Question Number	Acceptable Answer	Additional Guidance	Mark
1(a)	- $\mathbf{A}=\mathrm{CaO}(\mathrm{s})$		
	- $\mathbf{B}=\mathrm{CO}_{2}(\mathrm{~g})$		
	- $\quad \mathbf{C}=\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) /(\mathrm{s})$		
	- $\mathbf{D}=\mathrm{CaCl}_{2}(\mathrm{aq})$		
	- $\mathbf{E}=\mathrm{CaCO}_{3}(\mathrm{~s})$	Allow $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq})$	
	correct formulae with incorrect / missing symbol scores (4) correct formulae with 2 or more incorrect / missing symbols scores (3)		5

Question Number	Acceptable Answer	Additional Guidance	Mark
1(b)	An explanation that makes reference to the following points: - magnesium decomposes at lower temperature / more readily - because it is a smaller ion with the same charge - so polarises the anion (more) - and weakens the carbon-oxygen bond	Allow for four marks reverse argument for Ca^{2+} ions magnesium ion has a larger charge density distorts the electron cloud	4

Question Number	Acceptable Answer	Additional Guidance	
$\mathbf{2 (a) (\mathbf { i })}$	$\bullet 203.3\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$	Allow 203 if $\mathrm{Mg}=24$	Mark

| Question
 Number | Acceptable Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |
| 2(a)(ii) | An answer that makes reference to the following point: | |
| | white precipitate $/$ white solid | |

| Question
 Number | Acceptable Answer | Additional Guidance |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 (a) (i i i)}$ | $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})$
 equation and state symbols | Mark |

Question Number	Acceptable Answer	Additional Guidance	Mark
2(b)	An answer that makes reference to the following points: - AgCl dissolves in dilute aqueous ammonia (and in concentrated aqueous ammonia - AgBr is insoluble / only partially soluble in dilute aqueous ammonia, but is soluble in concentrated aqueous ammonia - AgI is insoluble in both dilute and concentrated aqueous ammonia		3

Question Number	Answer	Additional Guidance	Mark
3(a)	C (iodine)		1
Question Number	Answer	Additional Guidance	Mark
3(b)	C ($\left.\mathrm{P}_{4} \mathrm{O}_{10}\right)$		1
Question Number	Answer	Additional Guidance	Mark
3(c)	D (ice has a lower density than water at $0^{\circ} \mathrm{C}$)		1

| Question
 number | Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| $\mathbf{3 (d) (i)}$ | $\mathbf{A}\left(\mathrm{AlCl}_{3}\right.$ and $\left.\mathrm{BCl}_{3}\right)$ | Marks |

Question number	Acceptable Answer	Additional Guidance	Marks
3(d)(iii)	An explanation that makes reference to the following points: Shape 2 because - Ione pair-lone pair repulsion is greater (than both lone pair-bond pair repulsion and bond pair-bond pair repulsion) - hence having the lone pairs as far apart as possible (will result in less repulsion between them) OR - Lone pair-lone pair bond angle is 180° rather than 120°		2

| Question
 number | Acceptable Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| 4(a) | An answer that makes reference to the following points: | Marks |

Question Number	Acceptable Answer	Additional Guidance	Mark
4(b)	An explanation that makes reference to one of the following pairs: either - oxidation number of Cl changes from +5 to +4 - therefore ClO_{3}^{-}is the oxidising agent (because Cl (in ClO_{3}^{-}) has been reduced) or - oxidation number of S changes from +4 to +6 (and oxidation number of H does not change) - (therefore S (in SO_{2}) has been oxidised) therefore ClO_{3}^{-}is the oxidising agent	Allow oxidation number of Cl goes down by 1 Allow oxidation number of S goes up by 2 (and oxidation number of H does not change)	

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 24 MARK SCHEME

Question number	Acceptable Answer		Additional Guidance	Marks
4(c)(i)	$2 \mathrm{ClO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{ClO}_{2}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$ - species - balanced	(1) (1)	Ignore state symbols	2

Question number	Acceptable Answer	Additional Guidance	
$\mathbf{4 (c) (i i)}$	An answer that makes reference to the following point:	Allow chlorine has gone from +4 to +3 and +5 (maybe shown underneath the equation in ci)	$\mathbf{1}$

(Total for Question 4 = 6 marks)

Question number	Acceptable Answer	Additional Guidance	Marks
5(a)(i)	An explanation that makes reference to the following points: - the outermost electron of the magnesium atom is in a quantum shell of lower energy (than that of the strontium atom) \the outermost electron is in the 3 s rather than the 5 s (orbital) - the outermost electron of the magnesium atom is closer to the nucleus so is more strongly attracted OR the outermost electron(s) of the magnesium atom experiences less shielding (that that of the strontium atom) so is more strongly attracted	Ignore any mention of (effective) nuclear charge	2

Question number	Acceptable Answer	Additional Guidance	Marks
5(a)(ii)	An explanation that makes reference to the following points: EITHER - greater proton to electron ratio so greater attraction /electron is being removed from a positively charged particle - remaining electron is closer to the nucleus OR - after the first electron is removed the remaining electron experiences less repulsion - therefore it has a lower energy (than before)		2

Question number	Acceptable Answer	Additional Guidance	Marks
5(a)(iii)	An explanation that makes reference to the following points: - the third electron is removed from a different (quantum) shell / removed from the second (quantum) shell as opposed to the third - of lower energy / closer to the nucleus OR - less shielding of the $2 p$ electron		2

Question number	Acceptable Answer	Additional Guidance		
$\mathbf{5 (b) (\mathbf { i })}$	$\bullet \Delta H_{1}$ - enthalpy change of formation (of strontium chloride)	(1)		
	$\bullet \Delta H_{2}$ - enthalpy change of atomisation of strontium	(1)		

Question number	Acceptable Answer	Marks		
$\mathbf{5 (b) (i i)}$	$\bullet \Delta H_{7}=\Delta H_{1}-\left(\Delta H_{2}+\Delta H_{3}+\Delta H_{4}+\Delta H_{5}+\Delta H_{6}\right)$	(1)		
	$\bullet \Delta H_{7}=-828-164-548-1060-242-(-728)$			
	$=-2114\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	(1)	Allow correct answer with no working scores 2	$\mathbf{2}$

| Question
 number | Answer | Mdditional Guidance |
| :--- | :--- | :--- | :---: |
| $\mathbf{5 (c)}$ | B (the inter-ionic distance is smaller in magnesium chloride) | Marks |

(Total for Question 5 = 11 marks)

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 24 MARK SCHEME

Question number	Answer	Additional Guidance	Marks
6(a)	C ([Ar] 3d ${ }^{6} 4 \mathrm{~s}^{0}$)		1
Question number	Answer	Additional Guidance	Marks
6(b)(i)	D (+6)		1
Question number	Acceptable Answer	Additional Guidance	Marks
6(b)(ii)	- E^{\ominus} for the reaction is +0.97 V - because E^{\ominus} is positive FeO_{4}^{2-} will react and so is unstable (in acidic conditions) - $4 \mathrm{FeO}_{4}^{2-}+20 \mathrm{H}^{+} \rightarrow 4 \mathrm{Fe}^{3+}+10 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{O}_{2}$ - correct species - balancing	Accept correct use of 'anti-clockwise rule' Award 1 mark for: $\begin{aligned} & 4 \mathrm{FeO}_{4}^{2-}+32 \mathrm{H}^{+}+6 \mathrm{H}_{2} \mathrm{O} \\ & \rightarrow 4 \mathrm{Fe}^{3+}+16 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{O}_{2}+12 \mathrm{H}^{+} \end{aligned}$ Ignore state symbols	4

| Question
 number | Acceptable Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| $\mathbf{6 (c) (\mathbf { i })}$ | $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+} /\left[\mathrm{FeCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$ | Square brackets not essential |

Question number	Acceptable Answer		Additional Guidance	Marks
6(c)(ii)	- both isomers - cis and trans correctly labelled	(1) (1)	Ignore absence of square brackets and charge Allow one isomer with correct label for 1 mark	2

| Question
 number | Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| $\mathbf{6 (d)}$ | $\mathbf{B}\left(\mathrm{Cl}_{2}(\mathrm{~g})\right)$ | Marks |

Question number	Acceptable Answer		Additional Guidance	Marks
7(a)	- use of $1: 8$ ratio in kg , grams or moles - calculating mass of lithium - answer to two or three sf	(1) (1) (1)	Example of calculation: 146.1 kg of SF_{6} react with $(8 \times 6.90) 55.2 \mathrm{~kg}$ of Li $\therefore \quad 398 \mathrm{~kg}$ of SF_{6} react with $\frac{55.2}{146.1} \times 398 \mathrm{~kg}=$ $150(.3737 \ldots .)$.kg of Li $150 \text { (kg) }$ Final answer must be to two/three significant figures Correct final answer to two/three significant figures with no working scores (3)	3

Question number	Acceptable Answer		Additional Guidance	Marks
7(b)	- calculating $\Delta S_{\text {system }}^{\ominus}$ - calculating $\Delta S_{\text {surroundings }}^{\ominus}$ - conversion of units to be the same - calculating $\Delta S_{\text {total }}^{\ominus}$ with units	(1) (1) (1) (1)	Example of calculation: $\begin{aligned} & \Delta S_{\text {system }}^{\ominus}=63.0+(6 \times 35.6)-292-(8 \times 29.1) \\ & =-248.2\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & \Delta S_{\text {surroundings }}^{\ominus}=-\frac{-2934000}{298} \\ & =+9845.638\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned}$ Accept $9850\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ Accept $9.846 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $\Delta S_{\text {total }}^{\ominus}=+9597 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ Accept any number of significant figures up to and including the calculator value of 9597.437584 Correct answer with units and no working scores 4	4

Question number	Acceptable Answer	Additional Guidance	Marks
7(c)	An answer that makes reference to the following points: - $\Delta S_{\text {total }}^{\ominus}$ is positive, so the reaction is (thermodynamically) feasible - therefore (if it needs a fuse), it must have a high activation energy		2

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 24 MARK SCHEME

Question number	Acceptable Answer	Additional Guidance	Marks
8(b)(ii)	An explanation that makes reference to the following points: - $\mathrm{HCOOH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{HCOO}^{-}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}_{2}^{+}$ - because methanoic acid has a larger K_{a} value / methanoic acid is the stronger acid	Ignore state symbols second mark is conditional on correct equation	2

| Question
 number | Acceptable Answer | Marks |
| :--- | :---: | :--- | :--- |
| $\mathbf{8 (c) (i)}$ | $\bullet \mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right]$ | Allow $\lg / \log _{10} / \lg _{10}$
 Ignore state symbol |

Question number	Acceptable Answer		Additional Guidance	Marks
8(c)(ii)	$\mathrm{HCl}(\mathrm{aq})$: - calculation of pH $\mathrm{HCOOH}(\mathrm{aq}):$ - rearrangment of K_{a} equation to find $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ - calculation of $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ - calculation of pH	(1) (1) (1) (1)		4

		Additional Guidance	Marks

linkages and lines of reasoning.	
Answer has no linkages between points and is unstructured.	0

Indicative content

Similarity

- reaction is between Mg and $\mathrm{H}^{+} / \mathrm{Mg}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
- $100 \mathrm{~cm}^{3}$ of HCl and $100 \mathrm{~cm}^{3} \mathrm{HCOOH}$ contain the same initial number of moles of the acid
- therefore same total volume of gas evolved

Difference

- HCl is fully dissociated/ionised but HCOOH only partially dissociated/ionised
- $\left[\mathrm{H}^{+}\right]$is greater in $\mathrm{HCl} /\left[\mathrm{H}^{+}\right]$is smaller in HCOOH
- therefore rate is greater with $\mathrm{HCl} /$ lower with HCOOH
both acids produce one H^{+}/ are monobasic / are monoprotic
the same volume and concentration of both acids is used
a calculation to show the same volume
dissociation/ionisation of HCOOH requires energy
therefore larger activation energy with HCOOH

| Question
 number | Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |
| $\mathbf{9 (a)}$ | B $\left(\frac{p_{\mathrm{SO}_{3}}}{p_{\mathrm{SO}_{2}} \cdot p_{\mathrm{O}_{2}}^{1 / 2}}\right)$ | |
| | | |

Question number	Acceptable Answer	Additional Guidance	Marks
9(b)	An answer that makes reference to the following point: - the amount of SO_{3} is much greater than the amounts of SO_{2} and O_{2} or - as K_{p} greater than 1×10^{10} the equilibrium lies completely to the right / reaction goes to completion		1

Question number	Acceptable Answer	Additional Guidance	Marks
9(c)	An explanation that makes reference to the following points: - the yield of sulfur trioxide decreases because the forward reaction is exothermic - because as the temperature increases K_{p} decreases		2

Question number	Acceptable Answer		Additional Guidance	Marks
9(d)	- calculating $\Delta_{r} G^{\ominus}$ - since $\Delta_{r} G^{\ominus}$ is negative this confirms the reaction is thermodynamically feasible	(1) (1)	$\begin{aligned} \Delta_{\mathrm{r}} G^{\ominus} & =-8.31 \times 298 \times \ln 2.00 \times 10^{12} \\ & =-70100 \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned}$ accept any number of significant figures e.g. 70 141	2

| Question
 number | Acceptable Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{9 (e)}$ | e the rate of the reaction is increased (even though the yield is | |
| less) | | |\quad (Total for Question 9 = 7 marks)

Question number	Acceptable Answer		Additional Guidance
$\mathbf{1 0 (a)}$	\bullet starch		
	\bullet blue-black to colourless	(1)	Marks

| Question
 number | Acceptable Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |
| $\mathbf{1 0 (b)}$ | $\left(2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2}\right) \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-}$ | Marks |

Question number	Acceptable Answer		Additional Guidance	Marks
10(c)	- calculation of moles of $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$	(1)	$n\left(\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right)=\frac{38.70 \times 0.00100}{1000} / 3.870 \times 10^{-5}(\mathrm{~mol})$	
	- calculation of moles of I_{2} in excess	(1)	$\begin{aligned} & n\left(\mathrm{I}_{2}\right) \text { in excess }=1 / 2 \times n\left(\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right) / 1.935 \times 10^{-5} \\ & (\mathrm{~mol}) \end{aligned}$	
	- calculation of moles of initial I_{2} and reacted I_{2}	(1)	$\begin{aligned} & n\left(\mathrm{I}_{2}\right) \text { initial }=\frac{10.0 \times 0.00500}{1000} / 5.00 \times 10^{-5}(\mathrm{~mol}) \\ & n\left(\mathrm{I}_{2}\right) \text { reacted }\left(=n\left(\mathrm{SO}_{2}\right)\right)=n\left(\mathrm{I}_{2}\right) \text { initial }-n\left(\mathrm{I}_{2}\right) \text { in } \\ & \text { excess } / 3.065 \times 10^{-5}(\mathrm{~mol}) \end{aligned}$	
	- calculation of concentration of SO_{2} in $\mathrm{mol} \mathrm{dm}^{-3}$	(1)	$\begin{aligned} & {\left[\mathrm{SO}_{2}\right]=\frac{3.065 \times 10^{-5}}{10} \times 1000=3.065 \times 10^{-3}(\mathrm{~mol}} \\ & \left.\mathrm{dm}^{-3}\right) \end{aligned}$	
	- calculation of concentration of SO_{2} in $\mathrm{mg} \mathrm{dm}^{-3}$	(1)	$\begin{aligned} & {\left[\mathrm{SO}_{2}\right]=3.065 \times 10^{-3} \times 64.1 \times 1000 \mathrm{mg} \mathrm{dm}^{-3}=} \\ & 196.47 \mathrm{mg} \mathrm{dm}^{-3} \end{aligned}$	
	- conclusion	(1)	$(196<400)$ so the wine can be sold	6

