

Mark Scheme (Results)

June 2011

GCE Statistics S1 (6683) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028837
All the material in this publication is copyright
© Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- · dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

June 2011 Statistics S1 6683 Mark Scheme

Question Number	Scheme	Marks
1.		
(a)	$S_{yy} = 4305 - \frac{181^2}{8}$	M1
	$= \frac{209.875}{210}$ (awrt	A1
		(2)
(b)	$r = \frac{(-)23726.25}{\sqrt{3535237.5 \times "209.875"}}$	M1
	= -0.87104 (awrt -0.871)	A1
		(2)
(c)	Higher towns have lower temperature or temp. decreases as height increases	B1
		(1)
(d)	$S_{hh} = 3.5352375$ (awrt 3.54) (condone 3.53)	B1
(e)	r = -0.87104 (awrt -0.871)	B1ft (1)
		(1) (7 marks)
	Notes	
(a)	M1 for a correct expression. Allow one slip e.g. 4350 for 4305	
(b)	(b) $M_{"-"}^{1}$ for a correct expression for r , follow through their answer to (a). Conde	
	Allow M1 for \pm 0.87 with no working. (-0.871 is M1A1)	
(c)	B1 Must mention temperature (o.e.) and height (above sea level) and interpret the relationship between them. Must be a correct and sensible comment. e.g. "As temperature increases the height of the sea decreases" is B0. BUT	
	simply stating "As temperature increases the height decreases" is B1 although "As height increases the temperature decreases" would be better. Treat mention of 0.87 as ISW	
	"strong negative correlation between height and temp" is B0 (r " as x increases y decreases" is B0 (no mention of height and te	-

Question Number	Scheme	Marks	
(d)	B1 accept awrt 3.54 and condone 3.53 (i.e truncation)		
(e)	B1ft for awrt -0.871 or ft their final answer to part (b) to the same accuracy (or 3 sf) < 1 Answer to part (e) must be a number "it's the same" is B0	provided $-1 < r$	
2. (a)	awrt ± 1.40	B1	
	$\frac{23-\mu}{5}$ = "1.40" (o.e)	M1A1ft	
	$\frac{\mu = 16}{16.0)}$ (or awrt	A1 (4)	
(b)	0.4192	B1	
		(1) 5	
	Notes	3	
(a)	B1 for awrt \pm 1.40 or better seen anywhere. Condone 1.4 instead	of 1.40	
	M1 for attempting to standardise with 23 and 5 and μ , accept \pm e.g. $\frac{23-\mu}{25}$ = 1.40 can score B1M0 (since using 25 not 5 for standardising) $\frac{23-\mu}{5}$ = 0.9192 can score B0M1 (since have correct standardisation) Can accept equivalent equations e.g. $23-\mu=5\times$ "1.40" 1st A1ft for standardised expression = to a z value (z > 1). Signs must be		
	compatible.		
	Follow through their z e.g. $\frac{23 - \mu}{5}$ = their z where $z > 1$ or $\frac{\mu - 23}{5}$ = their z where $z < -1$		
	2 nd A1 for 16 or awrt 16.0 if they are using a more accurate z Correct answer only scores 4/4 but if any working is seen apply scheme		
(b)	B1 for 0.4192 (but accept 3sf accuracy if 0.9192 – 0.5 is seen)		

Question Number	Scheme	Marks
3. (a)	$[F(3) = F(2) + P(Y=3) = (0.5 + 0.3)]$ $d = \underline{0.8}$	B1 B1
	b = F(2) - a = 0.5 - 0.1 or $a + b = 0.5c = 1 - F(3)$ or $1 - (a + b + 0.3)$ or $a + b + c = 0.7$	M1 A1
	<u>0.2</u>	A1 (5)
(b)	$P(3Y + 2 \ge 8) = P(Y \ge 2) \qquad \text{or} 1 - P(Y \le 1)$ = b + 0.3 + c \text{or} 1 - a = \text{0.9}	M1 A1ft (2)
	Notes	
(a)	Correct answers with no (or irrelevant) working score full marks 1^{st} B1 for $a = 0.1$ 2^{nd} B1 for $F(3) = 0.8$ or $d = 0.8$ M1 for a method for b or c . E.g. sight of $a + b = 0.5$ or $a + b + c = 0.7$ If their values satisfy one of these equations then score M1 provided their values are genuine probabilities (i.e. $0) This M1 may be implied by a correct answer for b or c 1^{st} A1 for b or b o$	
(b)	M1 for rearranging to $P(Y \ge 2)$ or $1 - P(Y \le 1)$ or selecting cases $Y = 2$, 3 and 4 for $0.3 +$ their $b +$ their c or $1 -$ their a , provided final answer < 1 and their values are probabilities.	

Question Number	Scheme	Marks
4. (a)	$(z = \pm) \frac{15 - 16.12}{1.6} (= -0.70)$ $P(Z < -0.70) = 1 - 0.7580$ $= 0.2420$ (awrt 0.242)	M1 M1 A1 (3)
(b)	[P(T < t) = 0.30 implies] $z = \frac{t - 16.12}{1.6} = -0.5244$ $\frac{t - 16.12}{1.6} = -0.5244 \implies t = 16.12 - 1.6 \times "0.5244"$ $t = \text{awrt } \underline{15.28} \text{ (allow awrt } 15.28/9)$	M1 A1 M1 A1 (4)
		7
	Notes	
(a)	Allow slips e.g. 16.2 for 16.12 for 1 st M1 in (a) and (b) 1 st M1 for standardising expression with 15, 16.12 and 1.6 - allow ± 2 nd M1 for 1 - a probability (> 0.5) from tables or calculator based on their standardised value Correct answer only scores 3/3	
(b)	(b) In part (b) they can use any letter or symbol instead of t for standardising with t (o.e.), 16.12 and 1.6, allow \pm , and setting equal value 1^{st} A1 for an equation with $z = \pm 0.5244$ or better e.g. $\frac{t-16.12}{1.6} = \pm 0.52$ (or 0.525) scores M1 (but A0)	
	2 nd M1 for solving their linear equation as far as $t = a \pm b \times 1.6$. Not dep M1 e.g. solving $\frac{t-16.12}{1.6} = 0.3$ to give $t = 16.12 + 1.6 \times 0.3$ scores this Allow $\frac{t-16.12}{1.6^2} = 0.3$ to give $t = 16.12 + 1.6^2 \times 0.3$ to score M1 to	s M1
	2^{nd} A1 dependent on both M marks. Allow awrt 15.28 or awrt 15.29 Condone awrt 15.3 if a correct expression for $t =$ is seen. Answers with no working: 15.28 is M1A1M1A1, 15.29 is M1A0M1A1, 15.3 is M1A0M	

Question	Scheme	Marks
Number 5.		
(a)	<u>10.5</u>	B1 (1)
(b)	$(Q_2 =) (15.5+) \frac{\frac{1}{2} \times 30 - 14}{8} \times 3 \text{ or } \frac{\frac{1}{2} \times 31 - 14}{8} \times 3$	M1
	= 15.875 or 16.0625	A1 (2)
(c)	$\overline{x} = \frac{477.5}{30} = \underline{15.9}$ (15.918) [Accept $\frac{191}{12}$ or $15\frac{11}{12}$] $\sigma = \sqrt{\frac{8603.75}{30} - \overline{x}^2} ,= \underline{5.78} \text{ (accept } s = 5.88)$	M1, A1
	$\sigma = \sqrt{\frac{8603.75}{30} - \bar{x}^2}$, = $\frac{5.78}{30}$ (accept $s = 5.88$)	M1A1ft, A1
(d)	Since mean and median are similar (or equal or very close) a normal distribution may be suitable. [Allow mean or median close to mode/modal class]	(5) B1
(e)	$Q_3 - Q_2 (= 8) > (4.5 =)Q_2 - Q_1$	(1) M1
	Therefore positive skew	A1
		(2)
	Notes	(11 marks)
	Notes In parts (a) to (c) a correct answer with no working scores full marks for that value.	
(a)	B1 for 10.5 which may be in the table	
(b)	M1 for a correct ratio and times 3, ignore the lower boundary for this mark A1 for awrt 15.9 (if $n = 30$ used) or awrt 16.1 (if $n+1 = 31$ is used)	
(c)	1 st M1 for attempt at $\sum fx$ (this may be seen in the table as fx : 10, 73.5, 70, 136, 82, 106	
	[condone 1 slip] or awrt 500) and use of $\frac{\sum fx}{\sum f}$ or a correct expression for mean.	
	1 st A1 for awrt 15.9	
	2^{nd} M1 for an attempt at σ or σ^2 , can ft their mean, condone mis-labelling $\sigma^2 = $ etc Allow use of their $\sum fx^2$ (awrt 9000)	
	2^{nd} A1ft for a correct expression including square root, ft their mean but not their $\sum fx^2$.	
	No label or correct label is OK but wrong label (e.g. $\sigma^2 = $) is A0	
	3^{rd} A1 for awrt 5.78, allow $s = \text{awrt } 5.88$. SC Allow M1A1A0 for awrt 5.79 if \overline{x} correct	
(d)	B1 for a reason implying or stating symmetry. "Time is continuous" or "evenly distributed" is B0	

Question Number	Scheme	Marks
(e)	 M1 for a clear reason or comparison, values not essential but comparison have been found is required. A1 for stating "positive skew". Condone just "positive" but "positive cor Do not allow arguments based on mean and median since this part different set of data. 	relation" is A0
6. (a)	$P(J \cup K) = 1 - 0.7$ or $0.1 + 0.15 + 0.05 = 0.3$	B1 (1)
(b)	P(K) = 0.05 + 0.15 or "0.3" $-0.25 + 0.15$ or "0.3" $= 0.25 + P(K) - 0.15$	M1
	May be seen on Venn diagram $= 0.2$	A1 (2)
(c)	$[P(K J)] = \frac{P(K \cap J)}{P(J)}$	M1
	$=\frac{0.15}{0.25}$	A1
	$=\frac{3}{5} \underline{\text{ or } 0.6}$	A1
(d)	$P(J) \times P(K) = 0.25 \times 0.2 (= 0.05), P(J \cap K) = 0.15 \text{or}$ P(K J) = 0.6, P(K) = 0.2 or may see P(J/K) = 0.75 and P(J) = 0.25	(3) M1
	not equal therefore not independent	A1ft (2)
(e)	Not independent so confirms the teacher's suspicion <u>or</u> they are linked (This requires a statement about independence in (d) or in (e))	B1ft (1) (9 marks)

Question Number	Scheme		Marks	
	Notes			
(b)	M1 for a complete method, follow through their 0.3, leading to a linear equation for $P(K)$		equation for	
		NB You may see this Venn diagram.		
		A correct diagram (Venn or table) implies M1 in (b)		
	Need not include box or 0.7	0.10	0.15 0.05	
	Correct answer only is 2/2		\bigvee	
	In parts (c) and (d) they must ha	ve defined A and B	0.7	
(c)	(c) M1 for a correct expression (including ratio) in symbols.			
	1 st A1 for a correct ratio of probabilities (
	Must be in (c). Condone no LHS		(K)) is M0A0	
	2 nd A1 for correct answer as printed only. Correct answer only 3/3			
	Mark (d)	and (e) together		
(d)	M1 for a correct comparison of known		e test - ft their	
	values. E.g. $P(J) \times P(K)$ with $P(J \cap K)$ or $P(K J)$ with $P(K)$ [Must have			
	expressions]	, ` ` ' , ` ` ` ` '		
	The values of these probabilities should be given unless they are in the quest		the question or	
	stated elsewhere.			
	A1ft for correct calculations and correct	comment for their probabilities		
(e)	B1ft ft their conclusion on independence	e so not independent confirms		
(-)	teacherindependent contradicts t	-		
	<u> </u>	ve probabilities should score M	[0	

Question Number	Scheme	Marks	
7.			
(a)	$\left(S_{fh} = \right)25291 - \frac{186 \times 1085}{8} = \underline{64.75} $ (accept 64.8)	M1	
	$= \underline{64.75}$ (accept 64.8)	A1 (2)	
(b)	$b = \frac{\text{"64.75"}}{39.5}, = \underline{1.6392}$ (awrt 1.6) $a = \frac{1085}{8} - b \times \frac{186}{8}, = \underline{97.512}$ (awrt 97.5)	M1, A1	
	$a = \frac{1085}{8} - b \times \frac{186}{8},$ = $\frac{97.512}{8}$ (awrt 97.5)	M1, A1	
	h = 97.5 + 1.64f	A1ft (dep on M1M1) (5)	
(c)	$h = 97.5 + 1.64 \times 25$, $= 138 \times 139$ (final answer in [138, 139])	M1, A1 (2)	
(d)	Should be reliable, since $25 \text{ cm}(\text{or } f \text{ or footlength})$ is within the range of the data	B1, B1	
(e)	Line is for children – a different equation would apply to adults or Children are still growing, height will increase more than foot length	(2) B1 (1)	
	NT /	12	
	Notes Supplied to the state of		
(a)	[NB $r = 0.871$ so do not confuse this with question 1] M1 for attempting a correct expression [allow a copying slip e.g. 25921]	
(b)	1 st M1 for a correct expression for b , ft their part (a) but not $S_{fh} = 25291$ 1 st A1 for awrt 1.6 2 nd M1 for use of $a = \overline{h} - b \times \overline{f}$, ft their value for b . Must use \overline{h} and \overline{f} not values from table. 2 nd A1 for awrt 97.5 [NB $a = 135 - 1.63 \times 23 = 97.51$ but M0A0 since not using \overline{h} and \overline{f}] 3 rd A1ft for an equation for h and f with their coefficients to 3sf. Dependent on both Ms		
	Must be 3sf not awrt. Give this mark if seen in (c). Equation must be in h	and f not y and x .	
(c)	M1 for using their equation and $f = 25$ to find h A1 for their final answer in [138, 139]. Can give if they have 137.7 but round to 138		
(d)	1 st B1 for suggesting it <u>is</u> reliable 2 nd B1 for mentioning that 25 cm is within range of data. "interpolation" or "not extrapol'B1 Use of "it" or a comment that height is in range is B0 but apply ISW		
(e)	B1 for some comment that states a difference between children and teachers(adults) Must mention teacher/adults and children e.g. ".teacher is not in same age group as the children", "equation is for children not adults" "children and adults are different populations" "teacher will be taller" is B0 since no mention of children. "equation is only valid for children" is OK since "only" implies not suitable for adults Or Reference to different growth rates		

Question Number	Scheme	Marks
8. (a)	$1 = p + (0.25 + 0.25 + 0.2 + 0.2), \implies p = \frac{1}{10} \text{ or } 0.1$	M1, A1
(b)	$E(S) = \frac{1}{4} + 2 \times \frac{1}{4} + 4 \times \frac{1}{5} + 5 \times \frac{1}{5}$, (or equiv. in decimals) $= 2.55$	(2) M1, A1
(c)	$E\left(S^{2}\right) = \frac{1}{4} + \frac{2^{2}}{4} + \frac{4^{2}}{5} + \frac{5^{2}}{5} \text{or } 0.25 + 1 + 3.2 + 5 = \underline{9.45} (*)$	(2) M1, A1cso
(d)	Var(S) = 9.45 $-(E(S))^2$, = $\frac{2.9475 \text{ or}}{400}$ (accept awrt 2.95)	(2) M1, A1
(e)	P(5 and 5) = $\left(\frac{1}{5}\right)^2$, = $\frac{1}{25}$ or 0.04	M1, A1 (2)
(f)	$P(4, 4, 2) = \left(\frac{1}{5}\right)^2 \times \frac{1}{4} \times 3 \qquad (= 0.03 \text{ or } \frac{3}{100})$	M1, M1 (2)
	$P(4, 4, 4) = \left(\frac{1}{5}\right)^3$ $(= 0.008 \text{ or } \frac{1}{125})$	B1
	P(Tom wins in 3 spins) = 0.038	A1 (4)
(g)	$P\left(\overline{5} \cap 5 \cap 5\right) + P(5 \cap \overline{5} \cap 5) = \frac{4}{5} \times \left(\frac{1}{5}\right)^2 \times 2 = \underline{0.064 \text{ or } \frac{8}{125}}$	(4) M1, M1, A1
		(3)
	Notes	17
(a)	M1 for clear attempt to use sum of probabilities = 1 (fractions or decimals)	Ans only 2/2
(b)	M1 for at least 2 correct terms ($\neq 0$) of the expression. 2.55 with no working scores M1A1	
(c)	Any division by k (usually 5) in (b) or (c) or (d) scores M0 M1 for at least 3 correct, non-zero terms of the expression seen, allow decimals. A1cso for the full expression (with 9.45) seen. Must be cso but can ignore wrong p.	
(d)	M1 for a correct expression (9.45 seen), can ft their E(S). May see $\sum (x - "2.55")^2 \times P(X = x)$ A1 accept awrt 2.95 Answer only can score M1 for correct ft and A1 for awrt 2.95	
(e)	Answer only in (e) and (f) is full marks, in (g) is no marks M1 for $\left(\frac{1}{5}\right)^2$ Condone P(5)×P(5) = 0.25×0.25. [Beware 0.4 is A0]	
(f)	$1^{\text{st}} \text{ M1 for } \left(\frac{1}{5}\right)^2 \times \frac{1}{4} \text{ or } 0.01 \text{ seen}$	
	2^{nd} M1 for multiplying a p^2q probability by $3(p, q \in (0,1))$. B1 for $(0.2)^3$ or	better seen
(g)	1^{st} M1 for $\frac{4}{5} \times \left(\frac{1}{5}\right)^2$ or all cases considered and correct attempt at probabilities.	
	2^{nd} M1 for multiplying a $p^2(1-p)$ probability by 2. Beware $(0.4)^3 = 0.064$ i	s M0M0A0

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467

Fax 01623 450481

Email <u>publication.orders@edexcel.com</u>

Order Code UA028837 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

