## Practice Problem

## Determining Muzzle Velocity given the following measurements:



$$
S_{y}=\ldots \text { (as measured) }
$$

$S_{x}=$ $\qquad$ ( as measured)
$t=\sqrt{\frac{S_{y}}{.5 a}}=\sqrt{\frac{.5}{.5(\quad)}}=\sqrt{\square}=\sqrt{ }$
$V_{x}=\frac{S_{x}}{t}=\square=$
(only when elevation is set at $0^{\circ}$ )

Predicting range of angled shot based on known $\mathrm{V}_{\mathrm{m}}$


OBJECTIVE: Predict $S_{x}$ given known $V_{\text {muzzle }}$

| 1. Proposition: $S_{x}=V_{x} \times t_{t o t a l, ~}^{\longrightarrow}\left(t_{\text {total }}=\left[\left(t_{1}\right)+\left(t_{2}\right)\right]\right.$ |  |
| :--- | :--- |
| 2. $V_{x}=$ | $3 . V_{y}=$ |

## Practice Problem Solutions:

## Determining Muzzle Velocity



$$
\begin{aligned}
& S_{y}=1.68 \mathrm{~m} \text { (as measured) } \\
& S_{x}=4.15 \mathrm{~m}(\text { as measured }) \\
& t=\sqrt{\frac{S_{y}}{.5 a}}=\sqrt{\frac{1.68}{(.5)(9.8)}}=\sqrt{\frac{1.68}{4.9}}=\sqrt{.343}=.587 \mathrm{sec} \\
& V_{x}=\frac{S_{x}}{t}=\frac{4.15}{.587}=7.070 \mathrm{~m} / \mathrm{sec}=V_{\text {muzzle }}
\end{aligned}
$$

Predicting range of angled shot based on known $\mathrm{V}_{\mathrm{m}}$


OBJECTIVE: Predict $S_{x}$ given known $V_{\text {muzzle }}$

| 1. Proposition: $\quad S_{x}=V_{x} \times \mathrm{t}_{\text {total }} \longrightarrow\left(\mathrm{t}_{\text {total }}=\left[\left(\mathrm{t}_{1}\right)+\left(\mathrm{t}_{2}\right)\right]\right.$ |
| :---: |
| $\text { 2. } \begin{aligned} V_{x} & =(\cos \theta)(H)=(\cos 25)(7.070) \\ & =(.906)(7.070)=6.405 \mathrm{~m} / \mathrm{sec} \end{aligned}$ |
| 4. $t_{1}$ <br> $t_{1}=\frac{V_{f}-V_{i}}{a}=\frac{0-2.991}{a-9.8}=.305 \mathrm{sec}$ <br> 5. $\mathrm{S}_{\mathrm{y} 1}$ $\begin{aligned} S_{y 1}= & \frac{V_{f}^{2}-V_{i}^{2}}{2 a}=\frac{\left(0^{0}\right)-\left(2.991^{2}\right)}{2(-9.8)} \\ & =\frac{-8.946}{-19.6}=.456 \mathrm{~m} \\ S_{y \text { total }}= & S_{y 1}+S_{y 2} \\ & =(.456)+(1.72)=2.176 \mathrm{~m} \end{aligned}$ |
| 6. $\mathrm{T}_{2}=\sqrt{\frac{S_{y \text { total }}}{.5 a}}=\sqrt{\frac{2.176}{.5(9.8)}}=\sqrt{\frac{2.176}{4.9}}=.444 \mathrm{sec}$ |

