GCE MARKING SCHEME

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2012 examination in GCE CHEMISTRY. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

CH1
 Section A

1.

2. $1 / 12^{\text {th }}$ mass of one atom of carbon-12.
3. C
4.
(a)

C	O	Cl
$\frac{12.1}{12}$	$\frac{16.2}{16}$	$\frac{71.7}{35.5}$
1.01	1.01	2.02
1	1	2
Formula $=\mathrm{COCl}_{2}$		

(b) $\quad \mathrm{M}_{\mathrm{r}}$ / molecular mass / number of atoms of any element in compound
5. (a) C B D E A
(1 mark if one mistake e.g. A in wrong place)
(b) \mathbf{Z}
(1)

Si is in Group 4 therefore large jump in ionisation energy would be after the fourth ionisation, not before it / \mathbf{W}, \mathbf{X} and \mathbf{Y} have a large jump before the fourth ionisation energy so cannot be in Group 4
(1)
[2]

Total [10]

Section B

6. (a) (i) 12
(ii) 14
(iii) Percentage / abundance / ratio / proportion of each isotope
(b) (i) 0.125 g
(ii) e.g. Cobalt-60 (1) in radiotherapy (1) / Carbon-14 (1) in radio carbon dating (1) / lodine-131 (1) as a tracer in thyroid glands (1)
(c) (i) Atoms are hit by an electron beam / electrons fired from an electron gun (and lose electrons)
(ii) To be able to accelerate the ions (to high speed) / so that they can be deflected by a magnetic field - no credit for 'so that atoms can be deflected...'
(iii) They are deflected by a magnetic field / according to the m / z ratio
(d)
1s
2s
$2 p$
3s
$3 p$

(e) (i)
(i)
$\mathrm{Mg}_{3} \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{3}$
(ii) moles $\mathrm{Mg}(\mathrm{OH})_{2}=1.75 / 58.32=0.0300$ (1)
moles $\mathrm{Mg}_{3} \mathrm{~N}_{2}=0.0100$ (1)
mass $\mathrm{Mg}_{3} \mathrm{~N}_{2}=0.01 \times 100.9=1.01 \mathrm{~g}(1)$

- must be 3 significant figures to gain third mark

7. (a) Plotting

Best fit line
(2)
(b) (i) C
[3]

Curve steeper

(1)
(1)
(ii) Concentration of acid is greatest
(c) $\quad 44 \mathrm{~cm}^{3}\left(\pm 1 \mathrm{~cm}^{3}\right)$
(d) Moles $\mathrm{Mg}=0.101 / 24.3=0.00416$

Moles $\mathrm{HCl}=2 \times 0.02=0.04$
[2]
(e) (i) Mg is not the limiting factor /

Mg now in excess / HCl not in excess
(ii) Moles acid $=0.5 \times 0.04=0.02$

Volume $\mathrm{H}_{2}=0.01 \times 24=0.24 \mathrm{dm}^{3}$

- correct unit needed
(f) Lower the temperature of the acid

Reactants collide with less energy
Fewer molecules that have the required activation energy (1)[3]
or Use pieces of magnesium (1) less surface area (1) less chance of successful collisions (1)
QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter.
8. (a) Oil is non-renewable / will run out

Contribution of CO_{2} to global warming
Oil has other important uses
(Maximum 2 marks)
(b) (i) Power stations / fossil fuels used to generate the electricity needed to make H_{2} (1)

Resulting in CO_{2} formation (global warming) / acid rain (1)
Manufacture of car produces pollution (1)
(Maximum 2 marks)
QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning
(ii) Disagree, no fuel is 100% safe /
petrol can burn explosively
(Accept agree if valid reason given e.g. in terms of lives being lost)
(c) (i) Hydrogen since frequency is inversely proportional to wavelength / smaller wavelength
(ii) Hydrogen since energy is proportional to frequency / greater frequency / $\mathrm{E}=\mathrm{hf}$
(d) In Ne greater shielding of outer electron (1) outweighs larger nuclear charge (1) / He has greater effective nuclear charge (1) / He outer electron closer to nucleus (1)

- max 1 if no reference to outer electron
(Maximum 2 marks)
(e) (i) ${ }^{218} \mathrm{Po}$
(ii) Since radon is a gas / inhaled, a particles will be given off in the lungs (which may cause cancer)

9. (a) Low temperature

As temperature is decreased equilibrium moves in exothermic direction.

High pressure
As pressure is increased equilibrium moves towards side with smaller number of gas moles
QWCThe information is organised clearly and coherently, using specialist vocabulary where appropriate
(b) Δ Hreaction $=\Delta H_{f}$ products $-\Delta \mathrm{H}_{\mathrm{f}}$ reactants
$-46=\Delta H_{f}$ ethanol $-(52.3-242)$
$\Delta \mathrm{H}_{\mathrm{f}}$ ethanol $=-46-189.7$
ΔH_{f} ethanol $=-235.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) Bonds broken $=1648+612+926=3186 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Bonds formed $=2060+348+360+463=3231 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta \mathrm{H}$ reaction $=3186-3231=-45 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) (i) Average bond enthalpies used (not actual ones)
(ii) Yes, since answers are close to each other
(e) Catalyst is in different (physical) state to reactants
(f)

10. (a) Weighing bottle would not have been washed / difficult to dissolve solid in volumetric flask / final volume would not necessarily be $250 \mathrm{~cm}^{3}$
(b) Pipette
(c) To show the end point / when to stop adding acid / when it's neutralised
(d) So that a certain volume of acid can be added quickly before adding drop by drop / to save time before doing accurate titrations / to give a rough idea of the end point
(e) To obtain a more reliable value
(f) (i) Moles $=0.730 / 36.5=0.0200$

Concentration $=0.02 / 0.1=0.200 \mathrm{~mol} \mathrm{dm}^{-3}$
(1) [2]
(ii) Moles $=0.2 \times 0.0238=0.00476$
(iii) 0.00476
(iv) $0.00476 \times 10=0.0476$
(v) $\quad M_{r}=1.14 / 0.0476=23.95$
(vi) Lithium
[1]

- mark consequentially throughout (f)

Total [12]

Section B Total [70]

CH2

SECTION A

Q. 1 (a) $\mathrm{C}_{19} \mathrm{H}_{40}$
(b) $\mathrm{C}_{19} \mathrm{H}_{40} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{C}_{11} \mathrm{H}_{22} \quad$ - allow ecf
Q. 2 2-chlorobutane
Q. 3

Q. 4 any number in range 1 to 6
Q. 5 (a) maximum mass $=44-45$ (g)
(b) (less solute would form as a solid) because more will remain in the solution
Q. 6 (a) iodine force is Van der Waals/ induced dipole-induced dipole (1)
diamond force is covalent bond/ description of attractive forces in a covalent bond (1)
(b) diamond would have a higher sublimation temperature because it has stronger forces/ forces are harder to break

SECTION B

Q. 7 (a) (i) one σ bond/ description of σ bond/ diagram to show overlap of s orbitals (1)
one π bond/ description of π bond/ diagram to show sideways overlap of p orbitals (1)
(ii) joining of many/lots of (small) units or many alkenes / molecules to make a large/long unit/ molecule
(iii)

(iv) $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{Cl}$
(b) (i) BF_{3} is planar triangular/ trigonal planar (1)
NH_{3} is pyramidal/ trigonal pyramid (1)
(ii) BF_{3} has 3 bond pairs (1)
NH_{3} has 3 bond pairs and 1 lone pair (1)

QWC the information is organised clearly and coherently, using specialist vocabulary where appropriate
(c) (i) co-ordinate/ dative covalent/ dative

- no credit for 'covalent'
(ii) $1091^{1} 2^{\circ}$ (accept any in range $109^{\circ}-110^{\circ}$)
(iii) 4 bond pairs/ bonds (around B)
- no credit for 'tetrahedral'
Q. $8 \quad$ (a) (i) $\quad \% \mathrm{H}=14.3$ (1)

$$
\begin{align*}
& \mathrm{C}: \mathrm{H}=\frac{85.7}{12.0}: \frac{14.3}{1.01}=7.14: 14.16(1) \\
& \text { empirical formula }=\mathrm{CH}_{2}(1) \tag{3}
\end{align*}
$$

(ii) $\quad M_{r}=42 /$ largest fragment has mass 42 (1)
$\left(\mathrm{CH}_{2}=14\right)$ therefore molecular formula $=\mathrm{C}_{3} \mathrm{H}_{6}$ (1)
(iii) CH_{3} is present
(b) 1 mark for each

Total [9]
Q. 9 (a) apparatus in which reaction can occur, e.g. flask/ test tube, and delivery/ rubber tube (1)
apparatus in which to measure volume of gas, e.g. over water with measuring cylinder/ gas syringe (1)
(b) (i) fewer moles of barium used / barium has a higher A_{r}
(ii) reaction faster/ more vigorous/ less cloudy solution formed with barium (1)
because ionisation energy of barium is less/ electrons lost more easily from barium/ barium is lower in the group/ barium hydroxide is more soluble (1)
(c) flame test (1) brick red for calcium and (apple) green for barium (1)

OR

add sulfuric acid/ sodium sulfate solution/ potassium sulfate solution (1)
white precipitate with Ba^{2+}, less precipitate/ no precipitate with Ca^{2+} (1)
(d) electrons correct - oxide ion clearly shows that 2 electrons originated from calcium atom (1)
charges correct (1)
(e) (i) add sulfuric acid/ sodium sulfate solution/ potassium sulfate solution (1)
filter (1)

$$
\mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{BaSO}_{4}(1) \quad \text { - state symbols ignored }
$$

(ii) moles $\mathrm{Ba}=2 / 137$ (1)

$$
\begin{equation*}
\text { mass } \mathrm{BaSO}_{4}=\underline{2 \times 233.1}=3.4(\mathrm{~g})(1) \tag{2}
\end{equation*}
$$

Q. 10 (a) both contain metallic bonds/ positive ions and delocalised electrons labelled on diagram (1)
those in magnesium are stronger/ harder to break/ need more energy to break (1)
because 2 electrons are involved in delocalisation/ attraction to the positive ions (1)
(b) reaction is hydrolysis of halogenoalkane/ nucleophilic substitution of halogenoalkane (1)
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{X}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{X}^{-} \quad \mathrm{X}$ can be Cl or $\mathrm{Br}(1)$
(white precipitate is) silver chloride and (cream precipitate is) silver bromide (1)
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgX}(\mathrm{s})$ or $\mathrm{AgNO}_{3}+\mathrm{X}^{-} \rightarrow \mathrm{AgX}+\mathrm{NO}_{3}{ }^{-}$

- state symbols ignored

QWC selection of form and style of writing appropriate to purpose and to complexity of subject matter
(c) caesium ions are bigger than sodium ions - accept 'atoms' (1)
co-ordination number $6: 6$ for sodium and $8: 8$ for caesium (1)
both cubic (1)
(d) reaction is electrophilic addition (1)
two possible products are 1-bromopropane and 2-bromopropane (1)
more 2-bromopropane formed (1)
because of greater stability of intermediate positive ion/ 2° carbocation

QWC legibility of text; accuracy of spelling, grammar and punctuation, clarity of meaning
Q. 11 (a) diagram completed with at least 1 water molecule and indication of interaction between O on one molecule and H on the other (1)
interaction between δ^{+}on H and lone pair on O (1)
interaction labelled hydrogen bond (1)
(b) (i) reduction/ redox - accept 'oxidation'
(ii) $\mathrm{I} \quad \mathrm{OH}$

II $\quad \mathrm{OH}$ is also present in water
(c) (i)

(ii) peak at 1650-1750 (1)
due to $\mathrm{C}=\mathrm{O}$ (1)
Q. 12 (a) incomplete p sub-shell/ outer electron configuration $s^{2} p^{5} /$ outer electrons in p subshell/ outer electrons in p orbitals/ valence electrons in p subshell/ valence electrons in p orbital
(b) (i) gaining one electron completes shell/ gives $\mathrm{p}^{6 /}$ takes an electron from another species/gains an electron

- do not accept 'attracts an electron'
(ii) fluorine because it is the smallest/ has the greatest electron affinity/ has the least shielding/ has the greatest effective nuclear charge/ oxidising power decreases as the group is descended
(c) oxidation state is $(+) 5 / \mathrm{V}$ - do not accept '5+'
(d) (i) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{\bullet} \quad$ - ignore hf
(ii) $\mathrm{CH}_{4}+\mathrm{Cl}^{\bullet} \rightarrow \mathrm{HCl}+{ }^{\bullet} \mathrm{CH}_{3}(1)$

$$
\begin{equation*}
{ }^{\bullet} \mathrm{CH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}^{\bullet} \tag{2}
\end{equation*}
$$

(e) products: ${ }^{\bullet} \mathrm{CFH}_{2}$ and Cl^{\bullet} (1)

C-Cl bond is the weakest/ most easily broken (1)

CH4

Question 1

(a) Any valid ester structure with formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$

Examples:

(b) (i) Compound X
(ii)

(iii) Rotate the plane of polarised light in opposite directions
(c)

Reagent(s)	Observation if the test is positive	Compound(s) that would give a positive result
$\mathrm{I}_{2} / \mathrm{NaOH}(\mathrm{aq})$	Yellow solid	X
$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$	Bubbles of colourless gas effervescence	X, Z
$\mathrm{FeCl}_{3}(\mathrm{aq})$	Dark purple/blue/green - do not accept 'precipitate'	$(1$ mark for each box) \quad [6]

(d) (i) Heat / Alkaline / Potassium manganate(VII) / then acidify
(1 mark for Potassium manganate +1 other point; 2 marks for all)
(ii) I. Addition polymer - One large molecule formed only / Condensation polymer - one large molecule with small molecules (e.g. water) lost.

Addition polymer - one starting material / Condensation - two starting materials OR Addition polymer - one functional group in each molecule/ Condensation polymer two functional groups in each molecule
(1)
II.

(e) (i) $\mathrm{NaBH}_{4} / \mathrm{LiAlH}_{4}$ or name(1)

- ignore conditions unless LiACH_{4}

Reduction (1)
[2]
in water
(ii)

Accept structures with only one -OH group reacted.
(iii)

Question 2

(a) (i) Alanine forms a zwitterion (1)

Forces between alanine molecules are ionic bonding (1)
Ionic bonding much stronger than hydrogen bonding / van der Waals (1)
Max 2 marks [2]
(ii) 1 mark for each correct structure

(iii) 1 mark for correct identification of peptide link
(b) Enzymes / Structural proteins / Hormones or specific example
(c) 1 mark for arrows in first stage; 1 mark for correct intermediate; 1 mark for arrow giving gain of proton in second stage (from HCN or from H^{+}).

(d) Soda lime

Question 3

(a) (i)

Phthalide

(ii)

(b) Distillation / Chromatography
(c) Hydrogenation of 3-butyl phthalide removes a benzene ring (1)

Benzene ring is more stable than alkene/ Reference to delocalisation energy (1) [2]
(d) 62.1\%
(e) (i) Greater variety of different phthalides that can be produced
(ii) Higher atom economy / less waste / carbon monoxide is toxic

- do not accept references to yield
(f) Silver nitrate and ammonia / Tollen's reagent (1); $\mathrm{Q}=$ Silver mirror (1); $\mathrm{R}=\mathrm{No}$ reaction (1)
OR 2,4,-DNP (1); Orange precipitate with Q (1); No reaction with R (1) OR Fehling's solution (1); Orange solid with Q (1); No reaction with R (1)

Question 4

(a) (i) Nucleophilic substitution / Hydrolysis
(ii) Dissolved in alcohol (1) Propene or unambiguous structur
(1)
[2]
(iii) Potassium manganate(VII) / Potassium dichromate(VI) - must be name Oxidation (1)
(iv) (Add Potassium dichromate(VI)) and distil off the propanal from the reaction mixture
(b) (i) Step 1: Potassium cyanide in ethanol / Heat (1)

Step 2: Heat with aqueous hydrochloric acid (or other acid) (1)

(ii) Two points from different bullet points - 1 mark each.

- Atom economy / Amount of waste / Whether waste material was recyclable / Whether waste was toxic.
- Amount of energy required / temperature required / pressure required / conditions used
- Rate of production / time
- Availability of catalyst
- Cost of reactants / Availability of reactants / toxicity of reactants.
- Two step processes usually have lower yields than one step processes / percentage yield
- Purification method / separation
(c) (i) Butanoic acid is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ so $\mathrm{M}_{\mathrm{r}}=88$

Percentage carbon $=48 / 88 \times 100=54.5 \%$; percentage hydrogen $=8 / 88=9.1 \%$;
Percentage oxygen $=32 / 88=36.4 \%$ (At least two of these for 1)
OR empirical formula for butanoic acid $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ (1) and
calculate empirical formula from percentage masses $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ (1)
(ii) Structure 1 mark + 4 marks for explanations.

- Product is ethyl ethanoate. (1)
- Two points from the following required for each mark- MAX 4 marks
- Sweet-smelling = ester
- Peak at 1.0ppm implies $-\mathrm{CH}_{3}$
- Peak area $3=\mathrm{CH}_{3}$
- Peak area $2=\mathrm{CH}_{2}$
- Triplet shows CH_{3} is next to a CH_{2} group.
- Singlet shows CH_{3} no hydrogen atoms bonded to adjacent carbon.
- Peak at 2.1 ppm suggests this is next to $\mathrm{C}=0$.
- Quartet shows CH_{2} is adjacent to a CH_{3} group.
- Peak at 4.0 ppm shows it is $-\mathrm{O}-\mathrm{CH}_{2}-$
- IR Peak at $1752 \mathrm{~cm}^{-1}=\mathrm{C}=\mathrm{O}$
- IR Peak at $2981 \mathrm{~cm}^{-1}=\mathrm{C}-\mathrm{H}$ or $\mathrm{O}-\mathrm{H}$
- Cannot be -OH as we know there is no -OH in NMR spectrum

QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter. (1)

QWC: organisation of information clearly and coherently; use of specialist vocabulary where appropriate. (1)

Question 5

(a) (i) (Concentrated) nitric acid / (concentrated) sulfuric acid / Temperature of $40-80^{\circ} \mathrm{C}$ (Any 2 = 1 mark; All 3 = 2 marks)
Electrophilic substitution (1)
(ii) I. Peak area is proportional to amount of substance (1)

Percentage $=(30 / 38) \times 100=79 \%$
(Can obtain both marks from correct percentage)
II. $45=\mathrm{COOH}^{+}, 46=\mathrm{NO}_{2}{ }^{+}, 122=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}{ }^{+}$and $167=\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4}{ }^{+}$.
(Any 2 = 1 mark; All 4 = 2 marks)
(iii) I. Lower melting point / melts over a range
II. 1 mark for each point.

- Dissolve in the minimum volume
- Of hot water
- Filter hot
- Allow to cool
- Filter
- Dry residue under suction / in oven below $142^{\circ} \mathrm{C}$

QWC: legibility of text, accuracy of spelling, punctuation and grammar, clarity of meaning.[1]
(b) (i) Tin and concentrated hydrochloric acid
(ii) Below $10^{\circ} \mathrm{C}$ (1)

(1)
(iii) $\mathrm{N}=\mathrm{N}$ double bond is chromophore (1)

Compound absorbs blue /green / complementary colours to red / all colours but red (1)
Remaining frequencies are transmitted, giving the red colour seen. (1)
Any 2 out of 3
(c) Nitrogen has a lone pair (1) which can accept a proton (1)

CH5

SECTION A

1. (a) $1 \mathrm{dm}^{3}$ at $20^{\circ} \mathrm{C}$ contains 52.9 g and at $0^{\circ} \mathrm{C}$ it contains 17.5 g
\therefore amount crystallised $=52.9-17.5=35.4 \mathrm{~g}$ (1)
(b) (i) 2 mol of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ give 1 mol of O_{2}

2 mol of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ give $29.0 \mathrm{dm}^{3}$ of $\mathrm{O}_{2} \quad$ (1)
$\therefore \quad 0.1 \mathrm{~mol}$ of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ gives $29.0 / 20=1.45 \mathrm{dm}^{3}$ of oxygen (1)
(ii) Measure the volume of oxygen produced at specified time intervals /

Measure the pH of the solution at specified time intervals
(c) (i) An (inert) electrode that is used to carry the charge / current / electron flow
(ii) A comment on the relative values (e.g. the persulfate system is the more positive of the two systems)
(1)

The more positive 'reagent' / persulfate ions acts as the oxidising agent, accepting electrons via the external circuit (1)

- must have the first mark to get second
(d) (i) The experiments show that both the concentrations of iodide and persulfate have doubled (1) therefore the initial rate should increase four times

$$
4 \times 8.64 \times 10^{-6}=3.46 \times 10^{-5}
$$

(ii) Rate $=\mathrm{k}\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{I}^{-}\right]$

$$
\begin{align*}
\therefore \mathrm{k} & =\frac{8.64 \times 10^{-6}}{0.0400 \times 0.0100} \tag{1}\\
& =0.0216(1) \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \tag{1}
\end{align*}
$$

(iii) In the rate equation one $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ ion reacts with one I^{-}ion.

The rate-determining step therefore has to have 1 mole of each reacting, as (only) seen in step 1
(1) for correct sign (1) for correct number
(b) (i) hydration \qquad lattice breaking
(ii) e.g. add a small 'amount' of an alkali / sodium hydroxide / $\mathrm{NaOH} / \mathrm{OH}^{-}$ions (1) this would remove / react with hydrogen ions giving water, shifting the position of equilibrium to the left (removing iodine) add $\mathrm{Pb}^{2+} / \mathrm{Ag}^{+}$ect.
(c) (i) Any TWO from
white / misty fumes (of HI)
yellow solid / solution (of sulfur)
brown / black solid / purple vapour (of iodine)
bubbles / effervescence / fizzing
One mark for each correct response
(ii) The values show that chlorine is the best oxidising agent, as it has the most positive E^{θ} value and therefore iodide is the better reducing agent (1) and is 'strong' enough to reduce the sulfuric acid. / OWTTE (1)
(d) (i) $2 \mathrm{NaOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaOCl}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
(ii) e.g. bleach, kills bacteria
3. (a) (i)

$$
\text { Number of moles of EDTA }=\frac{19.20 \times 0.010}{1000}=1.92 \times 10^{-4} / 0.000192
$$

- error carried forward throughout (a)
(ii) $1.92 \times 10^{-4} / 0.000192$
(iii) Concentration $=\frac{1.92 \times 10^{-4} \times 1000}{50}=3.84 \times 10^{-3} / 0.00384 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\begin{equation*}
\text { Concentration }=3.84 \times 10^{-3} \times 63.5=0.244 \mathrm{~g} \mathrm{dm}^{-3} \tag{1}
\end{equation*}
$$

(iv) $\% \mathrm{Cu}=\frac{0.244 \times 100}{11.56}=2.11$
(b) Transition elements have either a partly filled 3d sub-shell or form ions that have a partly filled 3 d sub-shell
However copper forms Cu^{2+} ions that are ' $3 \mathrm{~d}^{9}$ ' / partly filled 3 d sub-shell (1)
whereas Zn^{2+} ions are ' $3 \mathrm{~d}^{10}$, / full 3 d sub-shell (1) - any 2 from 3
QWC Organisation of information clearly and coherently; use of specialist vocabulary where appropriate.
(c)

Complex ion	Shape	Colour
$\left[\mathrm{CuCl}_{4}\right]^{2-}$	tetrahedral	yellow / lime green
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$	octahedral	deep blue

Any two correct (1) all correct (2)
(d) The more negative the ΔH_{f} value the more stable the oxide (1)

PbO is relatively the more stable / CuO is relatively the less stable (1)
(e) (i) Any TWO from
variable oxidation states
partially filled 3d energy levels
ability to adsorb 'molecules'
ability to form complexes with reacting molecules / temporary / co-ordinate bonds
One mark for each correct response
(ii) e.g. to allow lower pressures / temperatures
use recyclable catalysts - needs qualifying
longer lasting / less toxic catalysts

SECTION B

4. (a)
$\mathrm{CO} \rightarrow$
C +2
$\mathrm{CO}_{2} \rightarrow+4$
Increase of (positive) oxidation number $=$ oxidation $/$ reducing agents themselves are always oxidised are always oxidised (1)

OR

$$
\begin{equation*}
\mathrm{I}_{2} \mathrm{O}_{5} \rightarrow \mathrm{I}+5 \quad \mathrm{I}_{2} \rightarrow \mathrm{I}_{2} \quad 0 \tag{1}
\end{equation*}
$$

Oxidation number of iodine reduced, reduction occurring, CO reducing agent
(b) $\quad+2$ state becomes mores stable down the group and +4 becomes less stable.
(c) (i) Add (a little) sodium hydroxide solution (1) to each solution. A white precipitate (1) of aluminium / lead(II) hydroxide (1) is seen. When more sodium hydroxide solution is added these precipitates (dissolve giving a colourless solution). (1)

QWC Legibility of text: accuracy of spelling, punctuation and grammar; clarity of meaning.
(ii) Yellow precipitate (1) $\mathrm{Pb}^{2+}+2 \mathrm{I}^{-} \rightarrow \mathrm{PbI}_{2}$
(d) (i) The bonding of aluminium in the monomer has not completed the octet / suitable diagram / 6 electrons in its outer shell (1) When the dimer is formed this octet of bonded electrons is formed

(ii) (As a catalyst) in the chlorination of benzene / making ionic liquids
(iii) I The number of (gaseous) species is increasing, leading to less order

II For the reaction to be just spontaneous $\Delta \mathrm{G}=0$
substituting $0=60000-88 \mathrm{~T}$

$$
\begin{equation*}
\mathrm{T}=60000 / 88=682 \mathrm{~K} / 409^{\circ} \mathrm{C} \tag{1}
\end{equation*}
$$

 $\left[\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})\right]$

$$
\begin{array}{ll}
\therefore & 1.26 \times 10^{-5}=\left[\mathrm{H}^{+}\right]^{2} / 0.10 \\
\therefore & {\left[\mathrm{H}^{+}\right]^{2}=1.26 \times 10^{-6} \quad[1]} \\
\therefore & {\left[\mathrm{H}^{+}\right]=\sqrt{ } 1.26 \times 10^{-6}=1.12 \times 10^{-3} / 0.00112} \tag{1}
\end{array}
$$

- error carried forward

$$
\begin{equation*}
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=-\log _{10} 1.12 \times 10^{-3}=2.95 \tag{3}
\end{equation*}
$$

Total [20]
5. (a) (i)

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{pSO}_{3}(\mathrm{~g}) \times \mathrm{pNO}(\mathrm{~g})}{}
$$

(1) there are no units (1)
(ii) The line for $\mathrm{SO}_{3} / \mathrm{NO}$ at equilibrium should be above the $\mathrm{SO}_{2} / \mathrm{NO}_{2}$ line (1) as K_{p} has a value of 2.5, the partial pressures of SO_{3} and NO at equilibrium will be greater than the partial pressures of SO_{2} and NO_{2}.
(1)

- accept answer in terms of alternative calculated K_{p} value
The line for equilibrium should start at 9 hours. (1) as at equilibrium the concentrations is unchanged as time progresses. (1)

There may be other acceptable forms of explanation to be discussed at the conference
(iii) If the temperature rises then the position of equilibrium will move to the left, (reducing the quantities of SO_{3} and NO). (1)
This will make the value of K_{p} smaller. (1)
(b) (i) Nitric acid is a strong acid and its pH is low / $<2 / 1.0$ (1)

As aqueous ammonia is added the pH slowly rises (1) until a pH of ~ 3 is reached, when it rises rapidly
At a pH of 8-9, it tails off slowly as ammonia is a weak base. (1)
Accept any 3 from 4
Selection of a form and style of writing which is appropriate to purpose and to complexity of subject matter
(ii) The equivalence point is reached when $20.0 \mathrm{~cm}^{3}$ of ammonia solution has been added as this is at the mid point of the more vertical section. (1)

Since both reagents have the same concentration and the volumes used are both $20 \mathrm{~cm}^{3}$ / the same, the number of moles of each are the same (1)

OR the number of moles of both nitric acid and aqueous ammonia are calculated (0.0020) and shown to be the same (1)

$$
\therefore \text { Mole ratio must be } 1: 1 \text { (1) }
$$

(iii) I Ammonium nitrate is the salt of a strong acid and weak base / there is a buffering effect in operation.
II ~ 5.5
(iv) Blue, as bromophenol blue is blue at a pH of 4.7 and above
(c) Number of moles of ammonium nitrate $=\frac{40}{80}=0.50$

- error carried forward

Concentration of ammonium nitrate solution $=\frac{0.5 \times 1000}{200}=2.5 \mathrm{~mol} \mathrm{dm}^{-3}$
\therefore Temperature drop $=2.5 \times 6.2=15.5^{\circ} \mathrm{C}$ (1)

WJEC
$\frac{\text { WJEC }}{\text { CBAC }}$
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

