Chemistry B (Salters)

Mark Scheme

Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 6 Mark Scheme
Page 2 of 10

Question			Answer	Marks	Guidance
1	(a)	(i)	stopped by paper charged particles highly penetrating \checkmark deflected by magnetic fields electromagnetic radiation \checkmark unaffected by electric fields \checkmark	3	If 4 responses, maximum mark 1 More than 4 responses, no marks
		(ii)	Time taken for half the radioactive nuclei to decay OR mass to decrease by half OR radioactivity to reduce by a half \checkmark Longer than - could cause long term effects/harm/damage/ionise to cells/named body part/tissue OR too faint/not enough to detect \checkmark Shorter than - not long enough to be able to detect/travel round body AW OR could cause damage (same rules as above) \checkmark	3	Please make annotations where marks are scored Must mention time/how long for something to reduce by half: nuclei, atoms, substance, isotope(s), radioactivity, mass NOT nucleus, atom (ie in singular) DO NOT ALLOW 'decompose' for 'decay' For first alternative could suggest specific damage (eg mutation) must be 'to cells/named body part/tissue' not just 'to patient/ people/humans/body' 'Cancer' on its own is too vague For first alternative, answer must link time for detection/ travelling round body/ tracing/ producing image/ 'use' to short half life (and not just 'difficult to detect') ALLOW 'too much decay before use' AW
	(b)	(i)	Calculation to show (181 is) the molecular mass of FDG \checkmark FDG ionised OR this is the molecular ion/cation \checkmark	2	Any total not 181 is CON of first mark Mark separately ALLOW any reference to charge of +1 or ionisation mentioned (but not to anion/- ion)

Question			Answer	Marks	Guidance
1	(b)	(ii)	(molecule) has broken (up/down)/fragmented OR two or more electrons knocked off \checkmark	1	Must imply 'molecule broken' ALLOW 'fragmentation' IGNORE 'lower Mr' NOT decay/decompose IGNORE references to ${ }^{18} \mathrm{~F}$ decaying
	(c)	(i)	 Correct charges on both ions \checkmark Correct structures \checkmark	2	IGNORE inner shell electrons Square brackets not essential ALLOW with 8 electrons around Na Circles not needed Must be two different symbols for electrons ALLOW ' $1+$ ' and ' 1 -' (or +1 and -1) No charges scores zero; wrong number of ions scores zero
		(ii)	Bond angle $=90$ (can be labelled on diagram) Six pairs/regions/groups/areas of electrons/areas of electron density around S/central atom Repel (to get) as far (away) as possible OR position (AW) themselves to minimise electron repulsion \checkmark Octahedral/octahedron /'square (based) bipyramid' \checkmark	4	Please make annotations where marks are scored ALLOW right angle symbol on diagram All three ideas need to be present If central atom named it must be $S(u l f u r)$ NOT scored from diagram alone unless labelled NOT 'around central point' NOT 'repel as much as possible’ NOT 'push' NOT 'atoms repel' NOT 'bonds repel' unless qualified earlier by mention of electrons being 'in' bonds ALLOW diagram that shows 3D structure unless CON in text
			TOTAL	15	

Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 6 Mark Scheme
Page 4 of 10

Question			Answer	Marks	Guidance
2	(a)	(i)	alcohol \checkmark alkene \checkmark	2	ALLOW 'hydroxy(I)' IGNORE 'OH' NOT secondary, tertiary ALLOW carbon - carbon double bond or $\mathrm{C}=\mathrm{C}$
		(ii)	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O} \checkmark$	1	Atoms in any order DO NOT ALLOW 'split answers' eg $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O} / \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{OH}$
	(b)	(i)	Fractional distillation \checkmark	1	ALLOW fractionation
		(ii)	Division by appropriate A_{1} value ie C 38.7/12 (3.225) O 51.6/16 (3.225) H 9.7/1 (9.7) \checkmark evaluation to give empirical formula $\left(\mathrm{CH}_{3} \mathrm{O}\right) \checkmark$	2	$\mathrm{CH}_{3} \mathrm{O}$ scores both marks on its own ALLOW atoms in any order $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \text { scores one mark ('Z' used) - no other ecf's }$
		(iii)	Empirical formula is the simplest/lowest/smallest ratio of atoms OR different molecular formulae can have the same simplest/lowest/smallest ratio of atoms OR molecular formula can be multiple of empirical formula \checkmark	1	'It' cannot be accepted (unless qualified later in the answer) as it could refer to empirical or molecular in this context
		(iv)	Measure of 'number of ways' particles can be arranged OR degree/level/amount of disorder/chaos (in a system)	1	'Number of ways' or 'disorder' can score on own but if elaborated on, must be particles or molecules (must be plural) and not in an element or compound NOT 'atoms' or 'electrons' (for particles)

Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 6 Mark Scheme
Page 5 of 10

Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 6 Mark Scheme
Page 6 of 10

Question			Answer	Marks	Guidance
3	(a)		Low/reduced/less tendency to auto-ignite/pre-ignite/knocking/pinking \checkmark	1	DO NOT ALLOW 'no knocking'/'does not knock'
	(b)	(i)		1	All bonds to be shown DO NOT ALLOW $\mathrm{CH}_{3} / \mathrm{CH}_{2}$ groups
		(ii)	Same molecular formula. Different structural formula/structure Any two skeletal isomers of $\mathrm{C}_{8} \mathrm{H}_{18}$ (some possible structures shown opposite)	3	NOT 'chemical (formula)' ALLOW 'same number and types of atoms' ALLOW different arrangement (of atoms) ALLOW a description of different structures (eg 'branches in different places') e.g. NOT straight chain IGNORE any name given ALLOW one mark for two correct non-skeletal formulae IGNORE dots
	(c)	(i)	$\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW multiples All must be correct to score. IGNORE state symbols except CON if $\mathrm{C}_{5} \mathrm{H}_{12}$ is given as 'aq'

Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 6 Mark Scheme

Question			Answer	Marks	Guidance
3	(c)	(ii)	Breaking bonds is a positive/endothermic (enthalpy change) or absorbs/requires/takes in energy AND forming bonds is negative/exothermic or releases/gives out energy \checkmark Value/magnitude of negative (exothermic) value bigger than positive (endothermic) Award of $2^{\text {nd }}$ mark depends on first being scored	2	e.g. 'more energy given out than taken in' AW references to different number of bonds CONs this mark 'More energy is released in making bonds than in breaking them' scores 1 'More energy is released in making bonds than is used (AW) in breaking them' scores 2 'Enthalpy changes of making the bonds are higher than those of breaking the bonds' scores $2^{\text {nd }}$ marking point, if first point already scored
		(iii)	Produces only/nearly all carbon dioxide (and water) ora \checkmark	1	ALLOW 'produces little/no/less CO or C/particulates/soot' ALLOW 'complete combustion' ora IGNORE 'does not release pollutants', references to unburnt hydrocarbons

Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 6 Mark Scheme Page 8 of 10

Question			Answer	Marks	Guidance
3	(c)	(iv)	Benefit: water is the only product OR no $\mathrm{CO}_{2} \checkmark$ Problem: storage issues OR leakage OR hydrogen is explosive/highly flammable OR requires changes to engine $A W$	2	IGNORE no pollution no harmful products Reference to 'less NO_{x} ' is a CON ALLOW 'no CO/SO,' IGNORE: 'no greenhouse gases'/'carbon neutral' The context here is the use of hydrogen IGNORE references to sustainability and source of hydrogen IGNORE 'renewable' IGNORE references to generation of hydrogen needing fossil fuel/availability IGNORE hydrogen fuel not readily available
	(d)		Vol. of oxygen $=12.5 \times 60 \mathrm{~cm}^{3}(750)$ Vol. of air $=750 \times 100 / 21$ (3571) ecf $\div 1000\left(3.6 \mathrm{dm}^{3}\right)$ ecf Answer 3.6 (allow 3.57.....) scores all three marks without reference to working	3	Please make annotations where marks are scored (unless fully correct) If answer is not $3.57 \mathrm{dm}^{3}$ (to 2 or more sig figs) then award marks for up to two of the following: - Multiplying 12.5 by 60 - multiplying a number by $100 / 21$ - dividing by 1000 NB: this may have been done in the first steps i.e. look for '0.06' ALLOW 2 or more sig figs
	(e)	(i)	(Catalyst) (it) speeds up a reaction and can be recovered chemically unchanged/unchanged at end OR (it) provides a path/alternative route of lower activation enthalpy/energy	1	ALLOW '..... and not used up in the reaction'
		(ii)	B D A C $\checkmark \checkmark$	2	one mark for two in the correct places eg B A D C scores one mark B A C D does not score any marks
			TOTAL	17	

Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 6 Mark Scheme

Question			Answer	Marks	Guidance
4	(a)		Electrons drop to lower energy levels \checkmark emit light/electromagnetic radiation/photons Energy proportional to frequency ORE $=$ hv ORE $=$ hf \checkmark (Gaps between) levels unique/different for a particular/different elements \checkmark	4	Please make annotations where marks are scored ALLOW 'back to ground state' providing energy levels mentioned (see below) 'Shells' must be qualified by reference to energy levels somewhere in answer Reference to energy levels can come from any place in answer ALLOW freq/wavelength related to energy gap/energy lost QWC only award first mark if 'electron'/ 'electrons'/ 'electronic') is spelled correctly at least once
	(b)		left gaps/spaces/blanks (in the order) \checkmark	1	
	(c)	(i)	$\begin{aligned} & \mathrm{Ga}(\mathrm{~s})+\mathrm{As}(\mathrm{~s}) \rightarrow \mathrm{GaAs}(\mathrm{~s}) \\ & \text { equation } \checkmark \\ & \text { state symbols } \checkmark \end{aligned}$ Standard state is solid for both elements (and compound) because T_{m} is greater than $298(\mathrm{~K}) \checkmark$	3	ALLOW $1 / 2 \mathrm{As}_{2}$ and $1 / 2 \mathrm{Ga}_{2}$ and $1 / 4 \mathrm{As}_{4}$ Equation MUST be to form one mole of GaAs 298 must be mentioned (or indicated, eg in subtraction sums)
		(ii)	$\Delta H_{1}=\Delta H_{2}+\Delta H_{3} \checkmark$ energy (change)/enthalpy (change) $/ \Delta \mathrm{H}$ (of a particular reaction) independent of route $A W \checkmark$ providing initial and final conditions the same/conditions remain the same \checkmark	3	ALLOW $\Delta H_{1}=\Delta H_{3}+\Delta H_{2}$ OR $\Delta H_{2}=\Delta H_{1}-\Delta H_{3}$ OR $\Delta H_{3}=\Delta H_{1}-\Delta H_{2}$ NOT arrow (\rightarrow) instead of $=$ NOT 'starting and finishing points same' ALLOW '(providing) all done under standard conditions'

Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 6 Mark Scheme
Page 10 of 10

