Question Number	Acceptable Answer		Additional Guidance	Mark
1(a)	• A = CaO(s)	(1)		
	• $\mathbf{B} = CO_2(g)$	(1)		
	• $\mathbf{C} = \text{Ca}(OH)_2 (aq)/(s)$	(1)		
	• $\mathbf{D} = CaCl_2(aq)$	(1)		
	• $\mathbf{E} = CaCO_3(s)$	(1)	Allow Ca(HCO₃)₂(aq)	
	correct formulae with incorrect / missing symbol correct formulae with 2 or more incorrect / missi	` '		5

Question Number	Acceptable Answer		Additional Guidance	Mark
1(b)	 An explanation that makes reference to the following points magnesium decomposes at lower temperature / more 		Allow for four marks reverse argument for Ca ²⁺ ions	
	because it is a smaller ion with the same charge	(1)	magnesium ion has a larger charge density	
	so polarises the anion (more)	(1)	distorts the electron cloud	
	and weakens the carbon-oxygen bond	(1)		4

(Total for Question 1 = 9 marks)

Question Number	Acceptable Answer	Additional Guidance	Mark
2(a)(i)	• 203.3 (g mol ⁻¹)	Allow 203 if Mg = 24	1

Question Number	Acceptable Answer	Additional Guidance	Mark
2(a)(ii)	An answer that makes reference to the following point:		
	white precipitate / white solid		1

Question Number	Acceptable Answer	Additional Guidance	Mark
2(a)(iii)	$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$ equation and state symbols		1

Question Number	Acceptable Answer	Additional Guidance	Mark
2(b)	 An answer that makes reference to the following points: AgCl dissolves in dilute aqueous ammonia (and in concentrated aqueous ammonia (1) AgBr is insoluble / only partially soluble in dilute aqueous ammonia, but is soluble in concentrated aqueous ammonia (1) AgI is insoluble in both dilute and concentrated aqueous ammonia (1) 		3

(Total for Question 2 = 6 marks)

Question Number	Answer	Additional Guidance	Mark
3(a)	C (iodine)		1
Question	Answer	Additional Guidance	Mark
Number	Allswei	Additional Galdance	Mark
3(b)	C (P ₄ O ₁₀)		1

Question Number	Answer	Additional Guidance	Mark
3(c)	D (ice has a lower density than water at 0°C)		1

Question number	Answer	Additional Guidance	Marks
3(d)(i)	A (AlCl ₃ and BCl ₃)		1

Question number	Acceptable Answer	Additional Guidance	Marks
3(d)(ii)	F F	Allow other indications of 3D shapes Allow shapes in either order	2

Question number	Acceptable Answer	Additional Guidance	Marks
3(d)(iii)	An explanation that makes reference to the following points: Shape 2 because		
	lone pair-lone pair repulsion is greater (than both lone pair-bond pair repulsion and bond pair-bond pair repulsion) (1)		
	 hence having the lone pairs as far apart as possible (will result in less repulsion between them) 		
	OR		
	• Lone pair-lone pair bond angle is 180° rather than 120° (1)		2

(Total for Question 3 = 8 marks)

Question number	Acceptable Answer	Additional Guidance	Marks
4(a)	An answer that makes reference to the following points:		

a species that gains electrons	
OR	
a species that removes (one or more) electrons from another	
species	_
	1

Question Number	Acceptable Answer		Additional Guidance	Mark
4(b)	An explanation that makes reference to one of the following pairs:			
	 either oxidation number of Cl changes from +5 to +4 	(1)	Allow oxidation number of Cl goes down by 1	
	 therefore CIO₃ is the oxidising agent (because CI (in CIO₃) has been reduced) 	(1)		
	or			
	 oxidation number of S changes from +4 to +6 (and oxidation number of H does not change) 	(1)	Allow oxidation number of S goes up by 2 (and oxidation number of H does not change)	
	• (therefore S (in SO_2) has been oxidised) therefore CIO_3^- is the oxidising agent	(1)		2

Question number	Acceptable Answer		Additional Guidance	Marks
4(c)(i)	$2ClO_2 + 2OH^{-} \rightarrow ClO_2^{-} + ClO_3^{-} + H_2O$	Ign	nore state symbols	
	• species	(1)		
	• balanced	(1)		2

Question number	Acceptable Answer	Additional Guidance	Marks
4(c)(ii)	An answer that makes reference to the following point:		
	 because chlorine (in ClO₂) is both oxidised and reduced 	Allow chlorine has gone from +4 to +3 and +5 (maybe shown underneath the equation in ci)	1

(Total for Question 4 = 6 marks)

Question number	Acceptable Answer	Additional Guidance	Marks
5(a)(i)	 An explanation that makes reference to the following points: the outermost electron of the magnesium atom is in a quantum shell of lower energy (than that of the strontium atom) \ the outermost electron is in the 3s rather than the 5s (orbital) 	Ignore any mention of (effective) nuclear charge	
	the outermost electron of the magnesium atom is closer to the nucleus so is more strongly attracted OR the outermost electron(s) of the magnesium atom experiences less shielding (that that of the strontium atom) so is more strongly attracted (1)		2

Question number	Acceptable Answer	Additional Guidance	Marks
5(a)(ii)	An explanation that makes reference to the following points:		
	 greater proton to electron ratio so greater attraction /electron is being removed from a positively charged particle remaining electron is closer to the nucleus 	(1) (1)	
	<u>OR</u>		
	after the first electron is removed the remaining electron experiences less repulsion	(1)	
	therefore it has a lower energy (than before)	(1)	2

Question number	Acceptable Answer	Additional Guidance	Marks
5(a)(iii)	 An explanation that makes reference to the following points: the third electron is removed from a different (quantum) shell / removed from the second (quantum) shell as opposed to the third (1) 		
	 of lower energy / closer to the nucleus OR less shielding of the 2p electron (1) 		2

Question number	Acceptable Answer	Additional Guidance	Marks
5(b)(i)	• ΔH_1 – enthalpy change of formation (of strontium chloride) (1)		
	• ΔH_2 – enthalpy change of atomisation of strontium (1)		2

Question number	Acceptable Answer		Additional Guidance	Marks
5(b)(ii)	$\bullet \Delta H_7 = \Delta H_1 - (\Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6)$	(1)		
	• $\Delta H_7 = -828 - 164 - 548 - 1060 - 242 - (-728)$			
	$= -2114 (kJ mol^{-1})$	(1)	Allow correct answer with no working scores 2	2

Question number	Answer	Additional Guidance	Marks
5(c)	B (the inter-ionic distance is smaller in magnesium chloride)		1

(Total for Question 5 = 11 marks)

Question number	Answer	Additional Guidance	Marks
6(a)	\mathbf{C} ([Ar] 3d ⁶ 4s ⁰)		1

Question number	Answer	Additional Guidance	Marks
6(b)(i)	D (+6)		1

Question number	Acceptable Answer	Additional Guidance	Marks	
6(b)(ii)	• E° for the reaction is +0.97 V	(1)	Accept correct use of 'anti-clockwise rule'	
	• because E° is positive FeO_4^{2-} will react and so is unstable (in acid conditions)	lic (1)		
	• $4\text{FeO}_4^{2-} + 20 \text{ H}^+ \rightarrow 4\text{Fe}^{3+} + 10 \text{ H}_2\text{O} + 3\text{O}_2$		Award 1 mark for: $4FeO_4^{2^-} + 32H^+ + 6H_2O$ $\rightarrow 4Fe^{3^+} + 16H_2O + 3O_2 + 12H^+$	
	- correct species	(1)		
	_ balancing	(1)	Ignore state symbols	4

Question number	Acceptable Answer	Additional Guidance	Marks
6(c)(i)	$[Fe(NH_3)_4Cl_2]^+$ / $[FeCl_2(NH_3)_4]^+$	Square brackets not essential	1

Question number	Acceptable Answer	Additional Guidance	Marks
6(c)(ii)	CI H ₃ N — CI H ₃ N — NH ₃ NH ₃ CI cis- CI H ₃ N — NH ₃ CI trans-	Ignore absence of square brackets and charge	
	• both isomers (1)		
	• <i>cis</i> and <i>trans</i> correctly labelled (1)	Allow one isomer with correct label for 1 mark	2

Question number	Answer	Additional Guidance	Marks
6(d)	$\mathbf{B} (\operatorname{Cl}_2(g))$		1

(Total for Question 6 = 10 marks)

Question number	Acceptable Answer		Additional Guidance	Marks
7(a)	use of 1:8 ratio in kg, grams or moles	(1)	Example of calculation: 146.1 kg of SF ₆ react with (8 x 6.90) 55.2 kg	
	calculating mass of lithium	(1)	of Li $\therefore 398 \text{ kg of SF}_6 \text{ react with } \frac{55.2}{146.1} \times 398 \text{ kg} =$	
	answer to two or three sf	(1)	150(.3737) kg of Li 150 (kg)	
			Final answer must be to two/three significant figures	
			Correct final answer to two/three significant figures with no working scores (3)	3

Question number	Acceptable Answer	Additional Guidance	Marks
7(b)	• calculating $\Delta S_{\text{system}}^{\Theta}$ (1)	Example of calculation: $\Delta S_{\text{system}}^{\theta} = 63.0 + (6 \times 35.6) - 292 - (8 \times 29.1)$ = -248.2 (J K ⁻¹ mol ⁻¹)	
	• calculating $\Delta S_{\text{surroundings}}^{\theta}$ (1)	$\Delta S_{\text{surroundings}}^{\theta} = -\frac{-2934000}{298}$ = +9845.638 (J K ⁻¹ mol ⁻¹)	
		Accept 9850 (J K ⁻¹ mol ⁻¹) Accept 9.846 kJ K ⁻¹ mol ⁻¹	
	conversion of units to be the same (1)	$\Delta S_{\text{total}}^{\theta} = +9597 \text{ J K}^{-1} \text{ mol}^{-1}$	
	• calculating $\Delta S_{ ext{total}}^{ ext{e}}$ with units (1)	Accept any number of significant figures up to and including the calculator value of 9597.437584	
		Correct answer with units and no working scores 4	4

Question number	Acceptable Answer	Additional Guidance	Marks
7(c)	An answer that makes reference to the following points:		
	• $\Delta S_{\text{total}}^{\theta}$ is positive, so the reaction is (thermodynamically) feasible (1)		
	therefore (if it needs a fuse), it must have a high activation energy (1)		2

(Total for Question 7 = 9 marks)

Question number	Answer	Additional Guidance	Marks
8(a)	B (the extent of dissociation into ions of the acid)		1

Question number		Ac	cepta	ble Answer	Additional Guidance	Marks		
8(b)(i)	HClO₂(aq) acid 1	+ HCOOH(aq) base 2	-	CIO ₂ (aq)	+	HCOOH ₂ ⁺ (aq) acid 2		
	or							
	acid 2	base 1	•	base 2		acid 1		1

Question number	Acceptable Answer	Additional Guidance	Marks
8(b)(ii)	An explanation that makes reference to the following points:		
	• $HCOOH + C_6H_5OH \rightleftharpoons HCOO^- + C_6H_5OH_2^+$ (1)	Ignore state symbols	
	• because methanoic acid has a larger $K_{\rm a}$ value / methanoic acid is the stronger acid (1)	second mark is conditional on correct equation	2

Question number	Acceptable Answer	Additional Guidance	Marks
8(c)(i)	$\bullet pH = -\log[H^+(aq)]$	Allow lg / log ₁₀ / lg ₁₀ Ignore state symbol	1

Question number	Acceptable Answer	Additional Guidance	Marks	
8(c)(ii)	HCl(aq):		HCl(aq):	
	calculation of pH	(1)	pH = - log 0.0540 = 1.27	
	HCOOH(aq):		HCOOH(aq):	
	• rearrangment of K_a equation to find $[H^+(aq)]$	(1)	$[H^{+}(aq)] = \sqrt{K_a} \times [HCOOH(aq)] /$ = $\sqrt{1.60} \times 10^{-4} \times 0.0540$	
	 calculation of [H⁺(aq)] 	(1)	$[H^{+}(aq)] = 2.94 \times 10^{-3} \text{ (mol dm}^{-3})$	
	calculation of pH	(1)	pH = $(-\log 2.94 \times 10^{-3})$ = 2.53 penalise lack of 2 dp in first and fourth marks once only	4

Question number		Acceptal	ble Answer			Additional Guidance	Marks
*8(c)(iii)	structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. Number of Number of			Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of			
		marking points seen in answer 6 5-4 3-2 1 0	for indicative marking points 4 3 2 1 0	rded for struct	ture and	reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	
	Answer shows and logical structured with	ructure with fully sustained ning I throughout.	Number of marks for structure of a sustained line of	nswer and			

linkages and lines of reasoning.				
Answer has no linkages between points and is unstructured.	0			
		_		
Indicative content				
Similarity • reaction is between Mg and H ⁺ /	$^{\prime}$ Mg(s) + 2H $^{+}$ (aq) $ ightarrow$ Mg $^{2+}$ (ac	ı) + H ₂ (g)	both acids produce one H ⁺ / are monobasic / are monoprotic	
 100 cm³ of HCl and 100 cm³ HCl moles of the acid 	OOH contain the same initial	number of	the same volume <u>and</u> concentration of both acids is used	
therefore same total volume of	gas evolved		a calculation to show the same volume	
Difference • HCl is fully dissociated/ionised by dissociated/ionised	out HCOOH only partially		dissociation/ionisation of HCOOH requires energy	
• [H ⁺] is greater in HCl / [H ⁺] is s	maller in HCOOH		therefore larger activation energy with HCOOH	6
 therefore rate is greater with HO 	Cl / lower with HCOOH		1100011	

(Total for Question 8 = 15 marks)

Question number	Answer	Additional Guidance	Marks
9(a)	$\mathbf{B} \left(\frac{p_{SO_3}}{p_{SO_2}.p_{O_2}^{\frac{1}{2}}} \right)$		1

Question number	Acceptable Answer	Additional Guidance	Marks
9(b)	An answer that makes reference to the following point:		
	• the amount of SO_3 is much greater than the amounts of SO_2 and O_2		
	or		
	 as K_p greater than 1 x 10¹⁰ the equilibrium lies completely to the right / reaction goes to completion 		1

Question number	Acceptable Answer	Additional Guidance	Marks
9(c)	An explanation that makes reference to the following points:		
	the yield of sulfur trioxide decreases because the forward reaction is exothermic (1)		
	• because as the temperature increases K_p decreases (1)		2

Question number	Acceptable Answer		Additional Guidance	Marks
9(d)	$ullet$ calculating $\Delta_{ m r} G^{ m e}$	(1)	$\begin{array}{lll} \Delta_r G^{\circ} &=& -8.31 \times 298 \times \text{ln } 2.00 \times 10^{12} \\ &=& -70 \ 100 \ \text{J mol}^{-1} \\ &\text{accept any number of significant figures e.g. } 70 \\ &141 \end{array}$	
	• since $\Delta_r G^{\text{o}}$ is negative this confirms the reaction is thermodynamically feasible	(1)		2

Question number	Acceptable Answer	Additional Guidance	Marks
9(e)	 the rate of the reaction is increased (even though the yield is less) 		1

(Total for Question 9 = 7 marks)

Question number	Acceptable Answer		Additional Guidance	Marks
10(a)	starchblue-black to colourless	(1)	accept blue or black	2
	Dide-black to coloditiess	(1)	accept blue of black	

Question number	Acceptable Answer	Additional Guidance	Marks
10(b)	$(2S_2O_3^{2-} + I_2) \rightarrow S_4O_6^{2-} + 2I^-$	Ignore state symbols	1

Question number	Acceptable Answer		Additional Guidance	Marks
10(c)	• calculation of moles of $S_2O_3^{2-}$	(1)	$n(S_2O_3^{2-}) = \frac{38.70 \times 0.00100}{1000} / 3.870 \times 10^{-5} \text{ (mol)}$	
	calculation of moles of I ₂ in excess	(1)	$n(I_2)$ in excess = $\frac{1}{2} \times n(S_2O_3^{2-}) / 1.935 \times 10^{-5}$ (mol)	
	\bullet calculation of moles of initial I_2 and reacted I_2	(1)	$n(I_2)$ initial = $\frac{10.0 \times 0.00500}{1000}$ / 5.00 x 10 ⁻⁵ (mol)	
			$n(I_2)$ reacted (= $n(SO_2)$) = $n(I_2)$ initial – $n(I_2)$ in excess / 3.065 x 10^{-5} (mol)	
	• calculation of concentration of SO ₂ in mol dm ⁻³	(1)	$[SO_2] = \frac{3.065 \times 10^{-5}}{10} \times 1000 = 3.065 \times 10^{-3} \text{ (mol dm}^{-3}\text{)}$	
	• calculation of concentration of SO ₂ in mg dm ⁻³	(1)	$[SO_2] = 3.065 \times 10^{-3} \times 64.1 \times 1000 \text{ mg dm}^{-3} = 196.47 \text{ mg dm}^{-3}$	
	• conclusion	(1)	(196 < 400) so the wine can be sold	6

(Total for Question 10 = 9 marks)
TOTAL FOR PAPER = 90 MARKS