Question	Expected answers		Additional guidance	
1 a	graph: Rate does not change with concentration AND zero-order with respect to I₂ ✓ initial rates data: Mark independently When [(CH₃)₂CO] × 2, rate × 2 (2¹) ✓ 1st order with respect to (CH₃)₂CO ✓ When [HCI] x 2.5, rate × 2.5 ✓ 1st order with respect to HCI ✓	Marks	ANNOTATIONS MUST BE USED ALLOW (straight) line with zero gradient AND zero-order ALLOW horizontal line AND zero-order IGNORE just 'constant line' OR just 'straight line' also fits 1st order CARE with comparisons in opposite direction ALLOW [(CH ₃) ₂ CO] × 0.5, rate × 0.5 (0.5¹) ALLOW [HCI] × 0.4, rate × 0.4 (0.4¹) ALLOW H⁺ for HCI CARE: Comparison of Experiments 1 and 3 may be valid	
	Rate equation and rate constant: $rate = k[(CH_3)_2CO(aq)][HCl(aq)] \checkmark$ $k = \frac{rate}{[(CH_3)_2CO(aq)][HCl(aq)]} OR$ $\frac{2.10 \times 10^{-9}}{(1.50 \times 10^{-3}) \times (2.00 \times 10^{-2})} \checkmark$ $= 7(.00) \times 10^{-5} OR \ 0.00007(00) \checkmark$ units: dm³ mol ⁻¹ s ⁻¹ \checkmark	9	ALLOW ECF from incorrect orders In rate equation, square brackets are required rate = k[(CH ₃) ₂ CO(aq)][HCl(aq)][I ₂ (aq)] ⁰ ALLOW H ⁺ for HCl IGNORE state symbols, even if wrong ALLOW ECF for units 'correct' for incorrect expression used to calculate k, e.g. upside down or wrong orders [(CH ₃) ₂ CO(aq)] [H ⁺ (aq)] rate x units: mol s dm ⁻³ ✓	

Qu	esti	on	Expected answers	Marks	Additional guidance
1	b		step 1: $H_2(g) + ICI(g) \longrightarrow$ LHS of step 1 \checkmark		State symbols NOT required
				2	 2nd mark can ONLY be awarded provided that 1st mark has been awarded step 1 AND step 2 add up to the overall equation.
					e.g. ALLOW \longrightarrow $H_2ICI(g)$
					$\mathbf{step 2} : H_2ICI(g) \ + ICI(g) \ \longrightarrow \ 2HCI(g) \ + \ I_2(g)$
					In step 2 , ALLOW inclusion of extra species on both sides of the equation only if they cancel, e.g. $HI(g) + HCI(g) + ICI(g) \longrightarrow 2HCI(g) + I_2(g)$
			Total	11	

Qu	esti	on	Expected answers	Marks	Additional guidance
2	а		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓ from its gaseous ions ✓ (under standard conditions)	2	IGNORE 'Energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid, product Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE reference to 'constituent elements' IGNORE: 2Na⁺(g) + O²⁻(g) → Na₂O(s)
	b	i	C (or 2C) A B D G E (or 2E) F All seven correct ✓✓✓ Five OR six correct ✓✓ Three OR four correct ✓✓	3	Question asks for a definition, not an equation ALLOW 496 (OR 992) -141 790 249 G OR Lattice enthalpy/LE [OR answer to (ii)] 108 (OR 216) -414
		ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2520 (kJ mol ⁻¹) award 2 marks -414 = $(2 \times 108) + 249 + (2 \times 496) + (-141) + 790$) + ΔH_{LE} OR $\Delta H_{LE} = -414 - [(2 \times 108) + 249 + (2 \times 496) + (-141) + 790] \checkmark$ = $-414 - 2106$ = -2520 (kJ mol ⁻¹) \checkmark	2	IF there is an alternative answer, check the list below for marking of answers from common errors

Qı	ıest	ion	Expected answers	Marks	Additional guidance
					Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only
2	С		ALLOW reverse argument throughout (ORA)		NOTE: For ALL marking points, assume that the following refer to 'ions', Mg ²⁺ , etc. For 'ions', ALLOW 'atoms' For Mg ²⁺ , Na ⁺ , O ²⁻ and S ²⁻ , ALLOW symbols: Mg, Na, O and S ALLOW names: magnesium, sodium, oxygen, oxide, sulfur, sulfide BUT DO NOT ALLOW molecules i.e. ALLOW Mg has a smaller (atomic) radius IGNORE idea of close packing of ions
			Comparison of size AND charge of cations Mg ²⁺ is smaller AND Mg ²⁺ has a greater charge OR Mg ²⁺ has a greater charge density ✓		ORA: Na⁺ is larger AND Na⁺ has a smaller charge OR Na⁺ has a smaller charge density ✓ IGNORE just Mg²⁺ is small comparison required
			Comparison of size of anions S²- is larger OR S²- has a smaller charge density ✓ Comparison of attraction of a cation and an anion Mg²+ has stronger attraction OR Na+ has weaker attraction AND S²- has weaker attraction OR O²- has stronger attraction ✓	3	ORA O²- is smaller OR O²- has a larger charge density ✓ IGNORE just S²- is large comparison required ALLOW pull for attraction ALLOW 'attracts with more force' for greater attraction BUT IGNORE just 'greater force' (could be repulsion) OR comparison of bond strength/energy to break bonds IGNORE comparisons of numbers of ions

Qı	ıesti	on	Expected answers	Marks	Additional guidance
	d	i	Cycle needs formation of CO_3^{2-} ions (from C and O) \checkmark i.e. NOT breaking up of CO_3^{2-} ion	1	ALLOW carbonate ion contains C and O ALLOW carbonate ion contains 2 elements IGNORE sodium carbonate contains 3 elements IGNORE carbonate ion has covalent bonds
2	d	ii	 Mark allocation 1 - 2Na⁺(g) + CO₃²⁻(g) on a top line AND Na₂CO₃(s) on a lower line AND 'Lattice enthalpy' label (as below) links the lines ✓ 2 - 2Na⁺(g) + CO₃²⁻(g) on a top line AND 2Na⁺(aq) + CO₃²⁻(g) on a middle line AND 2Na⁺(aq) + CO₃²⁻(aq) on a lower line AND 'ΔH hydration' labels (as below) link the lines ✓ NOTE: For hydration labels, see diagram below 2 x hydration of Na⁺ OR hydration of 2 x Na⁺ is required 		ANNOTATIONS MUST BE USED MARK AS FOLLOWS 1. Mark the cycle 2. IF there is no cycle, mark the equation below State symbols are required for ALL species IGNORE direction of any arrows until MARK 3 ALLOW Na ₂ CO ₃ (aq) on a lower line as an alternative for 2Na ⁺ (aq) + CO ₃ ²⁻ (aq) ALLOW CO ₃ ²⁻ hydrated first: i.e. 2Na ⁺ (g) + CO ₃ ²⁻ (aq) on middle line ALLOW two hydration stages combined i.e. 2Na ⁺ (g) + CO ₃ ²⁻ (g) on a top line AND 2Na ⁺ (aq) + CO ₃ ²⁻ (aq) on a lower line AND BOTH 'Hydration' labels link the lines ✓
			3 – ΔH solution' label BELOW Na₂CO₃(s) AND ALL arrows in correct directions ✓	3	IF cycle shown using NaCO ₃ , Na ⁺ and CO ₃ ⁻ ALLOW ECF for third marking point only NOTE: DO NOT ALLOW ECF from any other species For simple energy cycles a maximum of 2 marks only can be awarded – See APPENDIX 1 For an equation, only 1 mark can be awarded Lattice enthalpy = $-\Delta H$ (solution) Na ₂ CO ₃ + [2 x ΔH (hydration) Na ⁺] + ΔH (hydration) CO ₃ ²⁻

Lattice enthalpy $2 \times Hydration$ of Na ⁺ $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (hydration) Na ⁺ $+ \Delta H$ IGNORE state symbols for equation approximately $2 \times \Delta H$ (h	Question	Expected answers	Marks	Additional guidance
Enthalpy change of	question	2Na ⁺ (g) + CO ₃ ²⁻ (g) 2 x Hydration of Na ⁺ Lattice 2Na ⁺ (ag) + CO ₂ ²⁻ (g)	Marks	
solution 2Na ⁺ (aq) + CO ₃ ^{2−} (aq) Total 14		Enthalpy change of solution Of CO ₃ ²⁻ Of CO ₃ ²⁻ 2Na ⁺ (aq) + CO ₃ ²⁻ (aq)	14	

Qu	esti	ion	Expected answers	Marks	Additional guidance
3	а		Co: (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁷ 4s ² ✓		ALLOW (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 4s ² 3d ⁷ (i.e. 4s before 3d) ALLOW upper case D, etc. and subscripts, e.g. [Ar]4S ₂ 3D ₇
			Co ³⁺ : (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁶ ✓	2	If included, ALLOW 4s ⁰
	b		catalyst OR coloured ✓	1	IGNORE forms different oxidation states
	С		Donates an electron/lone pair to a metal ion OR forms a coordinate bond to a metal ion ✓	1	ALLOW donates an electron pair/lone pair to a metal/transition element ALLOW dative (covalent) bond for coordinate bond
	d	i	Co(OH) ₂ ✓		Mark independently ALLOW Co(OH) ₂ (H ₂ O) ₄
			precipitation ✓	2	ALLOW precipitate (reaction)
		ii	CoCl ₄ ^{2−} ✓		Mark independently
			ligand substitution ✓	2	ALLOW ligand exchange DO NOT ALLOW just substitution

Question	Expected answers	Marks	Additional guidance
3 e i		4	ANNOTATIONS MUST BE USED CARE: CI can be on any position, e.g. for B \[\begin{align*} & NH_3 & \\ & H_3 \\ & H_3 \\ & H_3 \\ & NH_3 & \\ & H_3 \\ & NH_3 & \\ &
	 Marking sequence 1. Mark any correct complex ions first Do not look at these complex ions again 2. Mark with crosses any complex ions with incorrect but NOT NH₃ connectivity on the LEFT only a Do not look at these complex ions again 3. In the remaining complex ions, identify errors in lig NH₃ ligands bonded to an H on the LEFT only: CI⁻ NH₃⁺ Mark these complex ions to maximise errors but tree 	ligands.∃ nd NOT C ands (Se NH₃ <i>(</i>	This could include CI in complex A , and NH ₃ CI and NH ₃ ⁺ CI ⁻ , and NOT just NH ₃ ⁺ e Appendix 2): e.g. connectivity error)

Question Expected answers		Marks	Additional guidance		
			SEE APPI	ENDIX 2	FOR EXAMPLES
3	Ф	=:	143.4 OR 107.9 + 35.5 (g mol ⁻¹) used <i>i.e. molar mass AgCl</i> OR amount of AgCl = 0.02(000) mol ✓		DO NOT ALLOW AgCl ₂
			Ratio ratio complex : CI ⁻ = 1 : 2 OR 0.01 : 0.02 ✓		DO NOT ALLOW $\frac{2.868}{0.01}$ 0.01 linked to AgCl, not complex ALLOW this mark ONLY for evidence of Cl ⁻
			Identification – available from 1 : 2 ratio OR 2CI [−] Therefore the complex is B ✓	3	Quality of Written Communication Identification as B is dependent on correct 1 : 2 ratio OR 2Cl ⁻ for this mark
			Total	15	

Qu	esti	on	Expected answers	Marks	Additional guidance
4	а	i	A strong acid completely dissociates AND a weak acid partially dissociates ✓	1	ALLOW ionises for dissociates
		ii	$(\mathcal{K}_{a} =) \frac{[H^{+}][NO_{2}^{-}]}{[HNO_{2}]} \checkmark$	1	DO NOT ALLOW $\frac{[H^+]^2}{[HNO_2]}$ Square brackets are required
		iii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.89 award 2 marks IF answer = 1.9 award 1 mark		IF there is an alternative answer to more decimal places, check calculator value
			pH = −log 0.0129 = 1.89 ✓ ✓ OR pH = −log 0.0129 = 1.9 ✓ <i>not</i> two decimal places	2	Working to get to 0.0129 (mol dm ⁻³) Not required and no credit $[H^+] = \sqrt{K_a \times [HNO_2]} = \sqrt{4.43 \times 10^{-4} \times 0.375}$ ALLOW 1 mark for an answer with more than 2 decimal places that rounds back to 1.89
		iv	$HNO_3 + HNO_2 \Rightarrow NO_3^- + H_2NO_2^+ \checkmark$ Acid 1 Base 2 Base 1 Acid 2 \checkmark	2	State symbols NOT required ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels if linked by lines so that it is clear what the acid–base pairs are IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid–base pairs, <i>i.e.</i> HNO ₃ + HNO ₂ = H ₂ NO ₃ ⁺ + NO ₂ ⁻ × Base 2 Acid 1 Acid 2 Base 1 ✓ NOTE For the 2nd marking point (acid–base pairs), this is the ONLY acceptable ECF

Qu	esti	on	Expected answers	Marks	Additional guidance
					i.e., NO ECF from impossible chemistry
4	b	i	Proton acceptor ✓	1	ALLOW H⁺ acceptor
		ii	Marks are for correctly calculated values. Working shows how values have been derived. $ [OH^-] = 2 \times 0.04(00) = 0.08(00) \text{ (mol dm}^{-3}) \checkmark $ $ [H^+] = \frac{1.00 \times 10^{-14}}{0.08(00)} \text{ OR } 1.25 \times 10^{-13} \text{ (mol dm}^{-3}) \checkmark $ $ pH = -log 1.25 \times 10^{-13} = 12.90 \checkmark $ $ pOH \text{ variation (also worth 3 marks)} $ $ [OH^-] = 2 \times 0.04(00) = 0.08(00) \text{ (mol dm}^{-3}) \checkmark $ $ pOH -log 0.08(00) = 1.10 \checkmark $ $ pH = 14.00 - 1.10 = 12.90 \checkmark $	3	ALLOW by ECF $\frac{1.00 \times 10^{-14}}{\text{calculated value of [OH^-]}}$ DO NOT ALLOW 12.9 not two decimal places
	С		$Ca(OH)_2 + 2HNO_2 \rightarrow Ca(NO_2)_2 + 2H_2O \checkmark$ $H^+ + OH^- \longrightarrow H_2O \checkmark$	2	ALLOW : $2H^+ + 2OH^- \rightarrow 2H_2O$

Qu	esti	on	Expected answers	Marks	Additional guidance
4	d	i			ANNOTATIONS MUST BE USED
			Equilibrium		Equilibrium sign is required
			$H_2CO_3 \rightleftharpoons H^+ + HCO_3^- \checkmark$		IGNORE HA = H ⁺ + A ⁻
					DO NOT ALLOW $H_2CO_3 = 2H^+ + CO_3^{2-}$
					DO NOT ALLOW NaHCO ₃ \Rightarrow Na ⁺ + HCO ₃ ⁻
					IGNORE $H_2O + CO_2 = H_2CO_3$
			Action of buffer Added alkali H ₂ CO ₃ reacts with added alkali OR H ₂ CO ₃ + OH ⁻ → OR added alkali reacts with H ⁺ OR H ⁺ + OH ⁻ → ✓ Equilibrium → right OR equilibrium shifts forming H ⁺ OR HCO ₃ ⁻ ✓		IF $HA = H^+ + A^-$ OR $H_2CO_3 = 2H^+ + CO_3^{2-}$ have been used above: ALLOW all marks that meet marking alternatives as written NOTE The 1st 'added acid' mark cannot then be accessed Equilibrium responses must refer back to a written equilibrium BUT IF $H_2CO_3 \rightarrow H^+ + HCO_3^-$ shown above, assume that any equilibrium comments apply to the correct equilibrium IF more than one equilibrium shown, it must be clear which equilibrium is being referred to ALLOW added alkali reacts with weak acid Quality of Written Communication Mark is for linking the action of the buffer in controlling added alkali and hence pH
			OR equilibrium shifts forming H¹ OR HCO ₃ ✓		

Qu	esti	on	Expected answers	Marks	Additional guidance
			Added acid HCO ₃ ⁻ reacts with added acid ✓ Equilibrium → left OR equilibrium shifts forming H ₂ CO ₃ ✓	5	HCO ₃ ⁻ is required for this mark BUT ALLOW added acid reacts with conjugate base ONLY if HCO ₃ ⁻ is present in equilibrium with H ₂ CO ₃ DO NOT ALLOW salt reacts with added acid
4	d	ii	IF answer = 6.6:1 OR 1:0.15		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			CHECK ratio is HCO_3^- : H_2CO_3 and award 5 marks . IF answer = 0.15 : 1 , CHECK ratio is H_2CO_3 : HCO_3^- and award 4 marks		ANNOTATIONS MUST BE USED FOR ALTERNATIVE using Henderson–Hasselbalch equation below
			In blood at pH 7.40, $[H^+] = 10^{-pH} = 10^{-7.40} = 3.98 \times 10^{-8} \text{ (mol dm}^{-3}) \checkmark$ $K_a = \frac{[H^+] [HCO_3^-]}{[H_2CO_3]} = \frac{3.98 \times 10^{-8} \times 10.5}{1}$ OR $K_a = 4.18 \times 10^{-7} \text{ (mol dm}^{-3}) \checkmark$		ALLOW 3.98×10^{-8} up to calculator value of $3.981071706 \times 10^{-8}$ correctly rounded
			In blood at pH 7.20, $[H^+] = 10^{-pH} = 10^{-7.20} = 6.31 \times 10^{-8} \text{ (mol dm}^{-3}) \checkmark$		ALLOW 6.31×10^{-8} up to calculator value of $6.309573445 \times 10^{-8}$ correctly rounded
			$\frac{[HCO_3^-]}{[H_2CO_3]} = \frac{K_a}{[H^+]} \text{ OR } \frac{4.18 \times 10^{-7}}{6.31 \times 10^{-8}} \checkmark$ $= \frac{6.6}{1} \text{ OR } 6.6 : 1 \checkmark \text{ (up to calc. value, see below)}$ ALLOW any answer with > 1 decimal place that rounds back to 6.62 OR 6.63	5	Common errors 0.15:1 ✓✓✓✓ Inverse ratio of H ₂ CO ₃ : HCO ₃ ⁻ 16.6:1 OR 0.06:1 ✓✓✓✓ 10.5/1 swapped over in 2nd mark giving K _a value of 3.79 x 10 ⁻⁹ ALLOW answer with > 1 decimal place that rounds back to 16.64 OR 16.65
			ALTERNATIVE approach for concentrations using	Henderso	n–Hasselbalch equation <i>(5 marks)</i>
			pH = p K_a + log $\frac{[HCO_3^-]}{[H_2CO_3]}$ OR $-log K_a + log \frac{[HCO_3^-]}{[H_2CO_3]} \checkmark$		
			$pK_a = pH - log \frac{[HCO_3^-]}{[H_2CO_3]} = 7.40 - log \frac{10.5}{1} = 6.38 \checkmark (s)$	subsumes	previous mark) Calculator: 6.378810701

Question	Expected answers	Marks	Additional guidance
	At pH = 7.20, $\log \frac{[HCO_3^-]}{[H_2CO_3]} = pH - pK_a = 7.20 - 6.38$	= 0.82 ✓	(subsumes previous mark)
	$\frac{[HCO_3^-]}{[H_2CO_3]} = 10^{0.82} \checkmark = \frac{6.6}{1} \text{ OR } 6.6:1 \checkmark$		
	Total	22	

Qu	Question		Expected answers	Marks	Additional guidance
5	а	i	Complete circuit with electrodes to voltmeter AND salt bridge between solutions ✓		circuit shown must be complete, i.e. must be capable of working salt bridge must be labelled. electrodes AND salt bridge must dip into/touch both solutions
		ii	Fe ³⁺ /Fe ²⁺ half-cell with Pt electrode AND 1 mol dm ⁻³ /1 M Fe ²⁺ and 1 mol dm ⁻³ /1 M Fe ³⁺ ✓ Ni electrode in (1 mol dm ⁻³) Ni ²⁺ half-cell ✓ 1.02 V AND – sign ✓	3	ALLOW cells drawn either way around ALLOW Fe ³⁺ /Fe ²⁺ 1 mol dm ⁻³ / 1 M /1 molar ALLOW BOTH solutions same concentration/equimolar DO NOT ALLOW 1 mol OR 1 dm ⁻³ IGNORE any temperature or pressure, even if wrong IGNORE any sign BEFORE cell potential
			0.49 V AND + sign ✓	2	ALLOW 1 mark for correct values AND signs BOTH the wrong way round: i.e.1.02 V AND + sign AND 0.49 V AND - sign
	b		Cell A (based on 1 and 2) Ni + 2Fe ³⁺ → Ni ²⁺ + 2Fe ²⁺ ✓ Cell B (based on 1 and 3) 2Cr + 3Ni ²⁺ → 2Cr ³⁺ + 3Ni ✓ concentrations (of the ions in each cell) change OR concentrations are not standard ✓	3	In equations, ALLOW equilibrium sign, ⇒ instead of → Equations are required for the first two marking points ALLOW Ni → Ni²+ + 2e⁻ ALLOW Ni²+ + 2e⁻ → Ni ALLOW any statement that a concentration is changing IGNORE 'non-standard conditions'
	С	i	$MH + OH^- \longrightarrow M + H_2O + e^- \checkmark$	1	ALLOW MH \longrightarrow M + H ⁺ + e ⁻
		ii	adsorbed (on a solid) OR on the surface (of a solid) OR as a liquid under pressure ✓ Total	1 10	DO NOT ALLOW adsorbed into the solid CON DO NOT ALLOW just 'as a liquid'

estion	Expected answers		Marks	Additional guidance
а	$\Delta G = \Delta H - T \Delta S \checkmark$		1	
b	process sign			
	$2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$			
	$NaCl(s) + (aq) \longrightarrow NaCl(aq)$			
	$H_2O(I) \longrightarrow H_2O(s)$			
	$Mg(s) + H_2SO_4(aq) \longrightarrow MgSO_4(aq) + H_2(g)$	+		
	$CuSO_4(s) + 5H_2O(l) \longrightarrow CuSO_4 \bullet 5H_2O(s)$	_		
	All 5 correct \longrightarrow 2 marks \checkmark \checkmark		2	
С		,		
	$\Delta S = (+)185 (J K^{-1} mol^{-1}) \checkmark$		2	ALLOW ECF from working line above from a single error
				COMMON ERRORS (+)3 (J K ⁻¹ mol ⁻¹) \checkmark (211 + 189) – (192 + 205) – 185 (J K ⁻¹ mol ⁻¹) \checkmark incorrect sign
d	With increasing temperature $T \land S$ is more negative OR $T \land S$ decreases	<u> </u>		ANNOTATIONS MUST BE USED
	OR $-T\Delta S$ increases OR $ T\Delta S $ increases OR magnitude of $T\Delta S$ increases	•		DO NOT ALLOW just <i>T</i> ∆ <i>S</i> increases
		Н		DO NOT ALLOW At high T , ' $-T\Delta S$ is greater (than ΔH)'
	at high T , $T\Delta S$ outweighs/is more significant than	ΔH		APPROACH BASED ON TOTAL ENTROPY:
				With increasing temperature $\Delta H/T$ is less negative OR $\Delta H/T$ increases
	OR		2	OR $-\Delta H/T$ decreases OR $ \Delta H/T $ decreases
	At high temperature $\Delta H - T\Delta S > 0$			OR magnitude of ∆H/T decreases ✓
				ALLOW at high temperatures $\Delta S - \Delta H/T < 0$
	a b	a $\Delta G = \Delta H - T\Delta S \checkmark$ bprocesssign $2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$ — $NaCl(s) + (aq) \longrightarrow NaCl(aq)$ + $H_2O(l) \longrightarrow H_2O(s)$ — $Mg(s) + H_2SO_4(aq) \longrightarrow MgSO_4(aq) + H_2(g)$ $CuSO_4(s) + 5H_2O(l) \longrightarrow CuSO_4*5H_2O(s)$ All 5 correct \rightarrow 2 marks \checkmark 4 correct \rightarrow 1 mark \checkmark $\Delta S = (4 \times 211 + 6 \times 189) - (4 \times 192 + 5 \times 205) \checkmark$ $\Delta S = (+)185 (J K^{-1} mol^{-1}) \checkmark$ dWith increasing temperature $T\Delta S$ is more negative OR $T\Delta S$ decreases OR $-T\Delta S$ increases OR $ T\Delta S $ increases \sqrt{CR} At high temperature $T\Delta S$ is more negative that ΔS OR at high T , $T\Delta S$ outweighs/is more significant than \sqrt{CR} At low temperature $\Delta H - T\Delta S < 0$ OR At low temperature $\Delta H - T\Delta S < 0$ OR At low temperature $\Delta H - T\Delta S < 0$	a $\Delta G = \Delta H - T\Delta S \checkmark$ b process sign $2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$ $ NaCl(s) + (aq) \longrightarrow NaCl(aq)$ $+$ $H_2O(l) \longrightarrow H_2O(s)$ $ Mg(s) + H_2SO_4(aq) \longrightarrow MgSO_4(aq) + H_2(g)$ $ All 5 correct \longrightarrow 2 marks \checkmark$ $ -$	a $\Delta G = \Delta H - T\Delta S \checkmark$ 1 b process sign $2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$ — NaCl(s) + (aq) \longrightarrow NaCl(aq) + H ₂ O(l) \longrightarrow H ₂ O(s) — Mg(s) + H ₂ SO ₄ (aq) \longrightarrow MgSO ₄ (aq) + H ₂ (g) + CuSO ₄ (s) + 5H ₂ O(l) \longrightarrow CuSO ₄ *5H ₂ O(s) — All 5 correct \longrightarrow 2 marks \checkmark 4 correct \longrightarrow 1 mark \checkmark 2 c $\Delta S = (4 \times 211 + 6 \times 189) - (4 \times 192 + 5 \times 205) \checkmark$ $\Delta S = (+)185$ (J K ⁻¹ mol ⁻¹) \checkmark 2 d With increasing temperature $T\Delta S$ is more negative OR $T\Delta S$ decreases OR $-T\Delta S$ increases OR $ T\Delta S $ increases OR magnitude of $T\Delta S$ increases \checkmark At high temperature $T\Delta S$ is more negative that ΔH OR at high T , $T\Delta S$ outweighs/is more significant than ΔH OR At low temperature $\Delta H - T\Delta S < 0$ OR

Que	esti	on	Expected answers	Marks	Additional guidance
6	e		(For feasibility.)		OR ΔS is more negative than $\Delta H/T$ OR ΔS outweighs/ is more significant than $\Delta H/T$
6	e		(For feasibility,) $\Delta G < 0$ OR $\Delta G = 0$ OR $0 < \Delta H - T\Delta S$ OR $0 = \Delta H - T\Delta S$ OR $0 = 493 - T \times 543/1000 \checkmark$ $T = \frac{\Delta H}{\Delta S} = 493 \times 1000/543 \checkmark$ $= 908 \text{ K} \checkmark$ Units of temperature are required	3	ALLOW total entropy statement: ΔS(total) = 0 OR ΔS(total) >0 ALLOW 0 = 493 − T × 543 ✓ i.e. This mark focuses on ΔG OR ΔH − TΔS being = 0 and NOT on conversion of ΔS value into kJ K⁻¹ mol⁻¹ Mark temperature given on answer line ALLOW 3 SF up to calculator value 907.9189687 correctly rounded, e.g. 907.9, 907.92 ALLOW temperature in °C: i.e. ALLOW by subtraction of 273: 635, 634.9, 634.91 °C ALLOW by subtraction of 273.15: 635, 634.8, 634.77 °C up to calculator value correctly rounded ALLOW C for °C; °K for K IF ΔS has not been converted to kJ, DO NOT ALLOW 2nd mark BUT ALLOW calculated answer = 493/543 = 0.91 K (calculator: 0.907918968) ALLOW 2 marks only for absence of one of the statements required for 1st marking point
			Total	10	

Qu	Question		Expected answers	Marks	Additional guidance
7	а		FIRST, CHECK THE ANSWER ON ANSWER LINE IF numerical value = 7.81×10^{-2} OR 0.0781 AND $[N_2O_4] = 0.2(00 \text{ mol dm}^{-3}$ AND $[NO_2] = 1.6(0)$,		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			award 4 calculation marks and check for the mark for correct units		ANNOTATIONS MUST BE USED
			Equilibrium amount of N_2O_4 0.400 mol N_2O_4 \checkmark		
			Equilibrium concentrations $[N_2O_4] = 0.200 \text{ mol dm}^{-3} \text{ AND } [NO_2] = 1.60 \text{ mol dm}^{-3} \checkmark$		ALLOW ECF for equilibrium amounts ÷ 2
			K _c expression		
			$K_c = \frac{[N_2O_4]}{[NO_2]^2}$ (Square brackets essential) OR $\frac{0.200}{1.60^2}$ \checkmark		
			Calculation = $7.81 \times 10^{-2} \checkmark$		ALLOW 3 SF up to calculator value of 0.078125 correctly rounded ALLOW ECF using calculated equilibrium concentrations
			Units dm³ mol ⁻¹ ✓	5	For units, ALLOW mol ⁻¹ dm ³ ALLOW ECF from incorrect K_c expression
			Common errors for 4 calculation marks – Remember there is another mark for units		
			0.00000		$N_2O_4] = 0.8 \text{ AND } [NO_2] = 3.2$
			0.03906 $\checkmark \checkmark \checkmark + \text{units}$ no col 0.01953 $\checkmark \checkmark \checkmark + \text{units}$ no col 0.3125 $\checkmark \checkmark \checkmark + \text{units}$ 12.8 $\checkmark \checkmark \checkmark + \text{units}$: mol dm ⁻³ K_c expression 0.125 $\checkmark \checkmark \checkmark + \text{units}$; none [NO ₂]	nversion (nversion (of both moles to concentration of NO ₂ moles to concentration
			0.3125 $\checkmark \checkmark \checkmark + \text{units}$	moles of	N₂O₄ taken as 3.2/2
			12.8 $\sqrt{}$ + units: mol dm ⁻³ K_c expression	on upside	down
			$V V V + UNITS; $ none $[NO_2]$	ırısteaa o	$f[NO_2\hat{f}]$ 'No units' MUST be stated
			0.15625 MARK BY ECF as there are many different rout	tes to thi	s answer

Qu	Question		Expected answers	Marks	Additional guidance
7	b	<u> </u>	Each marking point is independent Effect on K _c K _c does not change (with pressure) ✓ Comparison of conc terms after increase in pressure [NO ₂] ² increases more than [N ₂ O ₄] OR concentration (term) on bottom (of K _c) increases more		ALLOW K_c only changes with temperature IGNORE K_c changes with temperature ALLOW $\frac{[N_2O_4]}{[NO_2]^2} < K_c$ OR $\frac{[N_2O_4]}{[NO_2]^2}$ decreases
			that concentration (term) on top (of K_c) \checkmark Changes in concentrations linked to K_c (amount /concentration of) N_2O_4 increases AND (amount /concentration of) NO_2 decreases AND to maintain/restore K_c \checkmark	3	ALLOW top of K_c expression increases and bottom decreases until K_c is reached ALLOW equilibrium shifts to right to maintain/restore K_c IGNORE just 'restores equilibrium' K_c IS REQUIRED IGNORE just 'equilibrium shifts to right IGNORE le Chatelier response: 'equilibrium shifts to right' because there are fewer moles of gas on right-hand side
			lotai	8	

Qu	esti	on	Expected answers	Marks	Additional guidance
8	а		Fe ₂ O ₃ + 6H ⁺ → 2Fe ³⁺ + 3H ₂ O ✓	1	ALLOW $Fe_2O_3 + 6HCI \longrightarrow 2FeCl_3 + 3H_2O$ OR $Fe_2O_3 + 6HCI \longrightarrow 2Fe^{3+} + 6CI^- + 3H_2O$ ALLOW correct multiples IGNORE state symbols DO NOT ALLOW Fe_2Cl_6 as a product
	b		$Sn^{2+} + 2Fe^{3+} \longrightarrow Sn^{4+} + 2Fe^{2+} \checkmark$ $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O \checkmark$	2	IGNORE state symbols ALLOW overall equations: $SnCl_2 + 2FeCl_3 \longrightarrow SnCl_4 + 2FeCl_2$ $6FeCl_2 + K_2Cr_2O_7 + 14HCl \rightarrow 6FeCl_3 + 2CrCl_3 + 2KCl + 7H_2O$ ALLOW correct multiples

Qu	esti	ion	Expected answers	Marks	Additional guidance
8	С		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 54.6%, award 5 marks		ANNOTATIONS MUST BE USED IF there is an alternative answer, 1st check common errors below. Then see if there is any ECF credit possible using working below
			Amount Fe ²⁺ in 250 cm ³ solution – 3 marks amount Cr ₂ O ₇ ²⁻ used = 0.0200 × $\frac{26.5}{1000}$ = 5.30 × 10 ⁻⁴ (mol) \checkmark amount Fe ²⁺ = 6 × 5.30 × 10 ⁻⁴ = 3.18 × 10 ⁻³ mol \checkmark amount Fe ²⁺ in original 250 cm ³ = 10 × 3.18 × 10 ⁻³ = 3.18 × 10 ⁻² (mol) \checkmark		Working must be to at least 3 SF throughout BUT ignore trailing zeroes, <i>i.e.</i> for 0.490 allow 0.49 ALLOW ECF from different Fe ²⁺ ratio in equation from 8(b) BUT still ALLOW 6: 1 even from different ratio in equation If no equation use actual 6: 1 ratio DO NOT AWARD 'ratio mark' at all for use of 1: 1 ratio - makes problem easier ECF 10 × answer above
			% Fe in ore – 2 marks mass of Fe in ore = 55.8 × 3.18 × 10 ⁻² g = 1.77444 g ✓		IF answer above has not been used AND × 55.8, DO NOT ALLOW this mark but do ALLOW final % IF answer above AND 55.8 are BOTH not used, then DO NOT ALLOW ANY further marks
		1	percentage Fe in ore = $\frac{1.77444}{3.25} \times 100$ = 54.6% ✓	5	ECF \frac{\text{answer above}}{3.25} \times 100 ALLOW 54.5% (from 1.77 g) AND any answer with > 1 decimal place that rounds back to 54.5 OR 54.6
					COMMON ERRORS 5.46

F325 Mark Scheme January 2012

Qu	Question		Expected answers	Marks	Additional guidance
8	d		E^{Φ} for MnO ₄ ⁻ is more positive/greater than Cl ₂ OR E^{Φ} for Cr ₂ O ₇ ²⁻ is less positive/smaller than Cl ₂ \checkmark MnO ₄ ⁻ reacts with Cl ⁻ OR HCl (forming Cl ₂ gas) OR Cr ₂ O ₇ ²⁻ does not react with Cl ⁻ ions \checkmark	2	ORA: E^{\bullet} for Cl_2 is less positive/smaller than MnO_4^- OR E^{\bullet} for Cl_2 is more positive/greater than $Cr_2O_7^{2-}$
			Total	10	

APPENDIX 1

MARK 1

MARK 2

MARK 3

A simple energy cycle can be awarded 2 marks only

Mark 1 All species, state symbols and labels
Mark 2 Arrows added in correct directions

APPENDIX 2

Example 1

No complex ions are correct

A is wrong because a wrong ligand has been attached. This would have been wrong even if CI had been attached so the CI charge is ignored at this stage

B has connectivity and Cl errors

C and D have Cl errors

In **B**, either connectivity **OR** Cl could have been penalised Choose which to penalise based on maximising identification of errors

If Cl⁻ had been penalised in **B**, then **C** would have been marked correctly by **ECF**.

But the candidate has clearly made 2 mistakes across **B** and C so NH₃ connectivity had been penalised in B

В

C and D are correct and they have been marked correct

A is wrong because a wrong ligand has been attached. This would have been wrong even if CI had been attached so the CIcharge is ignored at this stage

In **B**, the only error is Cl⁻ A also had Cl⁻but the charge had been ignored as CI was incorrect anyway

B is therefore marked wrong