off Table 1. For instance,

the critical value for a threshold τ = 10% can be found in the column with x = 10. The

simplified test does not require numerical evaluation of Be(Ŵ, Ω̂), for it uses the bound
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Table 1
Critical Values:

Upper 5% Quantile of χ2
Keff

(xKeff ) /Keff

Keff x = 3.33 x = 5 x = 10 x = 20
1 12.05 15.06 23.11 37.42
2 9.57 12.17 19.29 32.32
3 8.53 10.95 17.67 30.13
4 7.92 10.23 16.72 28.85
5 7.51 9.75 16.08 27.98
6 7.21 9.40 15.62 27.35
7 6.98 9.14 15.26 26.86
8 6.80 8.92 14.97 26.47
9 6.65 8.74 14.73 26.15
10 6.52 8.59 14.53 25.87
11 6.41 8.47 14.36 25.64
12 6.32 8.36 14.21 25.44
13 6.24 8.26 14.08 25.26
14 6.16 8.17 13.96 25.10
15 6.10 8.10 13.86 24.96
16 6.04 8.03 13.77 24.83
17 5.99 7.96 13.68 24.71
18 5.94 7.91 13.60 24.60
19 5.89 7.85 13.53 24.50
20 5.85 7.80 13.46 24.41
21 5.81 7.76 13.40 24.33
22 5.78 7.72 13.35 24.25
23 5.74 7.68 13.29 24.18
24 5.71 7.64 13.24 24.11
25 5.68 7.61 13.20 24.05
26 5.66 7.57 13.15 23.98
27 5.63 7.54 13.11 23.93
28 5.61 7.51 13.07 23.87
29 5.58 7.49 13.04 23.82
30 5.56 7.46 13.00 23.77
NOTE: Critical values computed by Patnaik (1949)

method. For generalized and simplified testing pro-

cedures, estimate Keff as in (4). For a Nagar bias

threshold τ (e.g. τ = 10%) set x = 1/τ for the sim-

plified procedure. For the generalized procedure, set

x = Be(Ŵ, Ω̂)/τ ; see Step 4 in Section 2.2.1.
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BTSLS(Ŵ, Ω̂) ≤ 1, proved in Theorem 1.3. The matrix Ŵ enters only through the lower

K ×K block Ŵ2.

2.2.3 Comparison with Stock and Yogo (05) Critical Values

We compare the generalized and simplified TSLS critical values to those proposed by Stock and Yogo

(2005) for the case when the data is conditionally homoskedastic and serially uncorrelated.

For this comparison, we assume W = Ω ⊗ IK and W and Ω known, as in Stock and Yogo

(2005). It then follows from (3) and (4) that the effective and non-robust F statistics are

equal, and that the effective number of degrees of freedom Keff equals the number of instru-

ments K.

Figure 1 shows the 5% TSLS critical value for testing the null hypothesis that the asymptotic

estimator bias exceeds 10% of the benchmark, the 5% critical value for the corresponding

simplified test, and the Stock and Yogo (2005) 5% critical value for testing the null hypothesis

that the TSLS bias exceeds 10% of the OLS bias. The Stock and Yogo (2005) critical value

is defined when the degree of over identification is at least two and we therefore show critical

values for 3 ≤ K ≤ 30. The TSLS critical value increases from 8.53 for K = 3 to 12.27 for

K = 30. By comparison, the Stock and Yogo (2005) critical value increases from 9.08 for
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K = 3 to 11.32 for K = 30. The simplified TSLS critical value is strictly larger than the

TSLS critical value for all K shown, illustrating that the simplified test can be strictly less

powerful than the generalized procedure. The difference between the simplified critical value

and the TSLS and Stock and Yogo (2005) critical values decreases as K becomes large.

3. ASYMPTOTIC DISTRIBUTIONS AND AN EXAMPLE

3.1 Illustrative Example

A simple example illustrates that heteroskedasticity and serial correlation impact the entire

asymptotic distribution of both TSLS and LIML estimators, and can weaken the performance

of the estimators. In this example, the first stage F statistic rejects the null hypothesis

of weak instruments too often, while the effective F statistic allows for testing for weak

instruments with asymptotically correct size.

For the sake of exposition, assume β = 0. Also assume that the departure from the condi-

tionally homoskedastic serially uncorrelated framework takes the particularly simple form

W = a2(Ω ⊗ IK) (6)

a is a scalar parameter and for a = 1 the expression (6) reduces to the conditionally ho-

moskedastic case.

Remark 1. We can generate example (6) with a purely conditionally heteroskedastic data-

generating process. Let {Zs, ṽ1s, ṽ2s} identically and independently distributed (i.i.d.). Let

instruments independent with E[Zks] = 0, E[Z2
ks] = 1, E[Z3

ks] = 0, E[Z4
ks] = a2. Let

(ṽ1s, ṽ2s) ∼ N2 ((0, 0)′,Ω) independently of Zs. Let the reduced form errors v1s = ṽ1sΠ
K
k=1Zks,

v2s = ṽ2sΠ
K
k=1Zks. Then E

(
[v1s, v2s] [v1s, v2s]

′
)

= Ω and E
(
[v1s, v2s] [v1s, v2s]

′ ⊗ ZsZ
′
s

)
=

a2Ω ⊗ IK . HL.1, HL.2, and (6) follow from the Central Limit Theorem and the Weak Law
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of Large Numbers.

Remark 2. We can alternatively generate (6) with a simple serially correlated data-generating

process. Assume that instruments and reduced form errors follow independent AR(1) pro-

cesses Zks+1 = ρZZks + ǫks+1, k = 1, ...K and vjs+1 = ρvvjs + ηjs+1, j = 1, 2. Let ǫks and

ηjs serially uncorrelated with mean zero, E(ǫsǫ
′
s) = (1 − ρ2

Z) × IK and E[η1s, η2s]
′[η1s, η2s] =

(1 − ρ2
V ) × Ω. Then E [v1s, v2s] [v1s, v2s]

′ = Ω and E (ZsZ
′
s) = IK . HL.1, HL.2 follow from

the Central Limit Theorem and the Weak Law of Large Numbers. Expression (6) holds

with a = (1 + ρvρZ)/(1 − ρZρv). Serial correlation in both the instruments and the errors

is required for a 6= 1. As a numerical example, moderate serial correlation of ρv = ρZ = 0.5

gives rise to a = 1.67.

With Assumptions LΠ and HL the asymptotic distribution of the TSLS estimator

β̂TSLS ≡
[
Y′Z (Z′Z)

−1
Z′Y

]−1

Y′Z (Z′Z)
−1

Z′v1 (7)

=
ω1

ω2

[(
C

aω2
+

Z′v2/
√
S

aω2

)′(
C

aω2
+

Z′v2/
√
S

aω2

)]−1

(8)

×
(

C

aω2

+
Z′v2/

√
S

aω2

)′

Z′v1/
√
S

aω1

(9)

d→ ω1

ω2
[ψ′

2ψ2]
−1
ψ′

2ψ1 (10)

where



ψ1

ψ2


 ∼ N2K







0K

C/(a ω2)


 ,




1 ω12/(ω1ω2)

ω12/(ω1ω2) 1


⊗ IK


.

The asymptotic TSLS distribution depends only on the elements of the non-central Wishart

matrix [ψ1,ψ2]
′[ψ1,ψ2] Hence, the vector of first stage coefficients C and the parameter

a enter into the asymptotic distribution in (10) only through the noncentrality parameter

C′C/a2ω2
2, so C′C/a2ω2

2 summarizes instrument strength.

In this example, heteroskedasticity and serial correlation affect the biases and test size dis-

tortion of TSLS and LIML estimators in the same way as a weaker first stage relationship.
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The conditionally homoskedastic serially uncorrelated case obtains for a = 1, so the TSLS

estimator is asymptotically distributed as if the errors were conditionally homoskedastic se-

rially uncorrelated, and the first stage coefficients were reduced by a factor of a. We prove

an analogous result for LIML in Appendix A.

Consider a null hypothesis for weak instruments of the form (C′C/ω2
2a

2K) < x. In the

presence of conditional heteroskedasticity or serial correlation of the form (6), the first stage

F statistic is asymptotically distributed as a2χ2
K (C′C/ω2

2a
2) /K. As a increases without

bound, the noncentrality parameter goes to zero and instruments become arbitrarily weak,

but the first stage F statistic diverges to infinity almost surely. On the other hand, the

effective F statistic is asymptotically distributed as a χ2
K (C′C/ω2

va
2) /K, so we can reject

the null hypothesis of weak instruments with confidence level α whenever F̂eff exceeds the

upper α quantile of χ2
K (x×K) /K.

3.2. Asymptotic Distributions

Definition 1. Denote the projection matrix onto Z by PZ = ZZ′/S and the complementary

matrix by MZ = IS −PZ.

1. The Two-Stage Least Squares (TSLS) estimator

β̂TSLS ≡ (Y′PZY)−1(Y′PZy) (11)

2. The Limited Information Likelihood (LIML) estimator

β̂LIML = (Y′(IS − kLIMLMZ)Y)−1(Y′(IS − kLIMLMZ)y) (12)

where kLIML is the smallest root of the determinantal equation
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∣∣∣ [y,Y]′[y,Y] − k[y,Y]′MZ[y,Y]
∣∣∣ = 0 (13)

3. The non-robust first stage F statistic

F̂ ≡ Y′PZY

K ω̂2
2

(14)

where ω̂2
2 ≡ (Y−PZY)′(Y−PZY)

S−K−1

4. The robust first stage F statistic

F̂r ≡
Y′ZŴ−1

2 Z′Y

K × S
(15)

where Ŵ2 is the lower diagonal K ×K block of the matrix Ŵ.

5. The effective first stage F statistic

F̂eff ≡ Y′PZY

tr
(
Ŵ2

) (16)

Lemma 1 derives asymptotic distributions for these statistics, generalizing Theorem 1 in

Staiger and Stock (1997).

Lemma 1. Write σ2
1 = ω2

1−2βω12+β
2ω2

2, σ12 = ω12−βω2
2, σ

2
2 = ω2

2 and Σ =




σ2
1 σ12

σ12 σ2
2


.

Under Assumptions LΠ and HL the following limits hold jointly as S → ∞.

1. β̂TSLS − β
d→ β∗

TSLS = (γ2
′γ2)

−1
γ2

′ (γ1 − βγ2)

2. β̂LIML − β
d→ β∗

LIML = (γ ′
2γ2 − κLIMLω

2
2)

−1
(γ ′

2(γ1 − βγ2) − κLIML(ω12 − βω2
2))

where κLIML is the smallest root of |[γ1 − βγ2,γ2]
′[γ1 − βγ2,γ2] − κΣ| = 0

3. F̂
d→ F ∗ ≡ γ2

′γ2/Kω
2
2
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4. F̂r
d→ F ∗

r ≡ γ2
′W−1

2 γ2/K

5. F̂eff
d→ F ∗

eff ≡ γ2
′γ2/tr(W2)

Where 

γ1

γ2


 ∼ N2K







βC

C


 ,W


 (17)

Proof. See Appendix A.

The limiting distributions are functions of a multivariate normal vector whose distribution

depends on the parameters (β,C), and on the matrix W. We treat the asymptotic distri-

butions in Lemma 1 as a limiting experiment in the sense of Müller (2011), and use it to

analyze inference problems regarding (β,C).

4. TESTING THE NULL HYPOTHESIS OF WEAK INSTRUMENTS

We base our null hypothesis of weak instruments on a bias criterion. We follow the standard

methodology in Nagar (1959), and approximate the asymptotic TSLS and LIML distributions

to obtain the Nagar bias. Under standard asymptotics, the Nagar bias for both estimators

is zero everywhere in the parameter space, but under weak instrument asymptotics, the bias

may be large in some regions of the parameter space. We consider instruments to be weak

when the estimator Nagar bias is large relative to a benchmark, extending the OLS bias

criterion in Stock and Yogo (2005).

4.1 Nagar Approximation

Theorem 1. (Nagar Approximation) Let W ∈ R2K×2K positive definite. Write C ∈ RK

as C = ‖C‖C0 and let µ2 ≡ ||C||2/tr(W2). Define S1 = W1 − 2βW12 + β2W2, S12 =
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W12 − βW2, S2 = W2 and the benchmark BM(β,W) ≡
√
tr(S1)/tr(S2). We write SK−1

for the K − 1 dimensional unit sphere.

1. For e ∈ {TSLS, LIML} the Taylor expansion of β∗
e around µ−1 = 0 gives the Nagar

(1959) bias

Ne(β,C,W,Ω) = µ−2ne(β,C0,W,Ω) (18)

with

nTSLS(β,C0,W,Ω) =
tr(S12)

tr(S2)

[
1 − 2

C′
0S12C0

tr(S12)

]
(19)

nLIML(β,C0,W,Ω) =
tr(S12) − σ12

σ2

1

tr(S1) − C′
0

(
2S12 − σ12

σ2

1

S1

)
C0

tr(S2)

(20)

2. For e ∈ {TSLS, LIML}:

Be(W,Ω) ≡ sup
β∈R,C0∈S

K−1





∣∣∣ne(β,C0,W,Ω)
∣∣∣

BM(β,W)



 <∞ (21)

3. BTSLS(W,Ω) ≤ 1

Proof. See Appendix A.

Remark 3. The Nagar bias is the bias of an approximating distribution. It equals the

expectation of the first three terms in the Taylor series expansion of the asymptotic estimator

distribution under weak instrument asymptotics. It is therefore always defined and bounded

for both TSLS and LIML. While the asymptotic estimator bias may not always exist, our

test is still performing well. Under the null hypothesis, the Nagar bias can be large, but

under the alternative hypothesis, the Nagar bias is small; see Section 4.2. Under certain

conditions, we can also prove that the Nagar bias approximates the asymptotic estimator
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bias as the concentration parameter µ2 goes to infinity; see Supplementary Materials C.1.

Remark 4. We interpret the benchmark BM(β,W) =
√
tr(S1)/tr(S2) as a “worst-case”

bias. An ad-hoc approximation of E[β∗
TSLS] as a ratio of expectations as in Staiger and Stock

(1997) helps convey the intuition:

E[β∗

TSLS] ≈ tr(S12)

tr(S2)[1 + µ2]
(22)

≈ 1

[1 + µ2]

tr(S12)√
tr(S2)

√
tr(S1)

√
tr(S1)

tr(S2)
(23)

The first factor is maximized when instruments are completely uninformative and µ2=0,

while the second factor is maximized when first and second stage errors are perfectly corre-

lated (Liu and Neudecker (1995)).

Remark 5. In the implementation of our generalized testing procedure, we use the function

Be(W,Ω) to bound the Nagar bias relative to the benchmark. We provide a fast and accurate

numerical MATLAB routine for Be(W,Ω). For any given value of the structural parameter

β, we compute the supremum over C0 ∈ SK−1 analytically using matrix diagonalization.

We then compute the limits of supC0∈S
K−1 |ne(β,C0,W,Ω)| /BM(β,W) as β → ±∞. Fi-

nally, we numerically maximize the function supC0∈S
K−1 |ne(β,C0,Ŵ, Ω̂)|/BM(β,Ω) over

β ∈ [−X,X], where X ∈ R+ is chosen sufficiently large.

4.2 Null hypothesis

For a given threshold τ ∈ [0, 1] and matrix W ∈ R2K×2K we define the null and alternative

hypotheses for e ∈ {TSLS, LIML}

H0
e : µ2 ∈ He(W,Ω) v.s. H1

e : µ2 /∈ He(W,Ω) (24)
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where

He(W,Ω) ≡
{
µ2 ∈ R+ : sup

β∈R,C0∈S
K−1

∣∣Ne(β, µ
√
trW2C0,W,Ω)

∣∣
BM(β,W)

> τ

}
(25)

Under the null hypothesis, the Nagar bias exceeds a fraction τ of the benchmark for at least

some value of the structural parameter β and some direction of the first stage coefficients

C0. On the other hand, under the alternative, the Nagar bias is at most a fraction τ of the

benchmark for any values (β,C0).

4.3 Testing Procedures

We base our test on the statistic F̂eff , which is asymptotically distributed as a quadratic

form in normal random variables with mean 1 + µ2; see Lemma 1. For a survey of this

class of distributions, see Johnson et al. (1995, chap. 29). Denote by F−1
C,W2

(α) the upper

α quantile of the distribution γ ′
2γ2/tr(W2), where γ2 ∼ NK(C,W2) and let

c(α,W2, x) ≡ sup
C∈RK

{
F−1

C,W2
(α)1C′C/tr(W2)<x

}
(26)1A(·) denotes the indicator function over a set A. We base the generalized test on the

observation that He(W,Ω) = [0, Be(W,Ω)/τ). The generalized procedure is applicable to

both TSLS and LIML, and it rejects the null hypothesis H0
e whenever

F̂eff > c(α,Ŵ2, Be(Ŵ, Ω̂)/τ) (27)

Lemma 2. Under Assumptions LΠ and HL the generalized procedure is pointwise asymptot-

ically valid, i.e.

sup
He(W,Ω)

lim
S→∞

P

(
F̂eff > c(α,Ŵ2, Be(Ŵ, Ω̂)/τ)

)
≤ α
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Furthermore, provided that B(Ŵ, Ω̂) is bounded in probability

limµ2→∞limS→∞P

(
F̂eff > c(α,Ŵ2, Be(Ŵ, Ω̂)/τ

)
= 1 (28)

Proof. See Appendix A.

The inequality in Theorem 1.3 implies a simplified asymptotically valid test for TSLS, which

rejects the null hypothesis He(W,Ω) whenever

F̂eff > c(α,Ŵ2, 1/τ) (29)

With c(α,Ŵ2, 1/τ) ≥ c(α,Ŵ2, BTSLS(W,Ω)/τ) the simplified procedure is asymptotically

valid and weakly less powerful than the generalized procedure. The simplified test is con-

servative, in the sense that under the alternative hypothesis, the TSLS Nagar bias is lower

than the threshold for any degree of dependence in the second stage.

5. COMPUTATION OF CRITICAL VALUES

We provide two simple methods to compute the critical value c(α,W2, x). Our first method

generates Monte Carlo critical values cm(α,W2, x). We obtain estimates of F−1
C,W2

(α) as the

sample upper α point from a large number of draws from the distribution of γ ′
2γ2/tr(Ŵ2),

and then maximize over a large set of C, such that C′C/tr(W2) ≤ x.

The second procedure is based on a curve-fitting methodology first suggested by Patnaik

(1949). Patnaik (1949) and Imhof (1961) approximate the critical values of a weighted sum

of independent non-central chi-squared distributions by a central χ2 with the same first and

second moments. We analogously approximate the distribution FC,W2
by a non-central χ2

with the same first and second moments. Our approximation errors are therefore bounded
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by the original Patnaik errors through a triangle inequality. We use

F−1
C,W2

(α) ≈ 1

Keff
F−1

χ2

Keff
(Keff µ2)

(α) (30)

where Keff is possibly fractional with

Keff = [tr(W2)]
2 1 + 2µ2

tr(W2
2) + 2C′W2C

(31)

There is a large literature that approximates distributions by choosing a family of distribu-

tions and selecting the member that fits best, often by matching lower order moments of the

original distribution (Satterthwaite, 1946; Theil and Nagar, 1961; Henshaw, 1966; Pearson,

1959; Grubbs, 1964; Conerly and Mansfield, 1988; Liu et al., 2009). The non-central chi-

squared distribution is a natural choice, because it is exact in the homoskedastic case.

While it is hard to assess the accuracy of these curve-fitting approximations analytically,

they are often simple and numerically highly accurate (Rothenberg, 1984). Authors demon-

strate the degree of accuracy of their approximations using numerical examples. In the

Supplementary Materials B.1, we verify that the approximation (30) is numerically as accu-

rate as the original central Patnaik distribution for the quadratic forms considered in Imhof

(1961); approximation errors are at most 0.7 % points in the important upper 15% tail of

the distributions.

Numerical results, such as in Table 1, clearly indicate that upper α quantiles of (30) are

decreasing in Keff . Moreover, the upper α quantile in (30) is nondecreasing in the noncen-

trality parameter µ2 (Ghosh, 1973). Taking the supremum over C with C′C/tr(W2) < x,

suggests the Patnaik critical value.

Definition 2. (Patnaik Critical Value) Define the Patnaik critical value as

cP (α,W2, x) ≡ F−1
(1/Keff )χ2

Keff
(xKeff )

(α) (32)
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with the effective number of degrees of freedom

Keff ≡ tr(W2)
2(1 + 2x)

tr(W2
2) + 2tr(W2) max eval(W2)x

(33)

We numerically analyze the sizes of Monte Carlo and Patnaik critical values for bench-

mark parameter values α = 5% and x = 10, and find that size distortions are small for

both methodologies. Monte Carlo critical values are computed with 40000 draws from

γ ′
2γ2/tr(W2), and we replace the infinite set of vectors C s.t. C′C/tr(W2) < x by a finite set

of size 500. We use code for FC,W2
(x) available at http://elsa.berkeley.edu/∼ruud/cet/pgms.htm

(Imhof, 1961; Koerts and Abrahamse, 1969; Farebrother, 1990; Ruud, 2000). For 400 matri-

ces W2 from a diffuse prior with K ∈ {1, 2, 3, 4, 5} our numerical values for

maxC′C/trW2<x FC,W2
(cm) range between 4.77% and 5.26%, and our numerical values for

maxC′C/trW2<x FC,W2
(cP ) range between 5.00% and 5.02%. For further details and MAT-

LAB routines, see Supplementary Materials B.2-B.5.

Our generalized and simplified critical values differ from those proposed by Stock and Yogo

(2005) for the TSLS bias, even when first and second stage errors are perfectly conditionally

homoskedastic and serially uncorrelated. In this case, the effective F statistic coincides with

the Stock and Yogo (2005) test statistic. We obtain different critical values because, unlike

them, we use an approximation to evaluate the weak instrument TSLS bias. Moreover,

estimating Ŵ and Ω̂ also generates differences in critical values. The difference between

our generalized TSLS critical values and analogous Stock and Yogo (2005) critical values

becomes small as the number of instruments becomes large.

In the Supplementary Materials B.6, we tabulate Stock and Yogo (2005) 5% critical values

for testing the null hypothesis that the TSLS bias exceeds 10% of the OLS bias and our

generalized and simplified critical values with a threshold of 10% and size 5%, assuming

conditional homoskedasticity and no serial correlation. TSLS critical values are smaller than

Stock and Yogo (2005) critical values for K = 3, 4, but larger than Stock and Yogo (2005)

21



critical values for K ≥ 5. The difference between the TSLS and Stock and Yogo (2005)

critical values is always less than 1. The LIML critical values decline more rapidly with the

number of instruments than either the TSLS or simplified critical values. The simplified

critical values exceed the generalized TSLS critical values, because they use a bound that

applies for any form of the matrix W.

6. EMPIRICAL APPLICATION: ESTIMATING THE ELASTICITY OF

INTERTEMPORAL SUBSTITUTION

We now apply our pre-testing procedure to an empirical example, and show that allowing

for heteroskedasticity and time series correlation can affect pre-testing conclusions.

The literature has focused on estimating the linearized Euler equation in two standard IV

frameworks (Hansen and Singleton, 1983; Campbell and Mankiw, 1989; Hall, 1988; Campbell,

2003).

∆ct+1 = ν + ψrt+1 + ut+1 and E[Zt−1ut+1] = 0 (34)

rt+1 = ξ + (1/ψ)∆ct+1 + ηt+1 and E[Zt−1ηt+t] = 0 (35)

ψ is the Elasticity of Intertemporal Substitution (EIS), ∆ct+1 is consumption growth at

time t + 1, rt+1 is a real asset return, and ν is a constant. The vector of instruments is

denoted by Zt−1. We follow the preferred choice of variables in Yogo (2004), using as rt the

real return on the short-term interest rate, and as instruments the nominal interest rate,

inflation, consumption growth and the log dividend-price ratio, all lagged twice. We use

quarterly data from Yogo (2004).

The EIS determines an agent’s willingness to substitute consumption over time. Its magni-
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tude is important for understanding the dynamics of consumption and asset returns (Epstein and Zin,

1989, 1991; Campbell, 2003). While time-varying volatility can introduce additional bias into

the estimation of the EIS (Bansal and Yaron, 2004), Yogo (2004) argues that under certain

types of conditional heteroskedasticity the EIS can still be identified.

Table 2 compares pre-tests for weak instruments for 11 countries. Panel A shows weak in-

strument pre-tests with the ex-post real interest rate as the endogenous variable, while Panel

B shows weak instrument pre-tests with consumption growth as the endogenous variable.

The non-robust first stage F statistic in column 1 is shown in bold whenever it exceeds

the Stock and Yogo (2005) critical value 10.27. This is the 5% critical value for testing the

null hypothesis that the TSLS bias exceeds 10% of the OLS bias under the assumption of

conditional homoskedasticity and no serial correlation. As in Yogo (2004), this homoskedas-

tic pre-test indicates strong instruments in Panel A, but cannot reject weak instruments in

Panel B for almost all countries in the sample.

The second and third columns report the HAC robust first stage F statistic and the effective

F statistic computed with a Newey-West kernel and six lags. We show 5% critical values for

TSLS, LIML, and simplified pre-tests for the null hypothesis that the respective Nagar bias

exceeds 10% of the “worst-case” benchmark.

In Panel A, we see that allowing for heteroskedasticity and serial correlation changes the

pre-testing results for some countries, while for other countries all pre-tests yield the same

conclusion. The effective F statistic can be smaller or larger than the regular or robust F

statistics. Simplified critical values always exceed TSLS critical values. LIML critical values

tend to be smallest.

The results in Table 2A for the U.S. are particularly striking. While the U.S. regular F

statistic clearly exceeds the homoskedastic threshold of 10.27, the robust and effective F

statistics are significantly smaller. The effective F does not exceed the simplified, TSLS,
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Table 2
Estimating the Elasticity of Intertemporal Substitution:

Weak Instrument Pre-Tests

Panel A: ∆ct+1 = ν + ψrt+1 + ut+1 and E[Zt−1ut+1] = 0

Country Sample Period F̂ F̂r F̂eff cSimp cTSLS cLIML ψ̂TSLS ψ̂LIML

USA 1947.3-1998.4 15.53 8.60 7.94 18.20 15.49 9.68 0.06 0.03
AUL 1970.3-1998.4 21.81 27.56 17.52 18.36 16.64 10.25 0.05 0.03
CAN 1970.3-1999.1 15.37 11.58 12.95 18.95 17.38 11.44 -0.30 -0.34
FR 1970.3-1998.3 38.43 41.67 40.29 19.51 17.01 12.89 -0.08 -0.08
GER 1979.1-1998.3 17.66 12.47 11.66 18.24 16.30 10.01 -0.42 -0.44
ITA 1971.4-1998.1 19.01 25.09 19.44 19.26 17.37 12.98 -0.07 -0.07
JAP 1970.3-1998.4 8.64 8.32 5.09 21.66 20.24 18.71 -0.04 -0.05
NTH 1977.3-1998.4 12.05 9.31 10.53 18.89 17.18 11.28 -0.15 -0.14
SWD 1970.3-1999.2 17.08 28.86 19.82 19.04 15.59 11.65 0.00 0.00
SWT 1976.2-1998.4 8.55 6.68 7.19 18.49 15.80 10.38 -0.49 -0.50
UK 1970.3-1999.1 17.04 11.78 7.65 20.18 18.72 14.57 0.17 0.16

Panel B: rt+1 = ξ + (1/ψ)∆ct+1 + ηt+1 and E[Zt−1ηt+1] = 0

Country Sample Period F̂ F̂r F̂eff cSimp cTSLS cLIML ψ̂−1
TSLS ψ̂−1

LIML

USA 1947.3-1998.4 2.93 3.37 2.58 17.61 13.99 10.23 0.68 34.11
AUL 1970.3-1998.4 1.79 2.87 2.31 19.89 17.25 15.70 0.50 30.03
CAN 1970.3-1999.1 3.03 5.99 2.70 18.19 15.89 9.77 -1.04 -2.98
FR 1970.3-1998.3 0.17 0.39 0.22 19.83 18.08 14.09 -3.12 -12.38
GER 1979.1-1998.3 0.83 2.48 1.13 18.58 16.98 14.19 -1.05 -2.29
ITA 1971.4-1998.1 0.73 0.39 0.47 19.05 16.96 11.63 -3.34 -14.81
JAP 1970.3-1998.4 1.18 2.17 2.00 17.94 13.93 15.58 -0.18 -21.56
NTH 1977.3-1998.4 0.89 3.62 1.84 19.00 16.13 15.30 -0.53 -6.94
SWD 1970.3-1999.2 0.48 0.81 0.83 17.24 12.51 9.73 -0.10 -399.86
SWT 1976.2-1998.4 0.97 2.28 1.56 20.21 18.76 16.47 -1.56 -2.00
UK 1970.3-1999.1 2.52 3.95 2.55 17.94 15.64 14.50 1.06 6.21
NOTE: ∆c is consumption growth and r is the ex-post real short-term interest rate. We instrument using

twice lagged nominal interest rate, inflation, dividend-price ratio, and consumption growth. HAC variance-

covariance matrix Ŵ estimated with OLS and Newey-West kernel with six lags. F statistic in bold when

it exceeds the critical value of 10.27. This is the 5% critical value for testing the null hypothesis that

the TSLS bias exceeds 10% of the OLS bias under the assumption of conditional homoskedasticity and

no serial correlation (Stock and Yogo, 2005). We show simplified, TSLS, and LIML critical values cSimp =

cP (5%,Ŵ2, 10), cTSLS = cP

(
5%,Ŵ2, 10 ×BTSLS(Ŵ, Ω̂)

)
, and cLIML = cP

(
5%,Ŵ2, 10 ×BLIML(Ŵ, Ω̂)

)
.

Critical values are in bold when exceeded by F̂eff . ψ̂TSLS, ψ̂LIML, (̂1/ψ)
TSLS

and (̂1/ψ)
LIML

are TSLS and

LIML estimates of the EIS and its inverse.
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or LIML critical values, so we cannot reject the null hypothesis of weak instruments under

heteroskedasticity and serial correlation.

Panel B shows weak instrument pre-tests for the instrumental variable estimation of the

inverse of the EIS. For this estimation, the results are consistent between homoskedastic and

HAC weak instrument pre-tests. We cannot reject that instruments are weak for any of the

countries in the sample.

The last two columns in Table 2 show the point estimates for ψ and 1/ψ. For those cases

where we can reject weak instruments under heteroskedasticity and serial correlation, the

corresponding EIS point estimates are close to zero and often negative. Additional caution

is, however, warranted in this interpretation, because as the number of countries increases,

we are more and more likely to reject weak instruments at least once.

Our results confirm Yogo (2004)’s finding that the EIS is small and close to zero. However,

we also note that conditional heteroskedasticity and serial correlation may further weaken

instruments and may affect TSLS and LIML bias in several of the country-specific regressions.

7. CONCLUSION

Heteroskedasticity, serial correlation, and panel data clustering can affect instrument strength.

This paper develops a robust test for weak instruments that allows empirical researchers to

test the null hypothesis that the TSLS or LIML Nagar bias is large relative to a benchmark.

The test is based on a scaled version of the regular F statistic. Critical values depend on

the covariance matrix of the reduced form coefficients and errors. Our general test requires

computational work to evaluate the Nagar bias of TSLS or LIML. A simplified conservative

version does not require this step, but is only available for TSLS. Critical values can then be

implemented as quantiles of a non-central chi-squared distribution with non-integer degrees

of freedom.
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Pre-tests based on the robust (or non-robust) first stage F statistic with Stock and Yogo

(2005) critical values are commonly applied outside the conditionally homoskedastic serially

uncorrelated framework. However, to the best of our knowledge, there is no analysis sup-

porting this practice. This paper offers an alternative: a simple, asymptotically valid test

that should be used for conditionally heteroskedastic, time series, and clustered panel data.
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APPENDIX A

A.1 Proof of Lemma 1

First note the preliminary result that under Assumptions LΠ and HL

1√
S




Z′y

Z′Y


 =




βC + Z′v1/
√
S

C + Z′v2/
√
S


 (36)

d→



γ1

γ2


 (37)

1. β̂TSLS ≡ (Y′PZY)−1(Y′PZy) = (Y′Z(Z′Z)−1Z′Y)−1(Y′Z(Z′Z)−1Z′y). Since we have

assumed that Z′Z/S = IK , the result follows from (37) and the continuous mapping

theorem.

2. Write J =




1 0

−β 1


 and κ = S(k − 1). Note that J is nonsingular and so the roots

of |[y,Y]′[y,Y] − k[y,Y]′MZ[y,Y]| = 0 are the same as of
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|J′[y,Y]′[y,Y]J− kJ′[y,Y]′MZ[y,Y]J| = 0. Moreover

[y,Y]′[y,Y] − (1 + κ/S)[y,Y]′MZ[y,Y] =[y,Y]′PZ[y,Y] − κ[y,Y]′MZ[y,Y]/S

d→[γ1,γ2]
′[γ1,γ2] − κΩ uniformly in κ over compact sets. The solutions of

|[y,Y]′[y,Y] − (1 + κ/S)[y,Y]′MZ[y,Y]| = 0 therefore converge to those of

|J′[γ1,γ2]
′[γ1,γ2]J − κJ′ΩJ| = 0. With J′ΩJ = Σ thus S(k̂LIML − 1)

d→ κLIML where

κLIML is as given in Lemma 1.2.

Then β̂LIML − β=
[
Y′(IS − k̂LIMLMZ)Y

]−1

[Y′(IS − k̂LIMLMZ)(y − βY)]

=
[
Y′PZY − S(k̂LIML − 1)Y′MZY

S

]−1

[Y′PZ(y − βY) − S(k̂LIML − 1)Y′MZ(y−βY)
S

]

d→[γ ′
2γ2 − κLIMLσ

2
2]

−1
[γ2(γ1 − βγ2) − κLIMLσ12]

3. Note that ω̂2
2 ≡ (Y−PZY)′(Y−PZY)/(S−K − 1) = (v2 −PZv2)

′(v2 −PZv2)/(S−

K − 1)

d→ω2
2 by Assumptions LΠ and HL. The result follows from (37) and the continuous

mapping theorem.

4. and 5. follow from (37), the continuous mapping theorem, and Assumptions LΠ and

HL.

A.2 LIML Distribution in Illustrative Example

We show that in the illustrative example heteroskedascity and serial correlation can effec-

tively make instruments weaker for LIML. Assume W = a2Ω⊗IK . Remember that β̂LIML =

argminβ̃(y−β̃Y )′PZ(y−β̃Y)/(y−β̃Y)′(y−β̃Y). We will analyze the weak instrument limit

of the LIML objective function. Note that, using assumptions LΠ and HL Z′(y − β̃Y)/
√
S

d→γ1 − β̃γ2.

Moreover, (y − β̃Y)′(y − β̃Y)/S
p→ ω2

1 − 2β̃ω12 + β̃2ω2
2 uniformly in β̃ over compact sets.
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Hence β∗
LIML is distributed according to

argmin
β̃
a2

(
ω1ψ1 − β̃ω2ψ2

)′ (
ω1ψ1 − β̃ω2ψ2

)

ω2
1 − 2β̃ω12 + β̃2ω2

2

Just as for the βTSLS, the vector of first stage coefficients C and the parameter a enter into

the asymptotic distribution β∗
LIML only through the noncentrality parameter C′C/(a2ω2

2).

A.3 Proof of Theorem 1

A.3.1 Proof of Theorem 1.1

We follow Rothenberg (1984) in developing the Nagar (1959) moments for the TSLS and

LIML estimators. We need to expand β∗
TSLS and β∗

LIML as second order Taylor expansions

in µ−1 around µ−1 = 0.

We start by developing the Taylor expansion for κLIML. Write zu = S
−1/2
1 (γ1 − βγ2)

and zv = S
−1/2
2 (γ2 − C) so zu and zv are standard multivariate normal. Also write λ =

µtr (S2)
1/2 S

−1/2
2 C0 where C0 = C/ ‖C‖.

κLIML is defined as the smallest root of the determinantal equation

det


A − κLIML



σ2

1 σ12

σ12 σ2
2





 = 0 (38)

where

A =




z′uS1zu z′uS
1/2
1 S

1/2
2 (λ+ zv)

z′uS
1/2
1 S

1/2
2 (λ+ zv) (zv + λ)′ S2 (zv + λ)



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We can rewrite this as a quadratic equation

(
κLIML

µ2

)2

− σ2
va11 + σ2

1a22 − 2a12σ12

µ2 detΣ

κLIML

µ2
+

detA

µ4 detΣ
= 0 (39)

We use the method of undetermined coefficients. Write

κLIMLµ
−2 = c0 + c1µ

−1 + c2µ
−2 +O

(
µ−3
)

(40)

for unknown constants c0, c1, c2. Similarly write

d (µ) ≡ σ2
2a11 + σ2

ua22 − 2a12σ12

µ2 detΣ
= d0 + d1µ

−1 + d2µ
−2 +O

(
µ−2
)

(41)

e (µ) ≡ detA

µ4 detΣ
=

detA

µ4 detΣ
= e0 + e1µ

−1 + e2µ
−2 +O

(
µ−3
)

(42)

where the Taylor series expansions for d and e give d0 = σ2
1tr (S2) /detΣ, e0 = 0, e1 = 0,

and e2 = tr (S2)

[
z′uS1zu −

(
z′uS

1/2
1 C0

)2
]
/detΣ.

Substituting (40), (41) and (42) into the quadratic equation (39) and equating coefficients

gives c0 (c0 − d0) = 0 Since we are interested in the smaller solution, we have c0 = 0. Then

c0 = 0, c1 = 0, c2 = ε2/d0 and so κLIMLµ
−2 = 1

σ2

1

[
z′uS1zu −

(
z′uS

1/2
1 C0

)2
]
µ−2 +O(µ−3)

We then expand β∗
LIML

β∗

LIML = µ−1C
′
0S

1/2
1 zutr (S2)

1/2

tr (S2)
+

+µ−2 1

tr (S2)

(
z′vS

1/2
2 S

1/2
1 zu − 2

(
C′

0S
1/2
1 zu

)(
C′

0S
1/2
2 zv

)
− c2σ12

)

+O
(
µ−3
)
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Taking the expectation of the first two terms gives the LIML Nagar bias as in the Theorem.

We can similarly derive the Taylor expansion for β∗
TSLS according to

β∗

TSLS = µ−1C
′
0S

1/2
1 zutr (S2)

1/2

tr (S2)
+

+µ−2 1

tr (S2)

(
z′vS

1/2
2 S

1/2
1 zu − 2

(
C′

0S
1/2
1 zu

)(
C′

0S
1/2
2 zv

))

+O
(
µ−3
)

The Nagar bias is defined as the expected value of the first two terms, and hence equals

NTSLS(β,C,W,Ω) =
1

trS2
(trS12 − 2C′

0S12C0)µ
−2

A.3.2 Proof of Theorems 1.2 and 1.3

We prove Theorem 1.3 first. We assume that W and Ω are positive definite, so S and Σ are

also positive definite. S12 is real valued but not necessarily symmetric. Note that

trS12 − 2C′

0S12C0 = trSsym
12 − 2C′

0S
sym
12 C0

where Ssym
12 = 1

2
(S12 + S′

12) is the symmetric part of S12. Write Λ =




λ1 0 ... 0

0 λ2 ... 0

0 0 ... λK




for the diagonal matrix of eigenvalues of Ssym
12 . Assume the eigenvalues are ordered so

λ1 ≥ λ2 ≥ .. ≥ λK . For any real matrix M we write |M| =
√

M′M so the Schatten 1-norm
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for matrices is defined as ‖M‖1 = tr|M|.

trSsym
12 − 2C′

0S
sym
12 C0 ≤

K∑

k=1

λk − 2λK

=
K−1∑

k=1

λk − λK

≤
K∑

k=1

|λk|

= ‖Ssym
12 ‖1

Similarly trSsym
12 −2C′

0S
sym
12 C0 ≥ −‖Ssym

12 ‖1. Hence |trSsym
12 − 2C′

0S
sym
12 C0| ≤ ‖0.5S12 + 0.5S′

12‖1

≤ ‖S12‖1. The last step follows from the triangle inequality and from the fact that the eigen-

values of S′
12S12 and S12S

′
12 are the same.

Now tr(S′
12S

−1
2 S12) ≤ tr(S1), see e.g. Theorem 7.14 in Zhang (2010). By the matrix trace

Cauchy inequality (Liu and Neudecker (1995), Theorem 1) then

‖S12‖2
1 = (tr|S12|)2

≤ trS2tr
(
|S12|′S−1

2 |S12|
)

= trS2tr(S
′

12S
−1
2 S12)

Putting this together, we get ‖S12‖1 ≤
√
trS1trS2, proving Theorem 1.3.

The TSLS part of Theorem 1.2 follows from Theorem 1.3. For the LIML part note that

BLIML(W,Ω) = supβ∈R
gLIML(β) where

gLIML(β) = max

(∣∣∣∣∣
trS12 − σ12

σ2

1

trS1 −maxevalMB

√
trS1

√
trS2

∣∣∣∣∣ ,
∣∣∣∣∣
trS12 − σ12

σ2

1

trS1 −minevalMB

√
trS1

√
trS2

∣∣∣∣∣

)

(43)
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where MB = 1
2
(2S12 − σ12

σ2

1

S1) + 1
2
(2S12 − σ12

σ2

1

S1)
′ and

gLIML(β) → maxevalW2

trW2
as β → ±∞ (44)

For W and Ω nonsingular gLIML is continuous in β everywhere, and hence bounded.

A.4 Proof of Lemma 2

Assume that W and Ω are nonsingular. We prove that the test that rejects if:

F̂eff > c(α,Ŵ2, Be(Ŵ, Ω̂)/τ) (45)

is asymptotically valid, i.e. its asymptotic size is at most α.

Claim 1: The function F−1
C,W2

(α) is continuous in {C,W2}.

Proof: : γ ′
2γ2/tr(W2) is a continuous random variable with nonzero density on R+, and

therefore F−1
C,W2

(α) is strictly decreasing and continuous in α everywhere. By Van der Vaart

(2000, Lemma 21.2) the quantile function F−1
C,W2

(α) is continuous in {C,W2} for any fixed

α.

Claim 2: The function Be(W,Ω) is lower semicontinuous.

Proof: The function ‖ne(β,C0,W,Ω)‖ /BM(β,W) is continuous in W and Ω. Be(W,Ω)

is the supremum of continuous functions, and therefore is lower semicontinuous (Yeh, 2000,

p. 274).

Claim 3: The function c(α,W2, x) is lower semicontinuous in {W2, x}.

Proof: The function 1C′C/tr(W2)<x is an indicator function of an open set, and therefore

lower semicontinuous in {W2, x}. The function F−1
C,W2

(α) is continuous in W2 and greater

than 0. Hence the product F−1
C,W2

(α)1C′C/tr(W2)<x is lower semicontinuous in (W2, x) for any
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fixed α. c(α,W2, x) is a supremum of lower semicontinuous functions, and therefore lower

semicontinuous in (W2, x) (Yeh, 2000, p. 274). c(α,W2, x) is also clearly nondecreasing in

x.

Proof of Result: From the lower semicontinuity of B(W,Ω) and the continuous map-

ping theorem, it follows that min
(
Be(Ŵ, Ω̂), Be(W,Ω)

)
p→ Be(W,Ω). Similarly, for any

(
Ŵ2, x̂

)
p→ (W2, x), the continuous mapping theorem implies that

min(c(α,Ŵ2, x̂), c(α,W2, x))
p→ c(α,W2, x). Then

P

(
F̂eff > c(α,Ŵ2, Be(Ŵ, Ω̂)/τ

)
(46)

≤ P

(
F̂eff > min

(
c

(
α,W2,

Be(W,Ω)

τ

)
, (47)

c

(
α,Ŵ2,

min(Be(W,Ω), Be(Ŵ, Ω̂))

τ

)))
(48)

→ P

(
F̂ ∗

eff > c

(
α,W2,

Be(W,Ω)

τ

))
(49)

= α (50)

Now we prove the second part of the Lemma. We first prove a bound for the critical

values. Let F−1
χ2

d
(x)

(α) the upper α point of a non-central χ2 with d degrees of freedom and

noncentrality parameter x. For any α ∈ [0, 1]

c(α,W2, x) ≤ x∗ ≡
(√

max
(
F−1

χ2

1
(0)

(α), F−1
χ2

2
(0)/2

(α), ..., F−1
χ2

K
(0)/K

(α)
)

+
√
x

)2

.

Let Xi ∼ N(0, 1) i.i.d., i = 1, 2..., K, and let c ∈ A where A = {c ∈ RK | ∑K
i=1 ci =

1, ci ≥ 0, ∀i} . From Szekely and Bakirov (2003) x̃ ∈ R+ that

infc∈A P (
∑K

i=1 ciX
2
i ≤ x̃) = P (χ2

n/n(x̃) ≤ x̃), where the function n(x̃) is integer, non-

decreasing, bounded by K and equal to 1 whenever x̃ > 1.536. Let Q =
∑K

i=1 ci(Xi + bi)
2

a quadratic form in normal random variables and write
∑K

i=1 cib
2
i = µ2. From the triangle
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inequality

P[Q > x] = P

[
K∑

i=1

ci(Xi + bi)
2 > x

]
≤ P








√√√√
K∑

i=1

ciX
2
i + µ




2

> x




Whenever x > µ2 then P[Q > x]≤P

[
χ2

n(x1)/n(x1) > x1(µ
2, x)

]
, where x1(µ

2, x) = (x1/2−µ)2.

Moreover, this bound is increasing in µ2 whenever x > µ2. Let x∗ as above. Then x1(x, x
∗) =

max
(
F−1

χ2

1
(0)

(α), F−1
χ2

2
(0)/2

(α), ..., F−1
χ2

K
(0)/K

(α)
)
. Therefore, for µ2 ≤ x

P [Q > x∗] ≤ P(
[
χ2

n(x1)
/n(x1) > x1(x, x

∗)
]
≤ α

Now assume that Be(Ŵ, Ω̂) is bounded in probability. Then c(α,Ŵ2, Be(Ŵ, Ω̂)) is bounded

above in probability by some c∗. Then

min
[
P

(
F̂eff > c(α,Ŵ2, Be(Ŵ, Ω̂)/τ))

)
,P
(
F̂eff > c∗

)]
p→ P

(
F ∗

eff > c∗
)

(51)

But then by the triangle inequality

P
(
F ∗

eff > c∗
)
≥ P



µ >
√
c∗ +

√√√√
K∑

i=1

ciX
2
i



 (52)

where ci are the eigenvalues of W2 and Xi are iid standard normal. The right-hand side in

(52) clearly converges to 1 as µ2 → ∞, proving the second part of the Lemma.

FIGURE CAPTIONS

Figure 1: TSLS and simplified 5% critical values assuming conditional homoskedasticity,

no serial autocorrelation, and known Ω and W = Ω ⊗ IK . Under these assumptions, the

effective number of degrees of freedom Keff equals the number of instruments K, and the
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effective F statistic equals the non-robust first stage F statistic. The null hypothesis is

that the estimator Nagar bias exceeds 10% of the benchmark. Critical values are computed

using the Patnaik (1949) methodology. For comparison, we show Stock and Yogo (2005) 5%

critical values of the null hypothesis that the asymptotic TSLS bias exceeds 10% of the OLS

bias.

SUPPLEMENTARY MATERIALS

• [A Robust Test for Weak Instruments: Supplementary Materials. ]. Computational

details and additional results. (PDF)

• [Files201200717.zip] MATLAB and STATA code to compute figures, tables and critical

values. (Zip file)
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