Question			Expected Answers	Marks	Additional Guidance
1	a	i	dinitrogen oxide / nitrogen(I) oxide / dinitrogen(I) oxide \checkmark	1	ALLOW dinitrogen monoxide IGNORE gaps
	a	ii	```\(: \mathrm{N}_{\underset{+}{+}}^{\stackrel{+}{+}} \mathrm{N}+\underset{-}{\stackrel{\mathrm{O}}{\mathrm{O}}:}\) dative bond \(\checkmark\) completely correct \(\checkmark\) shape - linear \(\checkmark\) (depends on diagram - see advice)```	3	To score first mark there must be (only) two electrons of the same symbol between the nitrogen and oxygen ALLOW (for this mark) if they are oxygen's electrons. To score the second mark there must be alternating dots and crosses for the elements' electrons as one moves from N to N to O ALLOW shared electron pairs horizontally (eg •+) ALLOW alternatives to linear, eg "straight" or 180 IGNORE 'planar' IF diagram is wrong, use it to determine shape mark: - No diagram no mark - No lone pairs on central N: linear, etc - One or two lone pairs/single electrons: bent (NOT triangular), allow 120 ± 2 or 109 ± 2 as appropriate
	b	i	+5 \checkmark +1 \checkmark	2	5, 1 does not score. 5+, 1+ scores 1
	b	ii	$10 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-}+8 \mathrm{e}^{-} \rightarrow \mathrm{N}_{2} \mathrm{O}+5 \mathrm{H}_{2} \mathrm{O}$ 10 AND $5 \checkmark 8 \checkmark$ Mark separately	2	Each piece of additional material in the equation CONs a mark
	b	iii	(nitrogen / nitrate) gain of electrons \checkmark oxidation number / state of nitrogen goes down / goes from $(+) 5$ to $(+) 1$ (or ecf from b(i), provided this is a fall)	2	'gain of electrons' need not be qualified but any other reagents quoted apart from nitrogen/nitrate are CON IGNORE answers in terms of oxygen lost IGNORE what has gained electrons Answers can both be on same line NB-1(b)(i) answer line is shown on the screen to allow for ecf
	b	iv	nitrogen (in compounds) /nitrate(s): is less available to plants / crops is needed by plants / crops is a fertiliser makes plants / crops grow (AW) \checkmark	1	For the mark, nitrate or 'nitrogen' is needed (ALLOW N but NOT N_{2}), AND an indication of its availability / need by plants OR fertiliser function IGNORE '(nitrogen) is reduced', implying less of it

Question		Expected Answers	Marks	Additional Guidance
c		33\% N OR 1:2 by moles (stated or implied) OR two-thirds oxygen \checkmark $\mathrm{NO}_{2} \checkmark$ no ecf from the wrong working Mark separately	2	Answer alone scores 1 (NOT 2) if first marking point is not scored IGNORE Multiples of $\mathrm{NO}_{2}\left(\mathrm{eg} \mathrm{N}_{2} \mathrm{O}_{4}\right)$ but working can score
d	i	 backbone with O atoms attached \checkmark completely correct \checkmark	2	ALLOW CH ${ }_{2}$ etc for first mark must be full structural to score second mark ALLOW dashes or numbers on R , but no other representation of acid side-chain scores 1
d	ii	instantaneous (dipole) - induced dipole/ permanent (dipole) - permanent dipole \checkmark intermolecular bonds are similar stated or implied OR imb formed are stronger than / similar to those broken \checkmark Mark separately	2	ALLOW either or both types as imb for either compound or between compounds (ALLOW permanent dipole - induced dipole between). Hydrogen bonds are CON. NOT abbreviations of bond descriptions for this mark IGNORE references to molecules being non-polar eg 'both have....' give this mark, even if imb stated is wrong but reference to covalent bonds is CON to this mark

Question		Expected Answers	Marks	Additional Guidance
e	i		3	ALLOW carboxylic acid groups in any orientation Ignore 'drafting' lines, give BOD if possible no ecf for non-skeletal structures for more than one compound CON O-H on first appearance, then allow as ecf - including 2(a) -OH connected through the H is a CON only the first time it occurs
e	ii	$\begin{aligned} & 190 \text { and } 226 \checkmark \\ & 190 \times 100 / 226=84 / 84.1 \% \end{aligned}$	2	Full marks for correct answer with no / inaccurate working shown. 64.6/65 with no working scores 1 Second mark is for writing a ratio of two numbers (including eg ' $100+2 \times 63$ ') and correctly evaluating the answer (but NOT if answer >100\%) ALLOW 100\% ALLOW 2 or more sig figs (allow any value between 84 and 84.1)
		Total	22	

Question			Expected Answers	Marks	Additional Guidance
2	a		 2-methylpropan-2-ol / methylpropan-2-ol \checkmark Mark separately - no ecf	2	Ignore 'drafting' lines, give BOD if possible ALLOW other skeletal representations, including O of OH must be attached to carbon (see rule in 1ei) ALLOW ecf on O-H if it occurred in 1ei and mark was not awarded because of this NOT three-dimensional representations with wedges and dashes IGNORE dashes, commas, gaps in name ALLOW 'methly' but no other mis-spellings
	b	i	carbon with OH is attached to three other carbons / methyl (groups) / alkyl (groups) / R (groups) OR carbon with OH has no hydrogens / only carbons attached \checkmark	1	It must be clear that the carbon is being referred to ALLOW 'central carbon' instead of 'carbon with OH^{\prime}
	b	ii	from: orange/yellow \checkmark to: green/blue butanone Mark separately	3	DO NOT ALLOW other colours apart from mixtures or shades of those given ALLOW butan-2-one (ignore dashes, brackets commas and gaps) IGNORE formula

Quest	stion	Expected Answers	Marks	Additional Guidance
c	c	 the two alcohols with hydrogen bond between O and H AND linear O-H-O \checkmark lone pair on oxygen pointing down hydrogen bond partial charges on both oxygens and hydrogen \checkmark Mark separately	3	Hydrogen bond can be represented by a dashed line but NOT a solid line (unless labelled as 'hydrogen bond') ALLOW 'OH' for $\mathrm{O}-\mathrm{H}$ Representation of alcohols can be in any way that indicates their structures (ALLOW missing Hs), provided OH groups are clear. ALLOW ecf from wrong alcohol structure in 2 a ALLOW ambiguous attachment of alkyl groups (eg via Hs) but not OH (see rule in 1di) Ignore 'drafting' lines, give BOD if possible If only an incorrectly positioned hydrogen bond is drawn (eg to alkyl H) it scores zero out of three. But...If there is more than one hydrogen bond: - Incorrectly positioned hydrogen bonds CON the first mark - IGNORE any extra correctly positioned hydrogen bonds - Mark the best hydrogen bond - A 'square' of two hydrogen bonds can be considered for all except the first mark

Quest	tion	Expected Answers	Marks	Additional Guidance
d	d	$\text { instantaneous (dipole) - induced dipole bonds/forces } \checkmark$ (intermolecular bonds) are weaker in t-butanol / less energy (or heat) required to: break (intermolecular bonds) in t-butanol / separate molecules in t-butanol ORA \checkmark t-butanol molecules/chains OR t-butanol: can't get as close together / don't line up / don't pack/stack together so well/so easily / less areas of contact ORA \checkmark	3	NOT abbreviations for this mark ALLOW 'Van der Waals' (ignore capitals) other bonds accounting for the difference are CON ALLOW 'it' for 't-butanol' IGNORE less/fewer imb or 'less likely to form' ALLOW second mark for any one of the following described as weaker: just 'intermolecular bonds / forces' OR any named intermolecular bond (including hydrogen bonds or different ones for the two alcohols) OR abbreviated (eg 'id-id' / imb) Mark third mark separately IGNORE more / less branched or linear IGNORE atoms

Questi	tion	Expected Answers	Marks	Additional Guidance
e		$\checkmark \checkmark \checkmark \checkmark$ one for each arrow Mark separately - no ecf	4	First arrow must start at lone pair and point between O and H or at H second arrow must start on (or above or below) bond (NOT on H) and point towards Cl (see box) third arrow must start on bond and point towards O fourth arrow must start on lone pair and point between C^{+} and Cl or at C^{+} Any wrong arrows in excess of four are each CON to one correct arrow First and third arrows can be straight Single-headed arrows are CON only the first time they appear in an otherwise correct situation; accept after that

Questi	Expected Answers	Marks	Additional Guidance
f	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3} \checkmark$ IR (two marks) no peak above 3000 / 3200 / $3640\left(\mathrm{~cm}^{-1}\right)$ OR no peak at 3600 $-3640 / 3200-3600 \checkmark$ no OH / not alcohol \checkmark NMR (one mark plus QWC) QWC is scored for relating NMR evidence to structure, as described below Look first for: (protons identified) $\mathrm{CH}_{3}(-\mathrm{C}) /$ methyl AND $\mathrm{O}(-) \mathrm{CH}_{(2)}$ (or in words or indicated on structure) \checkmark The QWC mark is then scored from this response if ' $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ ' (or more displayed) structure given. Place tick under pencil icon \checkmark OR if the above are absent, incomplete or wrong, look for: two proton / hydrogen environments \checkmark QWC is awarded here if there is an indication of two environments on the correct structure (using the formula or describing it in words) \checkmark Place tick under pencil icon splitting (one mark): general: indication that no. of peaks is one more than the no. of protons on the adjacent carbon OR specific: identification of one of $\mathrm{CH}_{3} \mathrm{CH}_{2}$ (ie triplet for hydrogens on C next to CH_{2} or quartet for hydrogens on C next to CH_{3}) (ignore anything incorrect) \checkmark	6	Please annotate by ticking each point scored. Always look for information on page 8 and mark appropriately. Page 8 is available as a thumbnail on the left Accept any clear structural formula of ethoxyethane, including $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$ IGNORE name Ignore 'drafting' lines, give BOD if possible IGNORE references to other peaks Mark two IR marks separately. Can score if the structure is wrong. Note brackets carefully: H_{3} in first and O in second are essential - NOT CHO for second one but $\mathrm{CH}-\mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{O}$ are acceptable. IGNORE any shifts quoted ALLOW 'protons' stated or implied (eg 'methyl group') For QWC here ALLOW references to symmetry or 'two $\mathrm{C}_{2} \mathrm{H}_{5}$ ' Either way, the idea of number of protons / hydrogens on adjacent (AW) carbon (IGNORE adjacent environment) must be there to score the mark. IGNORE specific if general correct Can score splitting mark if the structure is wrong NOT just ' $n+1$ rule' without explanation
	Total	22	

Question			Expected Answers	Marks	Additional Guidance
3	a	i	Endothermic (forward reaction), (high / increasing temp moves) equilibrium (position) to right / towards products \checkmark (high) pressure pushes equilibrium (position) ${ }^{\star}$ to the left \checkmark more moles / molecules / particles on the right ORA \checkmark one correct reference to yield related to equilibrium movement (ignore wrong references) \checkmark *'position' must be mentioned once. Award one of these marks without 'position' but for both marks it must be mentioned once.	4	IGNORE references to rate ALLOW 'reverse reaction is exothermic' IGNORE 'moves in / favours endothermic direction' NOT 'more atoms' or 'more products' (can assume high pressure or temperature since given in the question)
	a	ii	(the energy source must) not produce carbon dioxide / CO_{2} OR fossil fuels produce carbon dioxide / CO_{2} (AW) \checkmark	1	ALLOW "It" for the Sun, so allow, eg, "It does not form CO_{2} "
	b	i	$\mathrm{Kc}=[\mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right] /\left[\mathrm{CO}_{2}\right]^{2} \checkmark$	1	Must have square brackets; NO mark if p symbols. In top line: may have multiplication sign, must not have plus sign. IGNORE state symbols
	b	ii	$4 \times 10^{-20} \checkmark 1$ sf $\checkmark \mathrm{mol} \mathrm{dm}^{-3} \checkmark$ Mark separately	3	ALLOW ecf for first and third marks from b(i) UNLESS plus sign used The (b)(i) answer is shown on the screen to facilitate ecf Award sf mark if the number is to 1 sf and is the correct or incorrect result of any calculation shown. units: ALLOW mol/dm ${ }^{3}$ 4×10^{-20} on answer line scores 2
	C	i	+172 (number with sign) $\checkmark \checkmark$	2	+188, 172 and -172 score one mark; nothing else does

Question		Expected Answers	Marks	Additional Guidance
c	ii	$\begin{aligned} \mathrm{T} & =566000 / 172 \checkmark \\ & =3290 \mathrm{~K} \checkmark \end{aligned}$	2	ALLOW ecf from c(i) negative temperatures are CON second mark is for manipulation and correct statement of unit; no ecf from errors in first mark(i.e. 3.29 K scores zero) ALLOW 'Kelvin' and lower-case ' k ' negative answers score zero allow 2 or more sf: 3300, 3291, 3290.7 etc correct answer with no working scores 2
d	i	$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW Ca(OH) $)_{2}+2 \mathrm{CO}_{2} \rightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ IGNORE state symbols. Brackets in formulae must be correct Anything extra on either side is CON
	ii	acid-base \checkmark	1	ALLOW any unambiguous indication of the answer eg circling any others indicated are CON
	iii	uses a lot of $\mathrm{Ca}(\mathrm{OH})_{2}$ / large amounts of solid (or CaCO_{3}) formed OR CO 2 emitted in manufacture of $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{AW}) \checkmark$	1	Must have idea of 'large amount' to score in this way IGNORE cost, expense, damage to environment etc
		Total	16	

Question			Expected Answers	Marks	Additional Guidance
4	a	i	$1 / 13 \times 44=3.38 \mathrm{~g}$ Correct M_{r} values 44 and 13 (or 78/6) \checkmark Correct manipulation of recognisable M_{r} values and evaluation (with ecf) \checkmark	2	Full marks for correct answer ALLOW two or more sf 0.56(4) scores 1
	a	ii	(it will be the value of the) highest mass / $\frac{m}{Z}$ peak / molecular ion (peak) / M^{+}(peak) peak furthest to the right \checkmark	1	NOT just "highest peak" IGNORE base peak
	b	i		3	structure need not be the correct shape (eg it can be linear) NOT 3-dimensional structure (showing dashes and wedges) any one 180 angle and any one 120 ± 2 angle should be illustrated (extra wrong angles are CON to one correct angle mark each) If there are errors in parts of this structure, bond angle marks can still be given for the correct parts. However, wrong structures (eg Kekulé benzene) score zero marks out of three.
	b	ii	Alkene / C=C groups / double bonds / unsaturated groups / alkyne AND react with HBr / undergo addition reactions	1	IGNORE references back to 'structure in (i)' IGNORE references to decolorising / reaction with bromine 'substitution' is CON

Question		Expected Answers	Marks	Additional Guidance
C		accounts for: bond angle same / $120 \checkmark$ three bonds OR three groups / sets of electrons around each carbon \checkmark does not account for: bond lengths equal single bonds longer than double bonds \checkmark Mark separately	4	ignore that it is evidence for the hexagon alone (rather than a symmetrical hexagon) NOT pairs of electrons
d	i	delocalised (electrons) one electron from each carbon two rings above and below carbon atoms / carbon ring \checkmark Mark separately	4	QWC 'delocalised' must be spelt correctly to score first mark ALLOW 'delocalized' or derivations such as 'delocalisation' 'Above and below' in last point will cover the 'two' in the previous point IGNORE 'either side of C atoms' ALLOW second two marking points from a diagram

Question		Expected Answers	Marks	Additional Guidance
d	ii	electron is excited / jumps up energy levels AND (as a result of) light / (UV) radiation / energy / photons \checkmark frequency (absorbed) depends on energy change OR (Δ)E $=h v \checkmark$ dyes / coloured compounds / 'compounds containing more benzene rings' (AW) absorb in the visible / absorb light \checkmark QWC \checkmark - see guidance plus two from: energy levels are closer / energy gap is smaller / excitation energy is smaller when there is: more delocalisation more conjugation more than one benzene ring larger chromophore frequency of uv (radiation / light) is greater than visible / light ORA (dyes) transmit / reflect (NOT emit) the complementary colour \checkmark	6	Please annotate each point scored with a tick IGNORE references to d-shells must be energy change, not just energy, for example: separation of energy levels / size of gap between levels / difference in energy (between levels) / the excitation energy IGNORE 'absorb energy' QWC scored if second marking point is made in words and first marking point made Place QWC tick by 'pencil' symbol or cross if not awarded max 2 (out of six) if 'emission by dropping down energy levels (AW)' mentioned. Highlight in yellow the words that imply this Must imply 'emission', otherwise IGNORE 'electrons dropping back' ALLOW wavelength smaller ALLOW 'complimentary'
e		one $\checkmark 6.4-8.2(\mathrm{ppm}) \checkmark$ Mark separately	2	

Question		Expected Answers	Marks	Additional Guidance
f	i	bromobenzene \checkmark	1	ALLOW 1 - bromobenzene with or without dash ALLOW 'bromo-benzene' or 'bromo benzene' no other spelling errors
	ii	$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr} \checkmark$	1	ALLOW skeletal formulae for aromatic compounds IGNORE state symbols IGNORE ' Fe ' / ' FeBr_{3} ' / conditions over arrow Any other additions are CON
	iii	electrophile is a (partially) positively charged / electron deficient (species) (electrophile) accepts a pair of electrons / forms (covalent) bond \checkmark bromine (molecule) is polarised (or diagram) / forms $\mathrm{Br}^{\delta+}$ AND positive end (AW) attacks / forms bond / reacts / substitutes / is electrophile	3	ALLOW Br+ (formed) and attacks / is electrophile
		Total	28	

Question			Expected Answers	Marks	Additional Guidance
5	a	i	one COOH group ringed \checkmark	1	ALLOW ring to cross C-C bond anywhere but not to include next carbon away from COOH
		ii	Any two from: amine \checkmark (secondary) amide \checkmark imine	2	IGNORE ketone*, carbonyl*, amino* ALLOW alkene ALLOW primary and secondary amines as two groups (but both 'primary' and 'secondary' must be stated to score more than one mark) *extra incorrect groups (apart from these) are each CON to a mark gained
		iii		1	Any other arrows are CON ALLOW other unambiguous indications of chiral carbon NB lack of an arrow is 'NR'
	b			2	Arrows in excess of two each CON a correct one
	c		it fits into the active/receptor site \checkmark blocks site / 'prevents substrate (AW) from binding' \checkmark (trimetrexate): has arene ring / is aromatic OR does not have: $\mathrm{C}=\mathrm{N} /$ double bond / alkene (AW) \checkmark	3	Idea of fit needed ('similar shape' and 'binds / bonds to active site' covers this) IGNORE references to methyl group

Question		Expected Answers	Marks	Additional Guidance
d		$\mathrm{CH}_{3} \mathrm{Cl} /$ chloromethane (ALLOW methyl chloride) AlCl_{3} / aluminium chloride reflux OR anhydrous conditions OR ionic liquid (solvent)	3	Max 1 for reagents if extra incorrect reagents are included (wrong name is CON to correct formula and vice versa) only accept 'reflux' if one other mark scored
e	i	$\begin{aligned} & \mathrm{HA} \overline{\mathrm{~F}}=\mathrm{H}^{+}+\mathrm{A}^{-} \mathrm{OR} \\ & \mathrm{HA}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \checkmark \end{aligned}$	1	must be equilibrium sign NOT $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{A}^{-}\right]$ State symbols, apart from '(aq)' ((l) for water) are CON
e	ii	HA conjugate acid$=\mathrm{H}^{+}+\mathrm{A}^{-}$conjugate base \checkmark	1	ALLOW HA + $\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$ conjugate base conjugate acid $\mathrm{ORHA}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$ conjugate acid conjugate base ALLOW if arrow, rather than equilibrium sign
	iii	$\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}] \checkmark$	1	Must have square brackets. ALLOW multiplication sign (or dot) on top but NOT plus NOT signs outside brackets ALLOW $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for $\left[\mathrm{H}^{+}\right]$but NOT $\left[\mathrm{H}_{2} \mathrm{O}\right.$] on bottom State symbols, apart from '(aq)' are CON
	iv	$\left(-\log 5 \times 10^{-3}\right)=2.3 \checkmark$	1	ALLOW more sf than 2.3 if it rounds to 2.3
	v	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(5.0 \times 10^{-3} \times 0.1\right) \checkmark\left(=2.24 \times 10^{-2}\right)} \\ & \left.\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=1.65 / 1.7 / 1.66 \text { (early rounding to } 0.022\right) \checkmark \end{aligned}$	2	Must say ' $\left[\mathrm{H}^{+}\right]=$' or ' $\mathrm{H}^{+}=$' to score this mark on its own or where ecf is considered Allow ecf from first mark if working or evaluation of $\left[\mathrm{H}^{+}\right]$is present and $\left[\mathrm{H}^{+}\right]$is smaller than 5×10^{-2} ALLOW more sf than 1.65/1.66 if it rounds to 1.65/1.66 Correct answer with no working scores 2
	vi	concentration of acid at equilibrium = concentration of acid initially (AW) $\left[\mathrm{H}^{+}\right]$or 2.24×10^{-2} compared with 0.1 or compared with $[\mathrm{HA}]$ is not negligible (AW)	2	IGNORE $\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]$ Second mark depends on first

Question		Expected Answers	Marks	Additional Guidance
f		$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=3.98 / 4 / 4.0 \times 10^{-8} \checkmark} \\ & \frac{\left[\mathrm{~A}^{\text {š }}\right]}{[\mathrm{HA}]}=K_{a} /\left[\mathrm{H}^{+}\right]=1.25 / 1.26 / 1.3 \times 10^{5} \end{aligned}$	2	must say ' $\left[\mathrm{H}^{+}\right]=$' or ' $\mathrm{H}^{+}=$' to score this mark on its own or where ecf is considered Allow ecf from first mark if value of $\left[\mathrm{H}^{+}\right]$is present and $\left[\mathrm{H}^{+}\right]$ is smaller than 5×10^{-2} ALLOW more sf on ratio (eg 125594/125628) Correct answer with no working scores 2
g	i	hydrogencarbonate \checkmark	1	ALLOW 'hydrogen carbonate' IGNORE 'bicarbonate' ALLOW (IV) after name, but no other numbers
	ii	($\left[\mathrm{H}^{+}\right]$increases) so equilibrium (position) moves to left / equilibrium moves to form more $\mathrm{CO}_{2} \checkmark$ excess / reservoir / large concentrations / large amounts of $\left(\mathrm{CO}_{2}\right.$ and) $\mathrm{HCO}_{3}^{-} \checkmark$ pH (virtually) unchanged (AW) \checkmark Mark separately	3	Must be in terms of equilibrium ALLOW 'salt' or ' $A^{-‘}$ for $\mathrm{HCO}_{3}{ }^{-}$ constancy of pH scores this mark
h	i	circle (or Na (with or without ' + ')) surrounded by three or more bent or triangular shapes circle shown as ' + ' (or Na^{+}shown) and H and O atoms labelled on at least one shape, with at least one H labelled $\delta+$ and one O labelled δ and O pointing to central ion \checkmark	2	IGNORE $\delta+$ on Na
h	ii	ion-dipole \checkmark	1	IGNORE anything else (eg ionic dipole)

