Question		Expected answers	Marks	Additional guidance
1	a	graph: Rate does not change with concentration AND zero-order with respect to $\mathrm{I}_{2} \checkmark$ initial rates data: Mark independently When $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right] \times 2$, rate $\times 2\left(2^{1}\right) \checkmark$ 1st order with respect to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} \checkmark$ When $[\mathrm{HCl}] \times 2.5$, rate $\times 2.5 \checkmark$ 1st order with respect to $\mathrm{HCl} \checkmark$		ANNOTATIONS MUST BE USED ALLOW (straight) line with zero gradient AND zero-order ALLOW horizontal line AND zero-order IGNORE just 'constant line' OR just 'straight line' also fits 1st order CARE with comparisons in opposite direction ALLOW $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right] \times 0.5$, rate $\times 0.5\left(0.5^{1}\right)$ ALLOW $[\mathrm{HCl}] \times 0.4$, rate $\times 0.4\left(0.4^{1}\right)$ ALLOW H^{+}for HCl CARE: Comparison of Experiments 1 and 3 may be valid despite BOTH concentrations changing
		Rate equation and rate constant: $\begin{aligned} & \text { rate }=k\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(\mathrm{aq})\right][\mathrm{HCl}(\mathrm{aq})] \\ & k=\frac{\text { rate }}{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(\mathrm{aq})\right][\mathrm{HCl}(\mathrm{aq})]} \mathrm{OR} \\ & \frac{2.10 \times 10^{-9}}{\left(1.50 \times 10^{-3}\right) \times\left(2.00 \times 10^{-2}\right)} \\ & =7(.00) \times 10^{-5} \mathrm{OR} 0.00007(00) \end{aligned}$ units: $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \checkmark$	9	ALLOW ECF from incorrect orders In rate equation, square brackets are required $\text { rate }=k\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(\mathrm{aq})\right][\mathrm{HCl}(\mathrm{aq})]\left[\mathrm{I}_{2}(\mathrm{aq})\right]^{0}$ ALLOW H^{+}for HCl IGNORE state symbols, even if wrong ALLOW ECF for units 'correct' for incorrect expression used to calculate k, e.g. upside down or wrong orders $\frac{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(\mathrm{aq})\right]\left[\mathrm{H}^{+}(\mathrm{aq})\right]}{\text { rate }} \times$ units: $\mathrm{mol} \mathrm{s} \mathrm{dm}^{-3} \checkmark$

Question			Expected answers	Marks	Additional guidance
2	a		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound \checkmark from its gaseous ions \checkmark (under standard conditions)	2	IGNORE 'Energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid, product Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has ' 1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE reference to 'constituent elements' IGNORE: $2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{O}^{2-}(\mathrm{g}) \longrightarrow \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$ Question asks for a definition, not an equation
	b	i		3	
		ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=\mathbf{- 2 5 2 0}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 2 marks $\begin{aligned} -414 & =(2 \times 108)+249+(2 \times 496)+(-141)+790)+\Delta H_{\mathrm{LE}} \\ \mathrm{OR} & =-414-[(2 \times 108)+249+(2 \times 496)+(-141)+790] \checkmark \\ \Delta H_{\mathrm{LE}} & =-2520\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$	2	IF there is an alternative answer, check the list below for marking of answers from common errors

Question		Expected answers	Marks	Additional guidance
2	C		ALLOW reverse argument throughout (ORA) Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only	

	sti		Expected answers	Marks	Additional guidance
	d	i	Cycle needs formation of $\mathrm{CO}_{3}{ }^{2-}$ ions (from C and O) \checkmark i.e. NOT breaking up of $\mathrm{CO}_{3}{ }^{2-}$ ion	1	ALLOW carbonate ion contains C and O ALLOW carbonate ion contains 2 elements IGNORE sodium carbonate contains 3 elements IGNORE carbonate ion has covalent bonds
2	d	ii	See also Appendix 1 at end of mark scheme Mark allocation 1 - $\quad 2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{g})$ on a top line AND $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ on a lower line AND 'Lattice enthalpy' label (as below) links the lines \checkmark 2- $2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{g})$ on a top line AND $2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{g})$ on a middle line AND $2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$ on a lower line AND ' ΔH hydration' labels (as below) link the lines \checkmark NOTE: For hydration labels, see diagram below $2 \times$ hydration of Na^{+} OR hydration of $2 \times \mathrm{Na}^{+}$is required $3-\quad \Delta H$ solution' label BELOW $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ AND ALL arrows in correct directions \checkmark	3	ANNOTATIONS MUST BE USED MARK AS FOLLOWS 1. Mark the cycle 2. IF there is no cycle, mark the equation below --IGNORE direction of any arrows until MARK 3 ALLOW $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ on a lower line as an alternative for $2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$ ALLOW $\mathrm{CO}_{3}{ }^{2-}$ hydrated first: i.e. $2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$ on middle line ALLOW two hydration stages combined i.e. $\quad 2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{g})$ on a top line AND $2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$ on a lower line AND BOTH 'Hydration' labels link the lines \checkmark IF cycle shown using $\mathrm{NaCO}_{3}, \mathrm{Na}^{+}$and $\mathrm{CO}_{3}{ }^{-}$ ALLOW ECF for third marking point only NOTE: DO NOT ALLOW ECF from any other species For simple energy cycles a maximum of 2 marks only can be awarded - See APPENDIX 1 For an equation, only 1 mark can be awarded $\text { Lattice enthalpy }=-\Delta H \text { (solution) } \mathrm{Na}_{2} \mathrm{CO}_{3}$ $+\left[2 \times \Delta H\right.$ (hydration) $\left.\mathrm{Na}^{+}\right]+\Delta H$ (hydration) $\mathrm{CO}_{3}{ }^{2-}$

Question			Expected answers	Marks	Additional guidance
3	e	i		4	ANNOTATIONS MUST BE USED CARE: Cl can be on any position, e.g. for B complex ions in C and D can be other way around In one complex ion, the 2 Cls must be opposite one another In the other complex ion, the 2 Cls must be next to one another CARE: Cl atoms can be on any position, e.g. for \mathbf{C} and \mathbf{D}
			Marking sequence See also Appen 1. Mark any correct complex ions first Do not look at these complex ions again 2. Mark with crosses any complex ions with incorrect but NOT $\mathrm{NH}_{3}-----$ - connectivity on the LEFT only Do not look at these complex ions again 3. In the remaining complex ions, identify errors in lig - NH_{3} ligands bonded to an H on the LEFT only - Cl^{-} - $\mathrm{NH}_{3}{ }^{+}$ Mark these complex ions to maximise errors but treat	2 for ands. NOT ds (S $\mathrm{H}_{3}----$ any	xamples his could include Cl in complex A , and $\mathrm{NH}_{3} \mathrm{Cl}$ and $\mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$, and NOT just $\mathrm{NH}_{3}{ }^{+}$ Appendix 2): e.g. onnectivity error) correctly bonded $\mathrm{NH}_{3}, \mathrm{Cl}^{-}$and NH_{3} as ECF

Question			Expected answers	Marks	Additional guidance
			SEE APPENDIX 2 FOR EXAMPLES		
3	e	ii	143.4 OR $107.9+35.5\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ used i.e. molar mass AgCl OR amount of $\mathrm{AgCl}=0.02(000) \mathrm{mol} \checkmark$ Ratio ratio complex: $\mathrm{Cl}^{-}=1: 2$ OR 0.01:0.02 \checkmark Identification - available from $1: 2$ ratio $\mathrm{OR}_{2} \mathrm{Cl}^{-}$ Therefore the complex is $\mathbf{B} \checkmark$	3	DO NOT ALLOW AgCl_{2} DO NOT ALLOW $\frac{2.868}{0.01} 0.01$ linked to AgCl , not complex ALLOW this mark ONLY for evidence of Cl^{-} Quality of Written Communication Identification as \mathbf{B} is dependent on correct 1:2 ratio OR 2Cl ${ }^{-}$for this mark
			Total	15	

Question			Expected answers	Marks	Additional guidance
4	a	i	A strong acid completely dissociates AND a weak acid partially dissociates \checkmark	1	ALLOW ionises for dissociates
		ii	$\left(K_{\mathrm{a}}=\right) \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]} \checkmark$	1	DO NOT ALLOW $\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{HNO}_{2}\right]}$ Square brackets are required
		iii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.89 award $\mathbf{2}$ marks IF answer = 1.9 award 1 mark $\mathrm{pH}=-\log 0.0129=1.89 \checkmark \checkmark$ OR $\mathrm{pH}=-\log 0.0129=1.9 \checkmark$ not two decimal places	2	IF there is an alternative answer to more decimal places, check calculator value \qquad Working to get to $0.0129\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Not required and no credit $\left[\mathrm{H}^{+}\right]=\sqrt{K_{\mathrm{a}} \times\left[\mathrm{HNO}_{2}\right]}=\sqrt{4.43 \times 10^{-4} \times 0.375}$ ALLOW 1 mark for an answer with more than 2 decimal places that rounds back to 1.89
		iv	$\underset{\text { Acid 1 }}{\mathrm{HNO}_{3}}+\underset{\text { Base 2 }}{\mathrm{HNO}_{2}} \rightleftharpoons \underset{\text { Base 1 }}{\mathrm{NO}_{3}^{-}}+\underset{\text { Acid } 2 \downarrow}{\mathrm{H}_{2} \mathrm{NO}_{2}^{+} \downarrow}$	2	State symbols NOT required ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels if linked by lines so that it is clear what the acid-base pairs are IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid-base pairs, i.e. $\text { Base } 2 \quad \text { Acid } 1 \quad \text { Acid } 2 \quad \text { Base } 1 \checkmark$ NOTE For the 2nd marking point (acid-base pairs), this is the ONLY acceptable ECF

Question			Expected answers	Marks	Additional guidance
4	d	i	Equilibrium $\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \checkmark$		ANNOTATIONS MUST BE USED Equilibrium sign is required IGNORE HA $\rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$ DO NOT ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}$ DO NOT ALLOW $\mathrm{NaHCO}_{3} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{HCO}_{3}^{-}$ IGNORE $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}$
			Action of buffer Added alkali $\mathrm{H}_{2} \mathrm{CO}_{3}$ reacts with added alkali OR $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-} \rightarrow$ OR added alkali reacts with H^{+} $\mathrm{OR} \mathrm{H}+\mathrm{OH}^{-} \rightarrow \checkmark$ Equilibrium \rightarrow right OR equilibrium shifts forming $\mathrm{H}^{+} \mathbf{O R} \mathrm{HCO}_{3}^{-} \checkmark$		IF $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$OR $\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}$ have been used above: ALLOW all marks that meet marking alternatives as written NOTE The 1st 'added acid' mark cannot then be accessed Equilibrium responses must refer back to a written equilibrium BUT IF $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$shown above, assume that any equilibrium comments apply to the correct equilibrium IF more than one equilibrium shown, it must be clear which equilibrium is being referred to ALLOW added alkali reacts with weak acid Quality of Written Communication Mark is for linking the action of the buffer in controlling added alkali and hence pH

Question			Expected answers	Marks	Additional guidance
			Added acid HCO_{3}^{-}reacts with added acid \checkmark Equilibrium \rightarrow left OR equilibrium shifts forming $\mathrm{H}_{2} \mathrm{CO}_{3} \checkmark$	5	$\mathrm{HCO}_{3}{ }^{-}$is required for this mark BUT ... ALLOW added acid reacts with conjugate base ONLY if $\mathrm{HCO}_{3}{ }^{-}$is present in equilibrium with $\mathrm{H}_{2} \mathrm{CO}_{3}$ DO NOT ALLOW salt reacts with added acid
4	d	ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=6.6: 1 \quad$ OR $1: 0.15$ CHECK ratio is $\mathrm{HCO}_{3}^{-}: \mathrm{H}_{2} \mathrm{CO}_{3}$ and award 5 marks. IF answer = 0.15: 1, CHECK ratio is $\mathrm{H}_{2} \mathrm{CO}_{3}: \mathrm{HCO}_{3}{ }^{-}$and award 4 marks In blood at pH 7.40 , $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-7.40}=3.98 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=\frac{3.98 \times 10^{-8} \times 10.5}{1}$ OR $K_{\mathrm{a}}=4.18 \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$ In blood at pH 7.20 , $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-7.20}=6.31 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$ $\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=\frac{K_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]}$OR $\frac{4.18 \times 10^{-7}}{6.31 \times 10^{-8}} \checkmark$ $=\frac{6.6}{1}$ OR $6.6: 1 \checkmark$ (up to calc. value, see below) ALLOW any answer with > 1 decimal place that rounds back to 6.62 OR 6.63	5	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATIONS MUST BE USED FOR ALTERNATIVE using Henderson-Hasselbalch equation below ALLOW 3.98×10^{-8} up to calculator value of $3.981071706 \times 10^{-8}$ correctly rounded ALLOW 6.31×10^{-8} up to calculator value of $6.309573445 \times 10^{-8}$ correctly rounded Common errors 0.15:1 $\quad \checkmark \checkmark \checkmark \checkmark$ Inverse ratio of $\mathrm{H}_{2} \mathrm{CO}_{3}: \mathrm{HCO}_{3}{ }^{-}$ 16.6:1 OR 0.06:1 $\checkmark \checkmark \checkmark \checkmark$ 10.5/1 swapped over in 2nd mark giving K_{a} value of 3.79×10^{-9} ALLOW answer with > 1 decimal place that rounds back to 16.64 OR 16.65
			ALTERNATIVE approach for concentrations using $\begin{aligned} & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \text { OR }-\log K_{\mathrm{a}}+\log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \\ & \mathrm{p} K_{\mathrm{a}}=\mathrm{pH}-\log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=7.40-\log \frac{10.5}{1}=6.38 \end{aligned}$	nders sume	-Hasselbalch equation (5 marks) previous mark) Calculator: 6.378810701

Question	Expected answers	Marks	Additional guidance
	At $\mathrm{pH}=7.20, \log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=\mathrm{pH}-\mathrm{p} K_{\mathrm{a}}=7.20-6.38=0.82 \checkmark$ (subsumes previous mark) $\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=10^{0.82} \checkmark \quad=\frac{6.6}{1}$ OR $6.6: 1 \checkmark$		
	Total	22	

Question			Expected answers	Marks	Additional guidance
5	a	i	Complete circuit with electrodes to voltmeter AND salt bridge between solutions \checkmark $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ half-cell with Pt electrode AND $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M} \mathrm{Fe}^{2+}$ and $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M} \mathrm{Fe}^{3+} \checkmark$ Ni electrode in $\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right) \mathrm{Ni}^{2+}$ half-cell \checkmark		circuit shown must be complete, i.e. must be capable of working salt bridge must be labelled. electrodes AND salt bridge must dip into/touch both solutions ALLOW cells drawn either way around ALLOW $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+} 1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M} / 1$ molar ALLOW BOTH solutions same concentration/equimolar DO NOT ALLOW 1 mol OR $1 \mathrm{dm}^{-3}$ IGNORE any temperature or pressure, even if wrong
		ii	$\begin{aligned} & \text { 1.02 V AND }-\operatorname{sign} \checkmark \\ & 0.49 \vee \text { AND }+\operatorname{sign} \checkmark \end{aligned}$	2	IGNORE any sign BEFORE cell potential ALLOW 1 mark for correct values AND signs BOTH the wrong way round: i.e.1.02 V AND + sign AND 0.49 V AND - sign
	b		Cell A (based on 1 and 2) $\mathrm{Ni}+2 \mathrm{Fe}^{3+} \longrightarrow \mathrm{Ni}^{2+}+2 \mathrm{Fe}^{2+}$ Cell B (based on 1 and 3) $2 \mathrm{Cr}+3 \mathrm{Ni}^{2+} \longrightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Ni} \checkmark$ concentrations (of the ions in each cell) change OR concentrations are not standard \checkmark	3	In equations, ALLOW equilibrium sign, \rightleftharpoons instead of \rightarrow Equations are required for the first two marking points ALLOW $\mathrm{Ni} \longrightarrow \mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$ ALLOW $\mathrm{Ni}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ni}$ ALLOW any statement that a concentration is changing IGNORE 'non-standard conditions'
	c	i	$\mathrm{MH}+\mathrm{OH}^{-} \longrightarrow \mathrm{M}+\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-} \checkmark$	1	ALLOW MH $\longrightarrow \mathrm{M}+\mathrm{H}^{+}+\mathrm{e}^{-}$
		ii	adsorbed (on a solid) OR on the surface (of a solid) OR as a liquid under pressure	1	DO NOT ALLOW adsorbed into the solid CON DO NOT ALLOW just 'as a liquid'
			Total	10	

Question		Expected answers	Marks	Additional guidance
6	a	$\Delta G=\Delta H-T \Delta S \checkmark$	1	
	b		2	
	c	$\begin{aligned} & \Delta S=(4 \times 211+6 \times 189)-(4 \times 192+5 \times 205) \checkmark \\ & \Delta S=(+) 185\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$	2	ALLOW ECF from working line above from a single error COMMON ERRORS $\begin{array}{\|lll} (+) 3\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) & \checkmark & (211+189)-(192+205) \\ -185\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) & \checkmark & \text { incorrect sign } \\ \hline \end{array}$
	d	With increasing temperature $T \Delta S$ is more negative OR $T \Delta S$ decreases OR $-T \Delta S$ increases $\mathbf{O R}\|T \Delta S\|$ increases OR magnitude of $T \Delta S$ increases At high temperature $T \Delta S$ is more negative that ΔH OR at high $T, T \Delta S$ outweighs/is more significant than ΔH OR At low temperature $\Delta H-T \Delta S<0$ OR At high temperature $\Delta H-T \Delta S>0$	2	ANNOTATIONS MUST BE USED DO NOT ALLOW just $T \Delta$ increases DO NOT ALLOW At high T, ' $-T \Delta S$ is greater (than ΔH)' APPROACH BASED ON TOTAL ENTROPY: With increasing temperature $\Delta H / T$ is less negative OR $\Delta H / T$ increases OR $-\Delta H / T$ decreases OR $\|\Delta H / T\|$ decreases OR magnitude of $\Delta H / T$ decreases \checkmark ALLow at high temperatures $\Delta S-\Delta H / T<0$

Question			Expected answers		Marks	Additional guidance
						OR ΔS is more negative than $\Delta H / T$ OR ΔS outweighs/ is more significant than $\Delta H / T$
6	e		(For feasibility,) $\Delta G<0$ OR $\Delta G=0$ OR $0<\Delta H-T \Delta S$ OR $0=\Delta H-T \Delta S$ OR $0=493-T \times 543 / 1000 \checkmark$ $\begin{aligned} & T=\frac{\Delta H}{\Delta S}=493 \times 1000 / 543 \\ & =908 \mathrm{~K} \checkmark \end{aligned}$ Units of temperature are required		3	ALLOW total entropy statement: ΔS (total) $=0$ OR ΔS (total) >0 ALLOW $0=493-T \times 543 \checkmark$ i.e. This mark focuses on ΔG OR $\Delta H-T \Delta S$ being $=0$ and NOT on conversion of ΔS value into $\mathrm{kJ} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ Mark temperature given on answer line ALLOW 3 SF up to calculator value 907.9189687 correctly rounded, e.g. 907.9, 907.92 ALLOW temperature in ${ }^{\circ} \mathrm{C}$: i.e. ALLOW by subtraction of 273: 635, 634.9, $634.91{ }^{\circ} \mathrm{C}$ ALLOW by subtraction of 273.15: 635, 634.8, $634.77^{\circ} \mathrm{C}$ up to calculator value correctly rounded ALLOW C for ${ }^{\circ} \mathrm{C}$; ${ }^{\circ} \mathrm{K}$ for K IF ΔS has not been converted to kJ , DO NOT ALLOW 2nd mark BUT \ldots ALLOW calculated answer $=493 / 543=0.91 \mathrm{~K}$ (calculator: 0.907918968) ALLOW 2 marks only for absence of one of the statements required for 1st marking point
				Total	10	

Question			Expected answers	Marks	Additional guidance
7	b		Each marking point is independent Effect on K_{c} K_{c} does not change (with pressure) \checkmark Comparison of conc terms after increase in pressure $\left[\mathrm{NO}_{2}\right]^{2}$ increases more than $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ OR concentration (term) on bottom (of K_{c}) increases more that concentration (term) on top (of K_{c}) \checkmark Changes in concentrations linked to K_{c} (amount /concentration of) $\mathrm{N}_{2} \mathrm{O}_{4}$ increases AND (amount /concentration of) NO_{2} decreases AND to maintain/restore $K_{\mathrm{c}} \checkmark$	3	ALLOW K_{c} only changes with temperature IGNORE K_{c} changes with temperature ALLOW $\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}<K_{\mathrm{c}}$ OR $\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}$ decreases IGNORE K_{c} decreases ALLOW top of K_{c} expression increases and bottom decreases until K_{c} is reached ALLOW equilibrium shifts to right to maintain/restore K_{c} IGNORE just 'restores equilibrium' K_{c} IS REQUIRED IGNORE just 'equilibrium shifts to right IGNORE le Chatelier response: 'equilibrium shifts to right' because there are fewer moles of gas on right-hand side
			Total	8	

Question		Expected answers	Marks	Additional guidance
8	C	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=54.6 \%$, award 5 marks Amount Fe^{2+} in $\mathbf{2 5 0} \mathbf{c m}^{3}$ solution - $\mathbf{3}$ marks amount $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ used $=0.0200 \times \frac{26.5}{1000}$ $=5.30 \times 10^{-4}(\mathrm{~mol}) \checkmark$ amount $\mathrm{Fe}^{2+}=\mathbf{6} \times 5.30 \times 10^{-4}$ $=3.18 \times 10^{-3} \mathrm{~mol} \checkmark$ amount Fe^{2+} in original $250 \mathrm{~cm}^{3}=10 \times 3.18 \times 10^{-3}$ $=3.18 \times 10^{-2}(\mathrm{~mol}) \checkmark$		ANNOTATIONS MUST BE USED IF there is an alternative answer, 1st check common errors below. Then see if there is any ECF credit possible using working below Working must be to at least 3 SF throughout BUT ignore trailing zeroes, i.e. for 0.490 allow 0.49 ALLOW ECF from different Fe^{2+} ratio in equation from 8(b) BUT still ALLOW 6:1 even from different ratio in equation If no equation use actual $6: 1$ ratio DO NOT AWARD 'ratio mark' at all for use of $1: 1$ ratio - makes problem easier ECF $10 \times$ answer above
		\% Fe in ore - 2 marks mass of Fe in ore $=55.8 \times 3.18 \times 10^{-2} \mathrm{~g}$ $=1.77444 \mathrm{~g} \checkmark$		ECF $55.8 \times$ answer above IF answer above has not been used AND $\times 55.8$, DO NOT ALLOW this mark but do ALLOW final \% IF answer above AND 55.8 are BOTH not used, then DO NOT ALLOW ANY further marks
		$\begin{aligned} & \text { percentage Fe in ore }=\frac{1.77444}{3.25} \times 100 \\ & =54.6 \% \end{aligned}$	5	$\text { ECF } \frac{\text { answer above }}{3.25} \times 100$ ALLOW 54.5\% (from 1.77 g) AND any answer with > 1 decimal place that rounds back to 54.5 OR 54.6
				COMMON ERRORS 5.46 $\checkmark \checkmark \checkmark \checkmark$ $\times 10$ omitted 51.5 $\checkmark \checkmark \checkmark \checkmark$ titre taken as 25.0 156.2 $\checkmark \checkmark \checkmark \checkmark$ $\times 159.6$ instead of 55.8 15.62 $\checkmark \checkmark \checkmark$ $\times 159.6$ and $\times 10$ omitted 45.5 $\checkmark \checkmark \checkmark \checkmark$ $5: 1$ ratio 1.52 $\checkmark \checkmark \checkmark \checkmark$ $\div 6$ instead of $\times 6$

Question			Expected answers	Marks	Additional guidance
8	d		E^{0} for $\mathrm{MnO}_{4}{ }^{-}$is more positive/greater than Cl_{2} OR E^{\ominus} for $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ is less positive/smaller than $\mathrm{Cl}_{2} \checkmark$ MnO_{4}^{-}reacts with $\mathrm{Cl}^{-} \mathrm{OR} \mathrm{HCl}$ (forming Cl_{2} gas) OR $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ does not react with Cl^{-}ions \checkmark	2	ORA: E^{-}for Cl_{2} is less positive/smaller than MnO_{4}^{-} OR E^{\bullet} for Cl_{2} is more positive/greater than $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
			Total	10	

APPENDIX 1

MARK 1

MARK 2
$2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{g})$
$2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{g})$

$2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{g})$
$\underset{\text { of } \mathrm{Na}^{+}}{2 \times \text { Hydration }}+\underset{\text { of } \mathrm{CO}_{3}^{2-}}{\text { Hydration }}$

MARK 3

A simple energy cycle can be awarded 2 marks only

Mark $1 \quad$ All species, state symbols and labels
Mark 2 Arrows added in correct directions

APPENDIX 2

Example 1

No complex ions are correct
A is wrong because a wrong ligand has been attached. This would have been wrong even if Cl had been attached so the Cl^{-} charge is ignored at this stage
B has connectivity and Cl^{-} errors
\mathbf{C} and \mathbf{D} have Cl^{-}errors
In B, either connectivity $\mathrm{OR} \mathrm{Cl}^{-}$
could have been penalised Choose which to penalise based on maximising identification of errors

If Cl^{-}had been penalised in \mathbf{B}, then \mathbf{C} would have been marked correctly by ECF.
But the candidate has clearly made 2 mistakes across \mathbf{B} and C so NH_{3} connectivity had been penalised in \mathbf{B}

Example 2

