AWS OME

Anaesthesia Written ShOrt answer & Multiple choice Examination Course

Intra-aortic balloon pumps David Connor

Overview

- Indications
- Contra-indications
- Practical considerations
- IABP waveforms
- Physiology
- Complications

Indications

- With proven benefit
 - Mechanical complications of AMI (acute MR & VSD)
 - Refractory ventricular arrhythmias
 - Refractory unstable angina
 - Decompensated systolic heart failure as a bridge to definitive management
- With possible benefit
 - Cardiogenic shock secondary to AMI refractory to medical therapy¹
 - Peri-operative support for high risk CABG
 - Peri-operative support for high risk cardiac patients undergoing non-cardiac surgery
 - Decompensated aortic stenosis
- With no evidence to suggest benefit
 - Sepsis
 - Routine use in high-risk patients undergoing PCI²

Contra-indications

Absolute

- Aortic regurgitation
- Aortic dissection
- Chronic end-stage heart disease with no anticipation of recovery
- Aortic stents

Relative

- Uncontrolled sepsis
- Abdominal aortic aneurysm
- Tachyarrhythmias
- Severe peripheral vascular disease
- Major arterial reconstruction surgery

Practical considerations

- Systemic heparinisation required
- 30-40ml balloon
- Inflated with helium or carbon dioxide
- Dual lumen
 - Inner lumen connected to pressure transducer
 - Outer lumen in continuity with balloon and connected to gas supply
- Electrocardiogram sensor
- Timing
 - Inflates on T wave
 - Deflates on the R wave
- If poor synchronisation occurs in arrhythmias, the arterial waveform can be used as a substitute

Positioning IABP

Metallic tip should be 2cm distal to the left subclavian artery

On chest x-ray, this is just cephalad to the carina

Cardiac cycle

IABP waveform

Augmented diastolic pressure

Problems with timing

Inflation prior to AV closure

Waveform

 Diastolic augmentation encroaches onto systole

Physiological effects

- Potential premature closure of AV
- Increased LVEDV & LVEDP
- Increased afterload
- Aortic regurgitation
- Increased myocardial O₂ demand

Inflation after AV closure

Waveform

- Absence of sharp V
- Sub-optimal diastolic augmentation

Physiological effects

 Sub-optimal coronary artery perfusion

Premature deflation during diastole

Waveform

- Sharp drop following diastolic augmentation
- Sub-optimal diastolic augmentation
- Assisted end diastolic pressure equal or greater than un-assisted EDP
- Assisted systolic pressure may rise

Physiological effects

- Sub-optimal coronary perfusion
- Retrograde coronary/carotid blood flow
- Sub-optimal afterload reduction
- Increased myocardial O₂ demand

Late deflation in diastole as AV beginning to open

Waveform

- Assisted EDP equal to un-assisted EDP
- Prolonged rate of rise of assisted systole
- Widened diastolic augmentation

Physiological effects

- Absent afterload reduction
- Increased myocardial O2 demand as LV ejecting against greater resistance

Physiology

- Aorta
 - Reduces systolic pressure
 - Increases diastolic pressure
- Left ventricle
 - Reduces systolic pressure
 - Reduces end-diastolic pressure
- Overall
 - Reduces afterload
 - Reduces preload
 - Increases cardiac output
 - Increases coronary blood flow

Physiology

- Diastolic Pressure Time Index (DPTI)
 - Area between LV pressure and aortic pressure waveform in diastole
 - Represents pressure and time available for coronary blood flow
- Tension Time Index (TTI)
 - Area under the LV pressure waveform in systole
 - Represents myocardial work and O₂ demand
- Endocardial Viability Ratio
 - Ratio of the DPTI to the TTI
 - Thought to represent the ratio of myocardial O₂ supply to demand
 - Myocardial ischaemia likely when ratio < 0.7

Physiology

- Balloon inflation increases pressure difference between aorta and LV which augments the DPTI
- This increases O₂ supply
- Balloon deflation reduces the afterload of the LV which reduces the TTI
- This reduces O₂ demand

Complications

- Incidence
 - Major (2.8%)
 - Minor (4.2%)
- Vascular
 - Aortic dissection
 - Peripheral thrombotic embolisation
 - False aneurysm or AV fistula formation
- Balloon related
 - Balloon migration leading to
 - Renal ischaemia
 - · Visceral ischaemia
 - Spinal cord ischaemia
 - · Limb ischaemia
 - Balloon rupture leading to gas embolisation
 - Thrombocytopaenia
 - Anaemia
- Infection

Practice SAQ 1

- List the indications and contra-indications for inserting an intra-aortic balloon pump. (35%)
- Describe the mechanism of action and physiological effects of an IABP. (30%)
- What are the potential complications of IABP insertion? (35%)

1. Physiological effects of intra-aortic balloon pump include:

- Increase in systolic blood pressure
- Increase in diastolic blood pressure
- Increase in cardiac output
- Decrease in left ventricular end-diastolic pressure
- Increase in coronary blood flow

2. Contra-indications to insertion of IABP include:

- Coagulopathy
- Severe mitral regurgitation
- Severe aortic regurgitation
- Chronic end-stage heart disease
- Cardiomyopathy

3. Regarding intra-aortic balloon pump:

- Helium is used owing to its high density and low solubility in blood
- Optimum time for inflation is just before the closure of the aortic valve
- The balloon should never be turned off in situ
- The balloon can be programmed to be timecycled
- Augmented diastolic pressure is ideally higher than the patient's systolic pressure

4. Regarding weaning from IABP:

- Weaning should be considered regardless of patient's inotropic dependence
- The balloon should be turned off and the patient's haemodynamic status observed
- Removal of the balloon pump may result in an increase in inotropic requirements
- Weaning can be achieved by reducing balloon volume
- Weaning can be achieved by reduced the ratio of augmented to native beats

5. Complications associated with IABP include:

- Compartment syndrome
- Aortic dissection
- Arrhythmias
- Thrombocytopaenia
- Cardiac tamponade

MCQ answers

- 1. FTTTT
- 2. TFTTF
- 3. FFTFT
- 4. FFTTT
- 5. TTFTT

References

Review articles

- Alaour B & English W, (2011) Intra-aortic balloon counterpulsation, Anaesthesia Tutorial of the Week 220, http://www.frca.co.uk/Documents/220%20Intra-aortic%20Balloon%20Pump%20Counterpulsation.pdf
- Krishna M & Zacharowski K, (2009) Principles of intra-aortic balloon pump counterpulsation, *CEACCP*, 9(1): 24-28.

References

Evidence base

- 1. Sjauw K et al, (2009) A systematic review and meta-analysis of intra-aortic balloon pump therapy in ST-elevation myocardial infarction: Should we change the guidelines?, *European Heart Journal*, 30: 459-468.
- 2. Perera D et al, (2010) Elective intra-aortic balloon counterpulsation during high risk percutaneous coronary intervention: A randomised control trial, *JAMA*, 304(8): 867-874.

