CASE STUDY IN MODEL RR DESIGN: KCS 3RD SUB

Steve Davis Coweta, OK

What I started with

Small bedroom "around the walls"
Bi-level "No-Lix" (continual grade)
Computer control, CTC

Finding a home for the RR (and me!)

- Searched for property with a shop/outbuilding
- Located 4.5 acres in Coweta w/ a 40' x 60' shop
- Had an office, lounge, bathroom, HVAC -- a bonus!
- Also need some storage (so can't use entire 40' x 60' building for model RR).

Selecting a prototype to model

- Wanted something I was familiar with
- Something I could research or see first hand
- Something less commonplace
- Wanted on line industries, switching and interchange work
- Decided on the KCS 3rd Sub in 1979-1980. Why?
 - Frank Bryan had SLIC charts of the trackage.
 - Fairly convenient to scout/photograph.

Selecting a prototype to model

- Had data on actual trains run during the chosen era from Frank and others.
 - KCS used to read the line-up over the dispatcher frequency at the beginning of each day, we had notes/recordings of that.
 - Mark Montray and the KCSHS are a great resource (see <u>http://www.kcshs.org/</u>)
- Interesting topography and considerable industries and interchange

Sample SLIC Chart

Courtesy of Frank W. Bryan

Givens

- Available layout space is ~30' x 45'
- HO Scale
- Digitrax DCC
- Minimum mainline turnout #8
- Minimum mainline radius 33"
- Track separation 2.25" minimum
- Maximum grade 2% (prototype approached 2% at points)

Givens

- No deeper than 3', prefer 18" to 2' to reach industries to switch ("shelf" style)
- CTC (means block detection and motorized mainline switches are required)
 - Diagram courtesy Frank W. Bryan. This is a working simulation which runs under Signal Computer Consulting's Train Dispatcher 3 software, see <u>www.signalcc.com</u> for more information.

Givens

 At least half the sidings must accommodate max length train

- 100' for 2 locomotives
- 40' for caboose
- Average car length 50'
- 33 x 50 = 1650'
- Total length 1650+100+40=1790'
- HO scale is 1:87 so 50% of sidings must be at least 20.5' actual length (1790/87)

Staging yard so trains could come from/go to areas "off layout".

Druthers

- Wanted a walkaround design where trains could be followed
- Prefer to model a whole subdivision
- Computer control capable
- Be able to operate solo with computer running other trains
- Maximize mainline run

Druthers

- Train length at least 30 cars
- Wanted a functional yard modeled after the prototype
- Wanted to run the trains the prototype ran in the era
- Direction of turnouts, location of sidings and industries, s/b as per prototype
- No duckunders

Druthers

- Crew lounge
- Bathroom
- Refrigerator for refreshments
- Coffee!

Operational Considerations

- Designed for operation (car forwarding, interchange plan, scheduled trains)
- Be able to handle around 8 operators
- Reasonably realistic car forwarding system
- Easy as possible restaging/setup
 - This drove me to a "through staging" design and a full circle, since that way loaded coal trains would always be headed southbound for example.
- Schema that is easy to adjust while learning from ops sessions

Choosing the basic design type

- Center "island" was first choice, but allowing for walkaround on all sides wasted some potential layout space, so started with an "around the walls" design with peninsulas.
 - This left a side wall and back wall that could only be reached on one side.
 - Another negative was a long hidden run back to staging, but this will be handled by computer not the operators.

Fitting in the benchwork and curves

- First, created a scale drawing of the space.
- Next, placed the main yard.
- Added shelf around the walls, 3' max depth.
- Added peninsulas, allowing for 4' aisles between operating areas
- Draw a curve at minimum radius, use to determine ends of "lolipops"

First single level design

Design Fill in main sidings Add towns and staging Flesh out with industries Pros Simplest to construct Good scenery potential Lowest cost

First single level design

Layout height can be optimized

Cons

- Only 250' mainline run
- Even skipping some towns, space between sidings is just over 1 train length.
- Hard to reach/follow trains on the top level of the short bi-level portion along the left and top walls

Double deck design

Design

- KCS dbl deck v9-3 level1.pdf
- KCS dbl deck v9-3 level2.pdf
- Pros
 - Doubles mainline run
 - More spacing between towns for better dispatching experience

• Cons

- More difficult/expensive to build
- Bottom layer may be too low, top layer too high, need stools etc.

Double deck design

- Scenic "vistas" harder to accomplish
- Needs a dreaded helix, some hidden track, a duckunder
- Reequires a duckunder (albeit 65" high)

Final Design

- Compromise: mostly single deck w/ mushroom for partial double-deck.
- Helix at end of run only, not used by operators (computer runs trains in/out of staging up/down helix, operators only run the prototype route between Heavener and Watts.