Question	Part	Sub Part	Marking Guidance			Mark	Comments	
1	(a)		2s²2pº3s¹			1	1s ² can be rewritten Allow 2s ² 2p _x ² 2p _y ² 2p _z ² 3s ¹ Allow subscripts and capitals	
1	(b)	(i)	Energy/enthalpy (needed) to remove one mole of e one mole of atoms/compounds/molecules/elements		om	1	Energy given out loses M1	
			OR				M2 is dependent on a reasonable attempt at M1	
			Energy to form one mole of positive ions from one	mole of ato	oms		Energy needed for this change $X(g) \rightarrow X^{+}(g) + e^{(-)} = 2$ marks	
			OR				This equation alone scores one mark	
			Energy/enthalpy to remove one electron from one a	atom				
			In the gaseous state (to form 1 mol of gaseous ions	s)		1		
1	(b)	(ii)	$Mg^{+}(g) \rightarrow Mg^{2+}(g) + e^{(-)}$ $Mg^{+}(g) + e^{(-)} \rightarrow Mg^{2+}(g) + 2e^{(-)}$ $Mg^{+}(g) - e^{(-)} \rightarrow Mg^{2+}(g)$			1	Do not penalise MG Not equation with X	
1	(b)	(iii)	Electron being removed from a positive ion (therefor			1	Allow from a + particle/ species	
			energy)/ electron being removed is closer to the nu smaller (than Mg)/Mg* more positive than Mg	cleus/Mg			Not electron from a higher energy level/or higher sub-level More protons = 0	
1	(b)	(iv)	Range from 5000 to 9000 kJ mol ⁻¹			1		
1	(c)		Increase		7	1	If decrease CE = 0/3 If blank mark on	
			Bigger nuclear charge (from Na to CI)/more protons	<u> </u>		1	QWC	
			electron (taken) from same (sub)shell/ similar or sa electron closer to the nucleus/smaller atomic radius		ing/	1	If no shielding = 0 Smaller ionic radius = 0	
1	(d)		Lower			1	If not lower CE = 0/3	
							If blank mark on Allow does not increase	
			Two/pair of electrons in (3)p orbital or implied			1	Not 2p	
			repel (each other)			1	M3 dependent upon a reasonable attempt at M2	
1	(e)		Boron/B or oxygen/O/ O ₂			1		
Question	Marking Guidance		Mark	Comments				
2 (a)(i)	M1 M2	0 (+) 5		2	Accep	t Roman V for	M2	
(a)(ii)	I ₂ + 10HNO ₃		1	Accept multiples				
(b)	M1 IO₃ + 6H + 5I → 3I₂ + 3H₂O		2	For M	For M1, ignore state symbols			
						multiples		
						t 2½l ₂ + ½l ₂ as ons must be ca	alternative to 3l ₂	
	M2 NalO ₃ OR IO ₃ OR iodate ions OR iodate(V) ions etc.					For M2 Do not penalise an incorrect name for the correct		
			iodine in iodate ions" but NOT "iodine" alone		oxidisi	oxidising agent that is written in addition to the formula. Accept "the iodine / I in iodate ions" but NOT "iodine" alone		
	Iodine OR I ₂		1	Insist on correct name or formula				
(c)(i)		H ₂ SO ₄ + 6 H+ + 6 e [−] → S + 4 H ₂ O			Ignore	Ignore state symbols		
(c)(ii)	H ₂ SC)4 +	011 00 1 0 41120					
	H₂SC SO₄²-		8H+ + 6e ⁻ → S + 4H ₂ O			multiples		
	_		•				ence of charge on the electron	
	SO ₄ ²		8H+ + 6e ⁻ S + 4H ₂ O	1			ence of charge on the electron	
(c)(ii)	SO ₄ ² ·	ogen si	8H+ + 6e ⁻ S + 4H ₂ O	1			ence of charge on the electron	

(e)(i)	Ag⁺ + I⁻ → AgI ONLY		1	Ignore state symbols
				No multiples
(e)(ii)	The (yellow) precipitate / solid / it doe	es not dissolve / is insoluble	1	ignore "nothing (happens)"
	OR turns to a white solid			ignore "no observation"
	OR stays the same			
	OR no (visible/ observable) change			
	OR no effect / no reaction			
(e)(iii)	The silver nitrate is acidified to		1	
	react with / remove (an)ions t test	that would interfere with the		Ignore reference to "false positive"
		r ailuar praainitataa /		
	 prevent the formation of other insoluble silver compounds the 			
	test			Do not penalise an incorrect formula for an ion that is written in addition to the name.
	remove (other) ions that react	t with the silver nitrate		If only the formula of the ion is given, it must be correct
	react with / remove carbonate	e / hydroxide / sulfite (ions)		
(f)(i)	An electron donor		1	Penalise "electron pair donor"
(1)(1)	OR (readily) donates / loses / releas	ses / gives (away)		Penalise "loss of electrons" alone
	electron(s)	soor giros (amay)		Accept "electron donator"
				recept election definite
(f)(ii)	Cl₂ + 2 e - → 2 Cl -		1	Ignore state symbols
				Do not penalise absence of charge on electron
				Credit Cl₂ → 2Cl - 2e -
			<u></u>	Credit multiples
(f)(iii)	For M1 and M2, iodide ions are strong	ger reducing agents than	2	Ignore general statements about Group VII trends or about
	chloride ions, because			halogen molecules or atoms. Answers must be specific CE=0 for the clip if "iodine ions / chlorine ions QoL
	M1 Relative size of ions lodide ions / they are larger /hav	re more electron		CE-0 for the clip ii found forts / Chiofine forts QOE
	levels(shells) (than chloride ions			CE=0 for the clip if "iodide ions are bigger molecules /
	<u>radius</u>			atoms" QoL
	OR electron to be lost/outer shel further the nucleus	II/level (of the iodide ion) is		
	OR iodide ion(s) / they have great	ater / more shielding		Insist on iodide ions in M1 and M2 or the use of it / they /
	on loade long(3) rately have gree	ater / more smeraing		
	OR converse for chloride ion			them, in the correct context (or <u>chloride</u> ions in the converse argument)
	OR converse for chloride ion M2 Strength of attraction for elect	ron(s)		converse argument)
	M2 Strength of attraction for elect			
	M2 Strength of attraction for electrons and strength of attraction for electrons and strength of the electron	evel electron from (an)		converse argument)
	M2 Strength of attraction for elect The electron(s) lost /outer shell/li iodide ion(s) less strongly held by with that lost from a chloride ion	evel electron from (an)		converse argument)
	M2 Strength of attraction for electrons and strength of attraction for electrons and strength of the electron	evel electron from (an)		converse argument)
Question	M2 Strength of attraction for elect The electron(s) lost /outer shell/li iodide ion(s) less strongly held by with that lost from a chloride ion	evel electron from (an) y the nucleus compared	Mark	converse argument)
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a <u>chloride</u> ion OR converse for a <u>chloride</u> ion Marking Guida	evel electron from (an) y the nucleus compared ance		converse argument) Must be comparative in both M1 and M2 Comments
Question 3 (a)	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct re	ance	Mark 2	converse argument) Must be comparative in both M1 and M2 Comments QoL (associated with the bold statement here)
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct re yalue to 5 decimal places required	evel electron from (an) y the nucleus compared ance ference either to M _z or		Comments Comments QoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct re	evel electron from (an) y the nucleus compared ance ference either to M _z or		converse argument) Must be comparative in both M1 and M2 Comments QoL (associated with the bold statement here)
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct re value to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr (to 5dp) because either • they contain the same numb	evel electron from (an) y the nucleus compared ance ference either to M _z or d butanone) have the same		converse argument) Must be comparative in both M1 and M2 Comments QoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct revalue to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr (to 5dp) because either they contain the same number each element	evel electron from (an) y the nucleus compared ance ference either to M _z or d butanone) have the same		Comments Comments OoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct re value to 5 decimal places required M1 Compounds 1 and 3 (butanal and M _r (to 5dp) because either • they contain the same numb each element • are both C ₄ H ₈ O	ance ference either to M _r or d butanone) have the same er of atoms of the same /		converse argument) Must be comparative in both M1 and M2 Comments QoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct re value to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr (to 5dp) because either • they contain the same numb each element • are both C ₄ H ₈ O • have the same molecular for	ance ference either to M _r or d butanone) have the same er of atoms of the same /		Comments Comments OoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct re value to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr (to 5dp) because either • they contain the same numbe each element • are both C ₄ H ₈ O • have the same number of	ance ference either to M _z or I butanone) have the same eer of atoms of the same /		Comments Comments OoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct re value to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr (to 5dp) because either • they contain the same numb each element • are both C ₄ H ₈ O • have the same molecular for	ance ference either to M _z or I butanone) have the same eer of atoms of the same /		Comments Comments OoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct revalue to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr (to 5dp) because either they contain the same number each element are both C4H ₈ O have the same molecular for contain the same number of M2 Compound 2 (pentane) has a diffe	evel electron from (an) y the nucleus compared ance ference either to M _c or d butanone) have the same er of atoms of the same /		Comments Comments OoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct re value to 5 decimal places required M1 Compounds 1 and 3 (butanal and M _r (to 5dp) because either • they contain the same numbe each element • are both C ₄ H ₈ O • have the same molecular for • contain the same number of M2 Compound 2 (pentane) has a diffeeither • it has different numbers of atce	evel electron from (an) y the nucleus compared ance ference either to M _r or d butanone) have the same er of atoms of the same / mula C,H and O atoms erent M _r (to 5dp) because oms of different elements		Comments Comments OoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct revalue to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr (to 5dp) because either they contain the same number each element are both C4H8O have the same molecular for contain the same number of M2 Compound 2 (pentane) has a different	evel electron from (an) y the nucleus compared ance ference either to M _r or d butanone) have the same er of atoms of the same / mula C,H and O atoms erent M _r (to 5dp) because oms of different elements		Comments Comments OoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct re value to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr (to 5dp) because either • they contain the same numbe each element • are both C ₄ H ₈ O • have the same molecular for • contain the same number of M2 Compound 2 (pentane) has a diffeeither • it has different numbers of atc • is C ₀ H ₁₂ / only contains C and	ance ference either to M _t or I butanone) have the same er of atoms of the same / mula C,H and O atoms erent M _t (to 5dp) because oms of different elements d H		Comments Comments OoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct re value to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr (to 5dp) because either • they contain the same numbe each element • are both C ₄ H ₈ O • have the same molecular for • contain the same number of M2 Compound 2 (pentane) has a diffeeither • it has different numbers of atc • is C ₉ H ₁₂ / only contains C and • different molecular formula	ance ference either to M _t or I butanone) have the same er of atoms of the same / mula C,H and O atoms erent M _t (to 5dp) because oms of different elements d H		Comments Comments OoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison
	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct re value to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr (to 5dp) because either • they contain the same numbe each element • are both C ₄ H ₈ O • have the same molecular for • contain the same number of M2 Compound 2 (pentane) has a difficither • it has different numbers of att • is C ₉ H ₁₂ / only contains C and • different molecular formula • does not contain oxygen (ato	ance ference either to M _t or I butanone) have the same er of atoms of the same / mula C,H and O atoms erent M _t (to 5dp) because oms of different elements d H		Comments Comments OoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison
3 (a)	M2 Strength of attraction for elect The electron(s) lost /outer shell/le iodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct re value to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr (to 5dp) because either • they contain the same numbe each element • are both C ₄ H ₈ O • have the same molecular for • contain the same number of M2 Compound 2 (pentane) has a diffeeither • it has different numbers of att • is C ₉ H ₁₂ / only contains C and • different molecular formula • does not contain oxygen (ato	evel electron from (an) y the nucleus compared ance ference either to M _r or d butanone) have the same er of atoms of the same / mula C,H and O atoms erent M _r (to 5dp) because oms of different elements d H	2	Comments Comments Comments QoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison NB The word "similar" does not mean "the same"
3 (a)	M2 Strength of attraction for electing the electron(s) lost /outer shell/leiodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct revalue to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr. (to 5dp) because either • they contain the same number each element • are both C4H ₈ O • have the same molecular for contain the same number of M2 Compound 2 (pentane) has a different register. • it has different numbers of attempt to the same number of the contain the same number of the contain the same number of attempt numbers of att	evel electron from (an) y the nucleus compared ance ference either to M _t or d butanone) have the same er of atoms of the same / mula C,H and O atoms erent M _t (to 5dp) because oms of different elements d H mm) / C=O With Fehling's (solution)	2	Comments Comments Comments QoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison NB The word "similar" does not mean "the same"
3 (a)	M2 Strength of attraction for electing the electron(s) lost /outer shell/leiodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct revalue to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr. (to 5dp) because either • they contain the same number each element • are both C4H8O • have the same molecular for contain the same number of M2 Compound 2 (pentane) has a differenter • it has different numbers of atterity is C8H12 / only contains C and different molecular formula • does not contain oxygen (ato	evel electron from (an) y the nucleus compared ance ference either to M _t or d butanone) have the same er of atoms of the same / mula C,H and O atoms erent M _t (to 5dp) because oms of different elements d H mm) / C=O With Fehling's (solution) M1 Red solid/precipitate	2	Comments Comments Comments QoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison NB The word "similar" does not mean "the same" NB The word "similar" does not mean "the same"
3 (a)	M2 Strength of attraction for electing the electron(s) lost /outer shell/leiodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct revalue to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr. (to 5dp) because either • they contain the same number each element • are both C4H8O • have the same molecular for contain the same number of M2 Compound 2 (pentane) has a differenter • it has different numbers of atc • is C8H12 / only contains C and different molecular formula • does not contain oxygen (ato	evel electron from (an) y the nucleus compared ance ference either to M _c or d butanone) have the same er of atoms of the same / mula C,H and O atoms erent M _c (to 5dp) because oms of different elements d H mm) / C=O With Fehling's (solution) M1 Red solid/precipitate (Credit orange or brown	2	Comments Comments Comments QoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison NB The word "similar" does not mean "the same" NB The word "similar" does not mean "the same" NB The word "similar" does not mean "the same" NB The word "similar" does not mean "the same"
3 (a)	M2 Strength of attraction for electing the electron(s) lost /outer shell/leiodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct revalue to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr. (to 5dp) because either • they contain the same number ach element • are both C4H ₈ O • have the same molecular for contain the same number of M2 Compound 2 (pentane) has a differenter • it has different numbers of atc • is C ₈ H ₁₂ / only contains C and different molecular formula • does not contain oxygen (ato	evel electron from (an) y the nucleus compared ance ference either to M _c or d butanone) have the same er of atoms of the same / mula C,H and O atoms erent M _c (to 5dp) because oms of different elements d H mm) / C=O With Fehling's (solution) M1 Red solid/precipitate (Credit orange or brown solid)	2	Comments Comments Comments QoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison NB The word "similar" does not mean "the same" NB The word "similar" does not mean "the same"
3 (a)	M2 Strength of attraction for electing the electron(s) lost /outer shell/leiodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion Marking Guid: For 2 marks at least one correct revalue to 5 decimal places required M1 Compounds 1 and 3 (butanal and Mr. (to 5dp) because either they contain the same number each element are both C4H8O have the same molecular for contain the same number of M2 Compound 2 (pentane) has a differenter it has different numbers of atching is C8H12 / only contains C and different molecular formula does not contain oxygen (ato	evel electron from (an) y the nucleus compared ance ference either to M _c or d butanone) have the same er of atoms of the same / erent M _r (to 5dp) because oms of different elements d H mm) / C=O With Fehling's (solution) M1 Red solid/precipitate (Credit orange or brown solid) M2 (stays) blue	2	Comments Comments Comments QoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison NB The word "similar" does not mean "the same" NB The word "similar" does not mean "the same" NB The word "similar" does not mean "the same" NB The word "similar" does not mean "the same"
3 (a)	M2 Strength of attraction for election of the electron(s) lost /outer shell/leiodide ion(s) less strongly held by with that lost from a chloride ion OR converse for a chloride ion OR ion of the chloride ion OR ion of the chloride ion OR ion of the chloride ion of the	evel electron from (an) y the nucleus compared ance ference either to M _c or d butanone) have the same er of atoms of the same / erent M _c (to 5dp) because oms of different elements d H mm) / C=O With Fehling's (solution) M1 Red solid/precipitate (Credit orange or brown solid) M2 (stays) blue OR no change / no reaction	2	Comments Comments Comments QoL (associated with the bold statement here) It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A _r in the context of the comparison NB The word "similar" does not mean "the same" NB The word "similar" does not mean "the same" NB The word "similar" does not mean "the same" NB The word "similar" does not mean "the same"

Question	Marking Guidance	Mark	Comments
4 (a)(i)	Increases	1	
(a)(ii)	Decreases	1	
(a)(iii)	Increases	1	
(b)	Calcium has a higher melting point than strontium, because Correct reference to size of cations/proximity of electrons M1 (For Ca) delocalised electron(s) closer to cations / positive ions / nucleus	2	CE = 0 for reference to molecules or intermolecular forces or covalent bonds Ignore "Van der Waals forces (between atoms)" but penalise if between "molecules
	OR cations / positive ions / atoms are smaller OR cation / positive ion / atom or it has fewer (electron) shells / levels Relative strength of metallic bonding		Ignore general Group 2 statements Answers must be specific
	M2 (For Ca) has <u>stronger</u> attraction between the <u>cations / positive ions / nucleus</u> and the <u>delocalised electron(s)</u> OR stronger metallic bonding		Penalise M1 if Ca or Sr is said to have <u>more or less</u> delocalised electrons Ignore reference to shielding
	(assume argument refers to Ca but accept converse argument for Sr)		
(c)(i)	Sulfuric acid / it contains sulfate ions / SO _d ² OR Sulfuric acid would form a (white) precipitate	1	Do not penalise an <u>additional</u> but incorrect formula for sulfate ion. If only the formula of the sulfate ion is given, it must be correct
(c)(ii)	Ba ²⁺ + SO ₄ ²⁻ → BaSO ₄ ONLY	1	Ignore state symbols No multiples
Question	Marking Guidance	Mark	Comments
5 (a)	Position(al) (isomerism)	1	
(b)	H ₃ C — CH ₂	4	Penalise one mark from their total if half-headed arrows are used M1 Ignore partial negative charge on the double bond. M2 Penalise partial charges on H–Br bond if wrong way and penalise formal charges
	M1 must show an arrow from the double bond towards the H atom of the H–Br molecule M2 must show the breaking of the H–Br bond. M3 is for the structure of the secondary carbocation. M4 must show an arrow from the lone pair of electrons on the negatively charged bromide ion towards the positively charged carbon atom of either a primary or secondary carbocation.		Penalise M3 if there is a bond drawn to the positive charge Penalise once only in any part of the mechanism for a line and two dots to show a bond <u>Maximum any 3 of 4 marks</u> for wrong reactant or primary carbocation. If Br ₂ is used, <u>maximum 2 marks</u> for their mechanism Do not penalise the use of "sticks"
	NB The arrows here are double-headed		
(c)	M1 Ho? HM2H H ₃ C — CH ₃ — CH ₃ — CH ₃ CH=CHCH ₃ + H ₂ O + Br M1 must show an arrow from the lone pair on oxygen of a negatively charged hydroxide ion to a correct H atom M2 must show an arrow from a C-H bond adjacent to the C-Br bond towards the appropriate C-C bond. Only award if an arrow is shown attacking the H atom of an adjacent C-H (in M1) M3 is independent provided it is from their original molecule.	3	Penalise one mark from their total if half-headed arrows are used Penalise M1 if covalent KOH Penalise M3 for formal charge on C of the C-Br or incorrect partial charges on C-Br Penalise M3 if an extra arrow is drawn from the Br of the C-Br bond to, for example, K* Ignore other partial charges Penalise once only in any part of the mechanism for a line and two dots to show a bond. Maximum any 2 of 3 marks for wrong reactant or wrong
	Award full marks for an E1 mechanism in which M2 is on the correct carbocation.		product (if shown) or a mechanism that leads to but-1-ene Accept the correct use of "sticks" for the molecule except for the C-H being attacked

Question	Marking Guidance	Mark	Comments
6 (a)	M1 C ₆ H ₁₂ O ₆ → 2CH ₃ CH ₂ OH + 2CO ₂ (2C ₂ H ₅ OH)	5	Mark independently
	M2 fermentation		For M1 and M3 ignore state symbols and credit multiples
	M3 CH ₃ CH ₂ OH + 3O ₂ → 2CO ₂ + 3H ₂ O		For M1 and M3 penalise C ₂ H ₆ O once only
	(C ₂ H ₆ OH)		or in and the partamet of the order only
	M4 <u>A specified process</u> e.g. planting / harvesting / transport / extracting sugar / distilling ethanol solution / fertiliser production etc.		
	M5 The specified process <u>uses / burns</u> (fossil) <u>fuel that</u> releases CO ₂		For M5, "releases / increases carbon emissions" is insufficient as an alternative to releases CO ₂
·(b)	M1 sodium or potassium hydroxide / NaOH / KOH	6	Mark on to M2 from hydroxide ion
(-)	M2 depends on correct M1		Ignore OH ⁻ if KOH/ OH ⁻
	warm / heat / reflux and aqueous or (aq) or water		For M2 ignore "dilute"
	M3 nucleophilic substitution		For M2 penalise T > 100 °C
			Acidified KOH/NaOH or H ₂ SO ₄ with KOH/NaOH loses M1
	H M5		and M2
	H ₃ C — CH — Br — H ₃ C — CH — OH + Br — Br — H ₃ C — CH — OH + Br — Br		For M3, both words required
	NB The arrows here are double-headed		Penalise M4 if covalent NaOH / KOH is used
	M4 must show an arrow from the lone pair of electrons on the oxygen atom of the negatively charged hydroxide ion to the C		Penalise one mark from M4 or M5 if half-headed arrows
	atom. M5 must show the movement of a pair of electrons from the		are used Penalise M5 for formal charge on C of the C-Br or
	C— Br bond to the Br atom. Mark M5 independently provided it		incorrect partial charges on C-Br
	is from their <u>original molecule</u> .		Penalise once only for a line and two dots to show a bond.
	For M4 and M5, award full marks for an S _N 1 mechanism		For M4 and M5, maximum 1 of 2 marks if wrong reactant is used.
	M6 One statement from The yield is (very) low / not a high yield OR elimination		Penalise M5 if an extra arrow is drawn from the Br of the C-Br bond to, for example, K ⁺
	occurs / ethene formed		Do not penalise the use of "sticks"
	The rate of reaction slow		For M6 ignore references to other costs and expenses
	Bromoethane has to be manufactured / made first		
	Bromoethane is expensive		
(c)	M1 <u>concentrated</u> phosphoric acid / <u>conc.</u> H ₃ PO ₄ <i>OR</i>	4	Answers in any order
	concentrated sulfuric acid / conc. H ₂ SO ₄		Ignore reference to support medium in M1
	M2 hydration or (electrophilic) addition		
	For M3 and M4 <u>any two</u> from • <u>Excess</u> ethene		Do not apply the list principle to these three chosen criteri
			in M3 and M4
	OR Excess steam / water / H ₂ O		
	OR remove the ethanol as it forms		
	OR recycle the ethene		
	Specified Pressure		
	50 atm ≤ P ≤ 100 atm		
	OR 5000 kPa ≤ P ≤ 10000 kPa		
	OR 5 MPa ≤ P ≤ 10 MPa		A
	 <u>High</u>Temperature unless they give a value that is not in the ranges given here; 		Accept a reference to "low temperature" if they specify a correct temperature range or a correct temperature in the
	OR 300 °C ≤ T ≤ 600 °C		range
	_	1	I .

Question	Marking Guidance	Mark	Comments
7 (a)(i)	С	1	
(a)(ii)	А	1	
(a)(iii)	D	1	
(a)(iv)	В	1	
(b)	M1 Br ₂ OR bromine (water) OR bromine (in CCl ₄ / organic solvent) Either order M2 cyclohexane OR A or the alkane: remains orange / red / yellow / brown / the same OR no reaction OR reference to colour going to cyclohexane layer M3 cyclohexene OR D or the alkene: decolourised / goes colourless / loses its colour Alternatives: potassium manganate(VII) M1 KMnO ₄ in acid M2 purple M3 colourless M1 KMnO ₄ in alkali / neutral M2 purple M3 brown solid Give appropriate credit for the use of iodine and observations	3	If M1, has no reagent or an incorrect reagent, CE=0 Ignore "acidified" For M1 penalise Br (or incorrect formula of other correct reagent), but mark on For M1, it must be a whole reagent and/or correct formulae If oxidation state given in name, it must be correct. For M2 credit "no change" Ignore "nothing" Ignore "nothing happens" Ignore "no observation" For M3, ignore "goes clear" No credit for combustion observations
(c)	M1 <u>acidified potassium or sodium dichromate</u> OR eg H ₂ SO ₄ / K ₂ Cr ₂ O ₇ OR H [†] / K ₂ Cr ₂ O ₇ OR correct combination of formula and name M2 oxidation OR oxidised OR redox M3 secondary / 2° (alcohol)	3	For M1, it must be a whole reagent and/or correct formulae If oxidation state given in name, it must be correct. Do not penalise incorrect attempt at formula if name is correct or vice versa Credit acidified potassium chromate(VI) / H ₂ SO ₄ + K ₂ CrO ₄
(d)	M1 (free-) <u>radical substitution</u> (mechanism) M2 Br ₂ → 2Br• M3 Br• + CH ₄ → • CH ₃ + HBr M4 Br ₂ + • CH ₃ → CH ₃ Br + Br• M5 Condition ultra-violet / uv / sun light OR <u>high</u> temperature OR 125 °C ≤ T ≤ 600 °C OR 400 K ≤ T ≤ 870 K	5	M1 both words required Penalise absence of dot once only. Penalise + or – charges every time Accept dot anywhere on methyl radical Accept a <u>correct</u> termination step for 1 mark if neither M3 nor M4 are scored; otherwise ignore termination steps Mark independently NB If Cl ₂ is used, penalise every time (this may be for M2,M3 and M4) If cyclohexane is used, penalise every time (this may be for M3 and M4) For M5 ignore "heat"