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Abstract
The role of artificial intelligence (AI) in healthcare for pregnant women. To assess the role of AI in women’s health,

discover gaps, and discuss the future of AI in maternal health. A systematic review of English articles using EMBASE,

PubMed, and SCOPUS. Search terms included pregnancy and AI. Research articles and book chapters were included,

while conference papers, editorials and notes were excluded from the review. Included papers focused on pregnancy and AI

methods, and pertained to pharmacologic interventions. We identified 376 distinct studies from our queries. A final set of

31 papers were included for the review. Included papers represented a variety of pregnancy concerns and multidisciplinary

applications of AI. Few studies relate to pregnancy, AI, and pharmacologics and therefore, we review carefully those

studies. External validation of models and techniques described in the studies is limited, impeding on generalizability of the

studies. Our review describes how AI has been applied to address maternal health, throughout the pregnancy process:

preconception, prenatal, perinatal, and postnatal health concerns. However, there is a lack of research applying AI methods

to understand how pharmacologic treatments affect pregnancy. We identify three areas where AI methods could be used to

improve our understanding of pharmacological effects of pregnancy, including: (a) obtaining sound and reliable data from

clinical records (15 studies), (b) designing optimized animal experiments to validate specific hypotheses (1 study) to

(c) implementing decision support systems that inform decision-making (11 studies). The largest literature gap that we

identified is with regards to using AI methods to optimize translational studies between animals and humans for pregnancy-

related drug exposures.
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Abbreviations
AI Artificial intelligence

ML Machine learning

ANN Artificial neural network

BN Bayesian Network

CDSS Clinical decision support system

DL Deep learning

DT Decision tree

EM Expectation–maximization

k-NN K nearest neighbor

LDA Linear discriminant analysis

LR Logistic regression

MLP Multi-layer perceptron

NB Naı̈ve Bayes

RF Random forest

SVM Support vector machines
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Introduction

Artificial intelligence and informing healthcare
decision making

The field of artificial intelligence (AI) involves the study of

‘agents’ that receive information from their environment

and perform actions in response to that environment [1].

These ‘agents’ are sometimes referred to as ‘intelligent

agents’ [1]. In general, AI is used to refer to the method by

which computer systems can perform tasks that would

typically require a human. This includes tasks such as

translating documents into different languages, automati-

cally identifying a person from an image (visual percep-

tion) or decision-making. In this review, we will focus our

discussion on both clinical and patient decision-making, as

these are two areas where AI has the potential to impact

decision making with respect to pharmacological or drug

choices during pregnancy.

Initially AI methods that were used in healthcare

focused around rule-based decision-making. AI tools that

utilized rule based decision-making fit naturally within the

clinical environment because they can effectively mirror

the clinicians’ own decision-making process. One of the

first rule-based decision-making algorithms was MYCIN.

MYCIN was developed in 1974 to predict the appropriate

therapy for different bacterial infections [2]. It was

designed as an ‘expert system’ that would guide clinicians

to appropriate decision making, using a series of if–then

statements. These ‘expert’ rule-based systems would be

first applied in the field of women’s health some 20 years

later in 1994 with the development of a rule-based pre-term

birth risk predictor. This rule-based system predicted a

woman’s risk of preterm birth using diagnostic codes

during the pregnancy and utilized the ‘state-of-the-art’ in

AI at that time [3]. These types of programs can only

achieve improved performance through restructuring.

Machine learning (ML) is an application of AI that enables

learning without being explicitly programmed. A popular

method of ML, an artificial neural network (ANN) is

designed to resemble how biological neural systems pro-

cess data.

AI and machine learning defined

AI is the broad science of mimicking human abilities.

Machine learning is a subset of AI, in the field of computer

science. ML often uses statistical techniques to allow for

the computer to ‘‘learn’’, or progressively improve perfor-

mance on a given task, without being explicitly pro-

grammed. ML refers to a number of methods and

algorithms, and different learning types: supervised, semi-

supervised, unsupervised, reinforcement, evolutionary, and

deep learning [4, 5]. In supervised learning, every input

pattern is trained to an associated output pattern and error

in computed and desired outputs can be used in improve

performance. Common supervised learning algorithms

include regression and classification algorithms, such as the

following: simple linear regression, polynomial regression,

LASSO regression, k-Nearest Neighbors, Support Vector

Machines (SVM), Naı̈ve Bayes (NB), Decisions Trees

(DT), and Random Forests (RF). In unsupervised learning,

the network trains without knowledge of the desired output.

Common unsupervised learning methods include clustering

algorithms and dimension reduction algorithms, such as:

k-means clustering, principal component analysis (PCA),

and independent component analysis (ICA). In reinforce-

ment learning, agents are not presented and the desired

output is learned from the actions that are the best through

trial and error [6]. ML models learn from a given dataset,

with instances and features; an instance is an individual or

example in the data. Each instance has a number of fea-

tures, or attributes, describing an aspect of that instance.

See Table 1 for an overview of ML model abbreviations.

Pros and cons of ML models

Important care needs to be taken when considering dif-

ferent ML techniques for a classification problem. How-

ever, this decision is situational and dependent on the

dimensionality, size, and other qualities of the dataset. ML

methods are not designed to demonstrate causality, and at

best can provide likely candidates for causality. No single

model performs optimally across all problems and this

phenomena is called the No Free Lunch theorem. For this

Table 1 Artificial intelligence abbreviations

Abbreviation Description

ANN Artificial neural network

CART Classification and regression tree

CDSS Clinical decision support system

DL Deep learning

DT Decision tree

EM Expectation-maximation

k-NN k nearest neighbor

LDA Linear discriminant analysis

LR Logistic regression

MLP Multi-layer perceptron

NB Naı̈ve bayes

RF Random forest

RBF Radial basis function

SVM Support vector machines
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reason, it is common to compare more than one modeling

approach, compare models with different parameters, or

develop an ensemble approach. For the sake of this review,

we will not delve deeply into advantages and disadvantages

among AI methods. A recent perspective article provides

an overview of the barriers to deployment and translational

impact of ML methods for health care [7]. The operation

and fitting of ML methods [8], the ethics of AI in medicine

[9], as well as unintended consequences [10, 11] are

comprehensively discussed elsewhere.

Artificial intelligence, maternal and fetal health,
and pharmacological intervention

This systematic literature review focuses on understanding

the current research on AI methods as applied during

pregnancy with a focus on optimizing drug/pharmacolog-

ical therapies among pregnant women. We also identify

gaps in the field where AI can be used more in the future.

Methods

We used PRISMA guidelines when conducting our litera-

ture review [12].

Systematic review of literature

Our systematic literature review focuses on the role of AI

in maternal healthcare. Our first step was to search for

relevant literature articles pertaining to AI and pregnancy.

We searched 3 databases, EMBASE, PubMed and SCO-

PUS. PubMed contains research funded by the National

Institutes of Health from the United States of America.

EMBASE is a biomedical and pharmacological biblio-

graphic database of published literature with a primary

focus on pharmacovigilance. SCOPUS is Elsevier’s

abstract and citation database covering articles from 34,346

peer-reviewed journals. We used site licenses from the

University of Pennsylvania libraries to search SCOPUS

and EMBASE. We used the following search query to

identify papers within the described scope:

‘‘artificial intelligence’’ and ‘‘pregnancy’’.

The PubMed interface automatically maps search words

to their respective Medical Subject Headings terms using

Automatic Term Mapping [13]. After retrieving results

from each database, we removed duplicate studies using

exact PubMed ID match. We then manually reviewed

articles and compared title, author list and publication date

to further identify duplicate publications in the case where

PubMed IDs were absent. In some cases, a paper was listed

in EMBASE and SCOPUS, but not in PubMed and

therefore no ID was available for comparison purposes. We

filtered the results further by excluding non-English stud-

ies, conference papers, editorials, and notes.

L.D. manually reviewed all of these articles and cate-

gorized them by focus and domain. The eligibility criteria

considered research within an unrestricted range of years,

encompasses AI and maternal health, and pertains to

pharmacologic interventions. No unpublished relevant

papers were retained. See flow diagram Fig. 1 for an

overview of our review methodology.

Results

Systematic review of literature

We searched EMBASE, PubMed and SCOPUS for articles

on pregnancy and AI. Our query from December 5, 2019

found 245 from SCOPUS, 181 from EMBASE, and 128

from PubMed. We removed duplicate studies retrieved

from across databases using exact PubMed ID match. We

started with the set of 245 papers from SCOPUS and found

an additional 120 from EMBASE, an additional 33 papers

in PubMed not found in SCOPUS, and 4 papers found in

references from retrieved papers. We manually reviewed

these to further identify duplicate papers. We identified

duplicates by title, publication date and author list infor-

mation. Next, we excluded non-English studies: 9 were

non-English with 6 in German, 1 in Polish, 1 in Chinese,

and 1 in Portuguese. We also excluded 119 conference

papers, 4 editorials, and 5 notes, resulting in a set of 238

research papers.

Subsequently, articles were assessed for eligibility. The

238 articles were manually reviewed to determine if they

met selection criteria. Namely, the articles retained for

further review: (1) focused on AI; (2) related to pregnancy;

and (3) included or pertained to pharmacologic treatment in

the study. These inclusion criteria resulted in 31 relevant

papers, 4 of which were reviews of AI applications in

pregnancy care.

The final set includes articles issued from 1990 to 2019,

encompassing almost 3 decades of research. Papers are

shown summarized by overarching category (Table 2),

either A, B, or C, which are detail in Fig. 2.

Identified applications of AI in pregnancy care
and pharmacologics

Selected papers include research from a variety of disci-

plines: computer science, engineering, informatics, tera-

tology, pharmacy science, health information systems, and

general medicine and biology. Look to Table S1 for an

overview of the variety of journals from the included
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papers. The research encompasses AI applications at sev-

eral stages of pregnancy, including preconception and

assisted reproductive technologies; prenatal care and

pregnancy induced disease; birth and delivery; and post-

partum disease. Assisted reproductive technologies (ART)

and prediction of pregnancy-associated complications are

more represented in our review, only one paper using

biomarkers and one paper applying AI to imaging during

pregnancy. More research pertaining to AI imaging

research was found in our query, however the research

involved fetal brain analysis, cervical properties, and

embryo selection. Therefore, those studies were excluded,

and a single study using AI methods to determine phar-

macological intervention placement was included. Simi-

larly, one paper was found focusing on applying AI

methods to improve translational research. Several clinical

554 papers gathered
from initial queries

Screen 178 Duplicate Papers
Exact PubMed ID match (n = 152)
By title, author list, and publication date (n = 26)

SCOPUS PubMedEMBASE

245 181 128

Search Terms:
pregnancy AND "artificial intelligence"

376 distinct papers

Exclude 138 Papers
Conference papers (n = 120)
Editorial (n = 4)
Note (n = 5)
Non-English (n = 9)

238 distinct papers
Exclude 207 Papers
Out of scope (n = 203)
Not available (n = 4)

31 distinct papers
included for literature

review

Fig. 1 Prisma review

Table 2 Studies by identified

category and overall topic
Category Topic References # of papers

A: Analysis with clinical data ART [14–20] 7

Biomarkers [21] 1

Imaging [22] 1

Prediction [23–28] 6

Total 15

B: Translating results from animals models humans Translational [29] 1

Total 1

C: Clinical decision support/alerting Diagnosis [30–32] 3

Disease management [33–36] 4

Pregnancy outcome [37] 1

Expert system [38–40] 3

Total 11

Other Review [41–44] 4

Total count 31
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decision support system (CDSS) studies were found, with

more focus on diagnosis, disease management, and expert

systems for clinical use. One paper focused on prediction

of birth outcomes, while there were other papers focused

on this from our query search, this was the only paper that

incorporated pharmacological intervention data into the

methodology.

Discussion

Better ‘actionable’ science needed for pregnant
women

Twenty-five years have passed since the first AI tool was

developed for a woman’s health issue (preterm birth) and a

full 45 years since the first health-based ‘expert’ AI system

was developed. However, much remains to be done in the

realm of harnessing AI methods to improve healthcare,

especially women’s health. Recently, two articles in the

New England Journal of Medicine highlighted the impor-

tant need for novel methods to investigate pharmacological

effects among pregnant women [45] and also nursing or

lactating women [46]. Both Eke et al. and Mitchell et al.

note that 70–80% of pregnant women receive a pharma-

cologic during their first trimester of pregnancy (the most

critical period with regards to congenital anomalies and

adverse fetal outcomes) and 90% of pregnant women take a

pharmacologic at any point during their pregnancy

[45, 47]. Moreover, prescription medication use increases

with maternal age and education [47]. However, the

majority of these medications are prescribed and taken

without any randomized controlled trials that include

pregnant women and this limits the ability for clinicians to

understand the potential adverse health consequences both

for the mother and the fetus [45]. A tremendous need exists

to understand the effects of pharmacologics not only on the

developing fetuses in terms of anomalies and other adverse

fetal consequences, but also with regards to the mother.

Adverse maternal consequences are possible and include

excessive bleeding and other perinatal and postpartum

complications.

Pregnant and postpartum women have been systemati-

cally excluded from research due to their vulnerable status

[48]. Pregnant women may be viewed as scientifically

complex, and there are practical and ethical issues sur-

rounding the inclusion of pregnant and lactating women in

clinical trials. The Task Force on Research Specific to

C

A B

Fig. 2 Artificial intelligence and machine learning can enable better

informed decisions for pregnant women in multiple ways. a illustrates
how artificial intelligence and machine learning couple be utilized to

process multiple data modalities present in clinical data to derive

sound and reliable results pertaining to maternal and fetal outcomes.

b illustrates how artificial intelligence or machine learning methods

could be used to design optimal animal models for experiments that

validate retrospective findings obtained from clinical records or other

sources. c illustrates how artificial intelligence or machine learning

methods could be used to alert physicians and their patients at the

appropriate time pertaining to specific details related to pregnant or

nursing women
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Pregnant Women and Lactating Women (PRGLAC) wrote

a report to the secretary of health and human services and

Congress in September 2018, outlining strategies for

identifying and addressing gaps in knowledge and research

regarding drug use of pregnant and lactating women [49].

Because of this gap in scientific knowledge on the effects

of treatments for the health needs of pregnant and lactating

women, fair inclusion implies that a boost of research in

this population is warranted [50]. While efforts in trial

design are discussed [45], application of AI in this domain

remains lacking.

The state of maternal healthcare in the USA is currently

at a cusp, maternal mortality is increasing despite decreases

observed worldwide [51]. In addition, the pharmacological

effect of drugs taking during pregnancy still remains lar-

gely unknown and underexplored. Clearly better science is

needed—and this must go beyond the inclusion or exclu-

sion of pregnant women in clinical trials as suggested by

Eke et al. [45]. Rather better AI methods are needed that

appropriately harness both the existing data—in terms of

Electronic Health Records (EHRs) and also toxicological

and chemical data from the pharmacologics themselves.

Recent uses of AI to understand maternal
and fetal health outcomes from pharmacologics

A major challenge for methods that seek to understand the

fetal and maternal consequences of pharmacologics taken

during pregnancy is that few randomized controlled trial

data exist in humans. The focus tends to be on at-risk

populations, such as opioid substitution therapy [52], HIV

prevention therapy [53], and preterm birth [54]. Concern-

ing the general pregnant population, there is a gap of

research on medication use during pregnancy. Researchers

must utilize data taken during routine clinical care, and

therefore studies are often retrospective outcomes studies.

In addition, while data are available in animal models there

are major gaps in translating this information to the human

context [55]. Therefore, data exists, but these data must be

repurposed to answer important clinical questions. This is

where AI methods can be especially powerful.

Animal models and pregnancy

Cox et al. conducted a proteomics study to breakdown

preeclampsia (PE) patients into three distinct subgroups,

based upon distinctive molecular differences [29]. This was

achieved through translating enriched trophoblasts from

mice to human PE placenta data. BayesNet ML was used to

compensate for the contamination of subcellular compart-

ments. The study suggests that maternal molecular

pathologies from placentas could distinguish the three

identified human subgroups of PE. Understanding the

diversity in PE etiology should prove valuable for indi-

vidualizing diagnostic and treatment regimes.

Assisted reproductive technologies

Research in ART is represented well due to the fact that

pharmacological intervention is necessary for several

common ART practices. AI methods have been applied to

inform and advise physicians [14], to predict pregnancy

success [15–18], to provide optimized treatment [19], and

to understand miscarriage risk [20].

Navigating infertility and ART treatment often takes

several treatments and can be cost-prohibitive, and there-

fore there is significant focus on the prediction of preg-

nancy success and applications to improve treatment.

Kaufmann et al. applied neural networks to predict success

for individual couples about to undergo in-vitro fertiliza-

tion (IVF) treatment [15]. Neural networks were created

using 4 variables: maternal age, number of eggs retrieved,

number of embryos transferred, and embryo freeze status

(i.e., fresh or frozen). The highest predictive success of the

8 neural networks was 60%, which may be due to the fact

that the input information was not sufficient—there is

likely an absence of important predictor variables from the

data set. Jurisica et al. developed a case-based reasoning

system that relies on context-based relevance assessment to

assist in knowledge visualization, interactive data explo-

ration and discovery in IVF [14]. This CDSS acts as an

advisor to the physician and can help inform the treatment

to improve success rate; using 39 attributes, the CDSS

suggests the amount of hormonal stimulation for treatment

and suggested day for triggering the ovulation.

Gianaroli et al. conducted a retrospective study and

proposed a Bayesian network (BN) model to predict

occurrence of a pregnancy, and implantation status (i.e., no

implantation, single implantation, and twin implantation)

[16]. Variables considered and divided into categories for

the model include the following: maternal age, previous

IVF, intracytoplasmic sperm injection (ICSI) cycles, grade

of each embryo, insemination technique, maternal/uterine

receptivity, embryo viability, and pregnancy. Maternal

receptivity and embryo viability were only partially

observed, and therefore the authors used the Expectation–

Maximization (EM) algorithm to estimate parameters. The

model predicted the occurrence of pregnancy with an area

under the curve (AUC) of 0.72. However, the model

requires validation from a prospective study and is possibly

a simple model for the complexity of implantation, lacking

inclusion of more relevant features. Hassan et al. propose a

method to predict IVF pregnancy using a hill climbing

feature selection algorithm coupled with automated clas-

sification using a variety of supervised machine learning

classifiers [17]. Important attributes of the 25 features were
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chosen by a majority of the classifiers, including maternal

age, indication of infertility factor, antral follicle counts,

and number of mature eggs.

Güvenir et al. proposed a technique for estimating the

success of an IVF treatment using a ranking-based algo-

rithm [18]. The dataset contained 64 features, 52 of which

were female features and the other 12 related to the male.

While this method included features of baseline luteinizing

hormone, baseline follicle-stimulating hormone, and base-

line estradiol, the type of treatment is not used as a feature

to estimate success. Their methods are more tailored to

screening potential IVF clients to determine success from

clinical features. Siristatidis et al. proposed a web-based

system to assist clinicians to provide personalized treat-

ment for subfertile couples and improve ART outcome

[19]. The system relies upon an ANN model and a database

system that combines several databases across the health

information system, including an IVF database. An

example of a set of parameters for the ANN model includes

cycle characteristics (24 parameters), couple’s evaluation

(12 parameters), female evaluation (30 parameters), and

male evaluation (12 parameters). Notably, albumin, gona-

dotrophin, and metformin use are listed as parameters,

along with cortisolone co-use and stimulation protocol. The

proposed system would assist at several points of care

during IVF treatment and inform the model to enhance its

performance with each record.

Mora-Sánchez et al. propose a methodology to analyze

Human Leukocyte Antigen haplotypes from couples with

recurrent miscarriage and couples with histories of suc-

cessful pregnancies [20]. The SVM classifier with a linear

kernel was used to predict the recurrent miscarriage and

healthy pregnancy classes. An implication of this research

is that accurately assessing the risk of recurrent miscarriage

associated with a given pair of gametes could improve

gamete donor selection and therefore increase pregnancy

success rates.

A reoccurring theme from these ART studies is that

predicting pregnancy success is complex, and models lack

sufficient features for the most accurate prediction. While

some models consider pharmacologic interventions as a

feature for predicting pregnancy viability, it is often not

determined to be an important attribute. A number of

ovulation induction treatments are commonly used in

infertility treatments: estrogen antagonists, insulin sensi-

tizing agents, gonadotrophins, and GnRH analogs [56].

Further ART research applying machine learning methods

could include the type of ovulation induction treatment as a

feature.

Developmental toxicology

Jelovsek et al. created a methodology to elicit a set of rules

for developmental toxicologic hazard identification from a

group of experts, for use in AI application [38]. As a result

of the interviewing process, the authors gathered a set of

rules. Then, experts reviewed the cumulative rule set and

determined whether each rule is a confidence rule or an

important rule; while the expert may have confidence that

the rule is valid, it may be of little importance. There was

significant disagreement between experts and the rule

classification required further clarification to the experts,

showing that classification boundaries were unclear.

Overall, the authors determined six variables that con-

tribute to an expert’s decision as to whether or not a

compound or agent is a developmental toxicologic hazard:

(1) human studies results, (2) animal studies results, (3)

whether an active compound is present in the human, (4)

physical structure similarity to a known human develop-

mental toxicant, (5) mechanism of action similarity to a

known toxicant, and (6) whether the compound is a known

mutagen or direct cytotoxic agent. There is a need to elicit

a set of rules that cover pharmacologic principles, includ-

ing aspects such as dose amount, absorption, route of

exposure, mechanism of action, timing of exposure, and

drug/disease interactions.

Chronic disease management and pregnancy

Prevalence of maternal chronic disease has been increasing

in the United States. The number of women presenting at

hospitalized delivery with 1 or more chronic conditions

rose from 66.9 to 91.8 per 1000 delivery hospitalizations

between 2005–2006 and 2013–2014 [57]. Chronic hyper-

tension, chronic respiratory disease, substance-use disor-

ders, and pre-existing diabetes are disorders with the

greatest increase of prevalence over time [57]. One paper

was found relating to chronic disease and pregnancy out-

come. Systemic lupus erythematosus (SLE) is a chronic

autoimmune disease with unknown etiology, and different

clinical manifestations, laboratory signs and prognosis.

Pregnancy among SLE-affected women is highly associ-

ated with poor obstetric outcomes, namely fetal loss from

spontaneous abortion or intrauterine death [58]. Paydar

et al. developed a CDSS to predict pregnancy outcomes

among SLE-affected pregnant women, namely sponta-

neous abortion or live birth [37]. Two ANNs were trained

based on features selected by a binary logistic regression

(LR) model: a multi-layer perceptron (MLP) model and

radial basis function (RBF) model. Significant features

selected included a variety of drug intervention (hydroxy-

chloroquine, azathioprine, aspirin) and laboratory test fea-

tures (proteinuria, haematuria, antibody levels) before and
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during pregnancy. After tenfold cross-validation, the MLP

network was found to be the most accurate (91%) for

prediction of spontaneous abortion or live birth of SLE-

affected pregnancy.

Chronic illness can have an effect on fertility, pregnancy

outcomes, maternal outcomes, and fetal outcomes. Ideally,

preconception care should address the potential poor out-

comes by screening and providing research informed care

and pregnancy-specific management of chronic disease.

Pregnancy-induced disease

Pregnancy causes the body to go through significant

changes, and unfortunately there are several maternal

complications that can occur during this time. Our query

found papers focused on gestational diabetes mellitus

(GDM) [23, 24, 30, 33–36, 41], gestational hypertension

disorders [21, 25, 26], and bacteriuria [31]. Studies aim to

predict and classify disease in early pregnancy, improve

screenings, and provide clinical decision support for dis-

ease management. GDM prevalence is as high as 9.2% in

the United States [59]. Maternal GDM has been associated

with adverse outcomes for offspring: impaired glucose

intolerance [60, 61], macrosomia at birth [62], risk factor

for long-term neuropsychiatric morbidity [63], and early

onset cardiovascular disease (CVD) [64]. GDM has

important characteristics that differentiate it from type 1 or

type 2 diabetes mellitus (T2D): (1) patients have endoge-

nous insulin secretion (inadequate), (2) a patient’s meta-

bolic state changes continuously and requires frequent

treatment adjustments, and (3) the short duration of the

illness may impact patient education and knowledge in

insulin self-management [33].

Hypertensive disorders of pregnancy affect approxi-

mately 10% of all pregnant women worldwide [65]. Ges-

tational hypertension, or pregnancy-induced hypertension

(PIH), is high blood pressure during pregnancy, without

presence of proteinuria. In some cases, PIH can develop

into preeclampsia (PE)—a pregnancy-related vascular

disorder, affecting 2–8% of all pregnancies and is the

leading direct cause of maternal mortality worldwide, after

obstetrical hemorrhage [66, 67]. Thought to be a severe

form of PE [68], Hemolysis, Elevated Liver enzymes, and

Low Platelet (HELLP) syndrome worsens maternal and

perinatal prognosis. HELLP syndrome occurs in about

0.2–0.8% of pregnancies [69]. This complication is asso-

ciated with increased maternal risks: pulmonary edema,

cardiac failure, hemorrhage, renal failure, liver hematoma,

failure or rupture, and death. Like PE, the only efficient

treatment of the condition is to interrupt gestation. Gesta-

tional hypertension diseases prove to be complex; the eti-

ology of PE and HELLP syndrome are not completely

understood and preventive treatment remains unknown. A

previous HELLP pregnancy is associated with a high risk

of developing HELLP (14–24%) and PE (22–28%) in

subsequent pregnancies, indicating related pathogenetic

mechanisms [69–71].

Disease screening Polak and Mendyk developed at GDM

screening tool using ANNs to model relationships between

demographic factors and the risk of GDM [30]. In com-

parison to LR, the ANN model correctly predicted 70% of

true positive diagnoses to the LR correct prediction of 56%

of true positive diagnoses. Moreira et al. propose applica-

tion of the radial basis function network (RBFNetwork), an

ANN technique, to identify possible cases of GDM in

pregnant women and in result achieved 79% precision, and

an F-measure of 0.79 [23]. Meant to support hospital

management, the RBFNetwork is based on ANN in busi-

ness intelligence. The authors suggest that a decrease in the

prevalence of GDM would reflect the joint effort of preg-

nant women, experts in healthcare, and healthcare man-

agement staff.

There have been efforts to diagnose GDM earlier in

pregnancy, when current medical protocols using Oral

Glucose Tolerance Test are not feasible. Filho et al. pro-

pose a hybrid methodology in order to support the early

diagnosis of GDM [24]. The method combines aspects of

BNs, Multicriteria Analysis and Expert Systems. The

information gathered was structured in the knowledge base

of a rule-based specialist system, through Expert SINTA

software. The prediction system uses disease code and

analysis of medical history of pregnant patients from a

database of a health insurance company that covers 11

Brazilian states.

Tejera et al. constructed a model for classification of

women with normal, hypertensive and preeclamptic preg-

nancy using maternal heart rate variability indexes and

ANNs [25]. The model obtained around 80% sensitivity for

PE, with higher percentage for the normal and hypertensive

groups. Liu et al. applied a multi- ‘omics’ approach to

develop validated PE biomarkers, comparing serum pro-

teomes in PE and control subjects [21]. In order to con-

struct a sensitive and specific biomarker panel, with the

least number of protein analytes, the authors used a genetic

algorithm (R genalg package). Multiple biomarkers were

discovered, reflecting the complex aspects of PE disease.

Moreira et al. propose a model using ANNs and fuzzy

logic to predict HELLP syndrome in high-risk pregnancies

[26]. The model combines the learning capacity of ANNs

with the reasoning ability of fuzzy systems. As this model

was designed with mobile cloud computing in mind, this

structure avoids diffuse inference, which requires consid-

erable computational effort. The proposed model performs

comparably to other ML methods. In comparison, MLP
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performs better than the proposed neuro-fuzzy method, but

the proposed model has better computational performance.

Asymptomatic bacteriuria (ASB) is known to occur in

2–10% of pregnancies and is associated with preterm birth,

low birth weight, and perinatal mortality [72]. Burton et al.

tested three ML methods, namely RF, neural networks, and

Extreme Gradient Boosting, to reduce diagnostic workload

without compromising the detection rate of urinary tract

infections [31]. This study made considerations for preg-

nant patients in the model, after finding classification

sensitivity to this subpopulation. Pregnant patients, chil-

dren, and the rest of the patients in the dataset were trained

independently. This increased performance for the preg-

nant subpopulation in the study. However, other research

indicates that the risk of pyelonephritis in untreated ASB is

low [73], or observe no increased maternal or neonatal

adverse effects in women with untreated ASB [74]. These

findings question the use of such screening practices during

pregnancy.

Disease management with clinical decision support sys-
tems Because patients diagnosed with GDM require

more monitoring, it lends itself easily to be supplemented

with CDSS to manage the disease. Applications focused on

improving home monitoring, therapy planning, dietary

recommendations, and patient engagement. Hernando et al.

developed a CDSS for the analysis of home monitoring and

therapy planning in gestational diabetes [33]. In order to

manage the uncertainty in the data, the DIABNET system

integrates qualitative and quantitative reasoning. The sys-

tem was designed for use in patient encounters, supporting

the physician by proposing qualitative diet modifications

and quantitative changes in insulin therapy. An evaluation

of DIABNET found that the system detects the need for a

therapy modification in 92% of cases, and expert evaluators

accepted 74–86% of the proposals as valid [34].

Caballero-Ruiz et al. developed a web-based tele-

medicine platform, Sinedie, to remotely evaluate GDM,

allowing patients to upload their glycaemia data directly

from their glucose monitor and report other monitoring

variables [35]. Dietary recommendations are automatically

prescribed and notified to patients, while insulin therapy

recommendations are notified to the physicians for treat-

ment planning. Glycaema classification is performed based

on the EM clustering algorithm and a C4.5 decision tree

(DT) algorithm. Sinedie is designed to be sensitive

regarding insulin therapy recommendations, in order to

avoid false negatives regardless of false positives. In result,

the system reduced clinician evaluation time by about 27%,

and face-to-face visits per patient were reduced by

approximately 89%.

Peleg et al. demonstrate the feasibility of the function-

ality and architecture of an interactive guideline-based

mobile CDSS, MobiGuide, for patient-centered care

designed to improve patient engagement [41]. The working

prototype was evaluated partially for GDM with and

without hypertension in a hospital in Spain. The study

demonstrated higher compliance of GDM patients to the

computer-interpretable guidelines (CIG), along with an

increase in patient and care provider satisfaction. The

mobile application for health management could improve

financial costs due to a lower rate of complications and

hospitalizations, as well as fewer clinic visits for moni-

toring the disease. Rigla et al. conducted a pilot study to

test the feasibility and acceptance of a mobile CDSS,

which provides personalized CIG for GDM management

[36]. With the mobile CDSS, compliance with blood glu-

cose (BG) monitoring performance was observed higher

than with usual care. In result of a questionnaire on the use

of the system, the authors found a high level of acceptance.

Labor analgesia

Neuraxial labor analgesia is widely used to reduce pain

during childbirth, ranging from 37 to 80% in the US [75].

One such neuraxial labor analgesia technique is epidural

anesthesia. Yu et al. developed an image classification

algorithm that automatically identifies the bone/inter-

spinous region for ultrasound images obtained from the

lumbar spine of pregnant patients in the transverse plane

[22]. Features were extracted with template matching and

midline detection in order to provide a compact description

of the ultrasound image. The SVM model was used to

classify the interspinous and bone images with maximal

margins, with a success rate of 93% on the test set. When

further tested on ultrasound video streams, the proposed

method correctly identified the site in 45 of the 46 cases.

This study focuses on identification of the optimal place-

ment for epidural anesthesia, but no research concerning

anesthesia dosing was found.

Mode of delivery

Abbas et al. aimed to identify risk factors associated with

cesarean sections among women in Muzaffarabad, Jammu

and Kashmir. 23 elements with 488 subjects were used for

classification, including maternal age, blood pressure,

hemoglobin, mode of last delivery, miscarriages, abortions,

hypertension, folic acid, diabetes, medicine, heavy

breathing, headache, body pain, etc. After applying tenfold

cross-validation upon RF, linear discriminant analysis

(LDA), SVM, NB, and k nearest neighbor (k-NN) classi-

fiers, RF proved to perform best for the purpose of this

study with highest precision, accuracy, and recall. The

analysis revealed that maternal age and the mode of the last

birth have a significant effect on the mode of the expected
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birth. This study included medicine as a feature, consid-

ering risk factors for cesarean sections. The specific med-

icine was not found to be a significant feature in their

model.

Predict postpartum disease Maternal outcomes of GDM

include the following postpartum: a seven-fold increased

risk of developing T2D [76], and increased risk of meta-

bolic syndrome and CVD [77]. A number of studies have

applied ML to improve diabetes prediction postpartum in

women diagnosed with GDM, proposing feature selection

methods and novel machine learning algorithms. Lin et al.

applied a supervised learning algorithm to determine

whether a pregnant woman has or is likely to develop DM

[32]. The aim of the study was to evaluate the feasibility in

using the Artificial Immune Recognition System (AIRS) to

predict DM development following GDM. AIRS is inspired

by natural and artificial immune system mechanisms,

including resources competition, clone selection, matura-

tion, mutation, and memory cells generation [78]. Training

and test data are seen as antigens in AIRS, and then they

induce the B-cells in the system to produce artificial

recognition balls (ARBs). The ARBs then compete with

each other for the given resource number. ARBs with

higher resources will get more chances to produce the

mutated offspring to improve the system. After all training

antigens have been introduced; the memory cells are gen-

erated to classify the test data. Wang et al. proposed a

novel method for feature selection by combining EM

algorithm with the nearest neighbor classifier [27]. The

authors confirmed that the proposed method could effec-

tively predict T2D after a GDM pregnancy in Taiwanese

women. Meenakshi and Maragatham evaluated a ML

algorithm, the Convolutional Neural Network (CNN), to

predict if women with GDM is likely to develop T2D later

in life [28]. Despite the reported high performance with

1000 neurons, the CNN model provides no inter-

pretable evidence to predict T2D.

Pharmacologics and pregnancy

Efforts have been made to provide patient counselling

support and drug information by the support of expert

systems. In 1994, Swart, Vos and Tromp proposed a pro-

totype knowledge system to support patients in their

encounter with a professional in community pharmacies

[39]. In this system, items of information are ranked in

order of importance (important, possibly important, and

remaining items). In recent efforts, researchers have pro-

posed other methods in order to overcome the cumbersome

development and maintenance of rule-based systems.

Boland et al. developed a method that utilizes machine

learning to predict the fetal toxicity of pharmacologics

taken during pregnancy, including first through third tri-

mesters of the pregnancy [79]. The ML method employed a

technique called ‘random forests’ whereby information was

learned from drugs that were known to be harmful to the

fetus by previous outcomes studies (and were already

labeled as contraindicated in pregnancy by the United

States Food and Drug Administration (FDA)—or category

D or X). The model also used information on drugs that

were known to be safe to the fetus via previous outcome

studies (and labeled as category A or B by the FDA). The

AI method was able to predict which drugs were more

likely to be fetal toxic versus fetal safe for those drugs that

were in the middle or unknown fetal toxicity category (i.e.,

FDA Category C drugs). Boland et al.’s method also used

chemical information on the drugs and whether or not the

drug was known to target a vitamin gene or a known

Mendelian disease gene to improve the performance of the

method [79]. The importance of understanding Mendelian

disease genes and pharmacologics that target them (even as

unintended targets or ‘off-targets’) in fetal outcomes was

established via an extensive manual review process [80]

that helped to inform the design of our later machine

learning approach [79].

Souissi et al. propose a recommendation system for

antibiotic prescription, PARS [40]. While this recommen-

dation system was not developed specifically for use during

pregnancy, a use case of a pregnant woman is demon-

strated. The system depends on an antibiotic ontology, an

infection ontology, and a patient ontology. This informa-

tion is then used in two reasoning stages, which then output

a final set of recommended antibiotic treatments, person-

alized for the patient. The CDSS combines these ontologies

with MCDA (Multiple Criteria Decision Aiding) for

knowledge-driven treatment. An ontology-focused

approach was chosen over ML due to the fact that it is not

currently able to provide recommendations with complete

explanations, which is crucial in medicine. Ontologies and

MCDA in this model can provide a full explanation with a

treatment recommendation and do not depend on a training

set. PARS is limited to bacterial infection prescriptions and

not applicable to other cases of antibiotic use. Moreover,

while PARS considers toxicity risk of antibiotic treatments,

it does not consider drug-drug interactions with ongoing

therapies for the patient. The authors plan to integrate other

ontologies in order to address these limitations of the

CDSS.

Future applications of AI for maternal and fetal
health outcomes

The future of AI in medicine, specifically in women’s

health, should focus on informing pregnant women and

their physicians on the maternal and fetal consequences of
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pharmacologics taken during pregnancy. This would allow

for better and more informed decision making both for the

patient and the physician. ML is one AI tool that can be

used to enable better science to be generated from our

existing datasets. Efforts have been made to improve drug

discovery [81, 82], and pharmacovigilance [83], but few

address drug safety during pregnancy.

Translational human research opportunities

Once we have sound and reliable information on whether a

drug is thought to be harmful either to the fetus or the

mother, we will be able to design better animal experi-

ments to validate our hypotheses. ML can also be used to

aid and assist in designing and optimizing animal experi-

ments that are specific to the clinical question and out-

comes anticipated (e.g., pigs are thought to be more similar

to humans with regards to their skin— this information

could be harnessed by ML to assist in designing animal

studies).

Optimizing drug dosage

Physiological changes during pregnancy are known to alter

overall systemic drug exposure. This is especially impor-

tant for pregnancy-associated disease and chronic disease

management during pregnancy. Our query found one paper

on SLE, but this is a single example of chronic health

conditions managed during pregnancy. Applications of ML

to inform drug dosing during pregnancy did not arise from

our query, illustrating the need to address this gap. Efforts

have been made concerning other health issues, such as

warfarin dosage [84], and radiation oncology [85]. More-

over, there is a significant gap between accumulating

knowledge of pregnancy-associated pharmacokinetics

changes and our understanding of their clinical impact for

the mother and fetus [86].

Opportunities in clinical decision support

Once the science has been created (using ML and existing

clinical datasets) and validated (using ML and optimizing

animal experiments)—the results can then be used to

inform pregnant women and their physicians. We can also

use AI methods for this last stage in the pipeline (Fig. 2).

Effective clinical decision support requires AI methods to

optimize the delivery of the information to the physician at

a point in the clinical workflow that is optimal for decision-

making purposes. If the information is presented too late,

then the physician will not be able to inform the patient

because the patient would have left already. If the infor-

mation is presented too early, the patient may not be

pregnant yet and therefore the information may not be

helpful. Therefore, appropriate timing of information is

required to optimize the clinical workflow process. Cur-

rently, many alerting systems that use clinical decision

support overlook the power of AI and rely heavily on

outdated AI ‘expert’ system methods that use hardcoded

decision trees. Dynamic AI-powered rule-based decision

tree methods can be used that learn from the users to refine

and optimize the presentation of the information to the

clinician. If the decision-making algorithms are optimized

using smarter AI methods, both physicians and their

patients will be able to be presented with the right infor-

mation at the right time.

AI has the power to transform healthcare, specifically

women’s health. Hopefully the next 25 years will see

strides in terms of incorporating modern AI methods in all

aspects of the women’s health space from a.) obtaining

sound and reliable data from clinical records, b.) designing

optimized animal experiments to validate specific

hypotheses to c.) implementing decision support systems

that inform physicians and their patients for shared patient

decision-making.

Limitations

Most studies included cross-validation, but external vali-

dation was limited. This impedes on generalizability of the

studies. Another limitation stems from the fact few appli-

cations of AI are focused on pharmacological treatment.

Many excluded papers were focused on other applications

for maternal reproductive health, such as methods to

extract fetal signals from monitoring records (i.e.

echocardiogram), or methods for screening for fetal chro-

mosomal and congenital abnormalities. This demonstrates

the great amount of effort to improve fetal monitoring and

fetal screening. However, it highlights the need to apply AI

and machine learning methods to other aspects of the

maternal reproductive healthcare spectrum. We focused

our review on pregnancy as a recent review on lactation

was published [87]. Therefore, our review does not assess

the role of AI methods in lactation studies. A future review

could explore the potential for AI on pharmacologics

effects on lactation as this is an important area.

Conclusion

Our review demonstrates how AI has been applied to

address pharmacological exposures during pregnancy and

this includes the entire pregnancy process: preconception,

prenatal, perinatal, and postnatal health concerns. We

identify three areas where AI methods could be used to

improve our understanding of pharmacological effects of

pregnancy, including: a.) obtaining sound and reliable data
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from clinical records (15 studies), b.) designing optimized

animal experiments to validate specific hypotheses (1

study) to c.) implementing decision support systems that

inform decision-making (11 studies). The largest literature

gap that we identified is with regards to using AI methods

to optimize translational studies between animals and

humans for pregnancy-related drug exposures. However, in

general all 3 areas were lacking research regarding the

pharmacological exposure-pregnancy aspect with less than

20 studies per category. Incorporating modern AI methods

into understanding the maternal and fetal consequences of

pharmacological drug exposure is a must for future studies.

Applications of AI to other aspects of pregnancy, maternal,

and fetal health, including lactation can inform the neces-

sary research to delve more deeply into how pharmaco-

logics affect pregnancy.

Acknowledgements We thank the Perelman School of Medicine at

the University of Pennsylvania for generous funds to support this

project.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Russell SJ, Norvig P (2016) Artificial intelligence: a modern

approach, 3rd edn. Pearson Education Limited, Malaysia

2. E. H. Shortliffe (1974) MYCIN: a rule-based computer program

for advising physicians regarding antimicrobial therapy selection

3. Woolery LK, Grzymala-Busse J (1994) Machine learning for an

expert system to predict preterm birth risk. J Am Med Inform

Assoc 1(6):439–446

4. Shahid N, Rappon T, Berta W (2019) Applications of artificial

neural networks in health care organizational decision-making: a

scoping review. PLoS ONE 14(2):e0212356

5. Fatima M, Pasha M (2017) Survey of machine learning algo-

rithms for disease diagnostic. J Intell Learn Syst Appl

09(01):1–16

6. Yu C, Liu J, Nemati S (2019) Reinforcement learning in

healthcare: a survey. arXiv:1908.08796.

7. Wiens J et al (2019) Do no harm: a roadmap for responsible

machine learning for health care. Nat Med 25(9):1337–1340

8. Kononenko I (2001) Machine learning for medical diagnosis:

history, state of the art and perspective. Artif Intell Med

23(1):89–109

9. Keskinbora KH (2019) Medical ethics considerations on artificial

intelligence. J Clin Neurosci 64:277–282

10. Cabitza F, Rasoini R, Gensini GF (2017) Unintended conse-

quences of machine learning in medicine. JAMA J Am Med

Assoc 318(6):517–518

11. Riley P (2019) Three pitfalls to avoid in machine learning. Nature

572(7767):27–29

12. Liberati A et al (2009) The PRISMA statement for reporting

systematic reviews and meta-analyses of studies that evaluate

health care interventions: explanation and elaboration. PLoS Med

6(7):e1000100

13. Adlassnig KP (2009) Medical Informatics in a United and

Healthy Europe: Proceedings of MIE 2009, the XXII Interna-

tional Congress of the European Federation for Medical Infor-

matics. IOS Press, Amsterdam, p 238

14. Jurisica I, Mylopoulos J, Glasgow J, Shapiro H, Casper RF (1998)

Case-based reasoning in IVF: prediction and knowledge mining.

Artif Intell Med 12(1):1–24

15. Kaufmann SJ, Eastaugh JL, Snowden S, Smye SW, Sharma V

(1997) The application of neural networks in predicting the

outcome of in-vitro fertilization. Hum Reprod 12(7):1454–1457

16. Gianaroli L, Magli MC, Gambardella L, Giusti A, Grugnetti C,

Corani G (2013) Objective way to support embryo transfer: a

probabilistic decision. Hum Reprod 28(5):1210–1220

17. Hassan MR, Al-Insaif S, Hossain MI, Kamruzzaman J (2018) A

machine learning approach for prediction of pregnancy outcome

following IVF treatment. Neural Comput Appl. https://doi.org/10.

1007/s00521-018-3693-9
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