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Abstract. In this article we consider the vibrations and radiated sound of the
bowed violin. The vibrations are discussed in terms of the normal modes of the
instrument involving the coupled vibrations of the bowed string, the supporting
bridge, the hollow shell comprising the body of the instrument and, ultimately, the
acoustic modes of the performance space in which the instrument is played. We
show that damping plays an important role in characterizing the normal modes
in what can be distinguished as weak and strong coupling limits. The historic and
modern application of Chladni pattern measurements to enhance our understand-
ing of the acoustics and as an aid to the making of violins is highlighted, alongside
the modern equivalents of experimental modal and computational finite-element
analysis. The symmetry-breaking properties of the internal soundpost is shown
to have a profound affect on the intensity and quality of sound radiated by the
bowed instrument.

1 Introduction

After almost 150 years of research, understanding the acoustics of the violin and its relation-
ship to the perceived quality of an instrument still remains a challenge. In part, this reflects
the problem of understanding the acoustical properties of what is, in practice, a rather complex
multi-resonant structure. But even more importantly - at least from the perspective of a scien-
tist - because differences in acoustical properties must ultimately explain the widely believed
superiority in the sound of violins by great Italian violin makers, like Amati, Stradivarius and
Guarnerius and many of their contemporaries, with values often exceeding well over $1M, com-
pared with the sound of a typical $100 student violin and many, but certainly not all, modern
instruments.

The violin first appeared in its present almost unchanged form in Northern Italy around
the middle of the sixteenth century, with instruments from 1̃566 by Andrea Amati, the founder
of the Cremonese school of violin making, still being played in the concert hall today. The
outward form of the violin is a fine example of early Italian Renaissance design, with arching
and convoluted outlines strongly influenced by the art, science and architecture of the period.
Whether by art or design, the violin is a marvel of both ergonomic and acoustical perfection,
which has met the requirements of the performing musician, musical styles and listeners, from
the court and church in the late sixteenth century to the virtuoso soloists of today.

Figure 1 shows a modern (1846), nineteenth-century, copy by the leading French maker
Vuillaume of a Guarnerius violin of around 1730. Vuillaume worked closely on the acoustics of
the violin with the French scientist Felix Savart (1791-1841) - best known today for his work
with Biot on establishing the mathematical relationship between electric currents and magnetic
fields. As described later, Savart was one of the first to use Chladni pattern measurements as
a serious scientific tool, in his pioneering researches on violin acoustics [2]. Chladni pattern
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Fig. 1. A modern (1846) Vuillaume copy of a Guarnerius violin of around 1720 and a schematic cross-
section of the violin body illustrating important internal features, the Helmholtz cavity resonance, and
coupling of the bowed string to the vibrations of the body of the instrument.

measurements are still widely used by many violin makers, to monitor the frequencies and
nodal lines of the modes of the individual plates of a violin, while being carved from the solid
before the instrument is glued together.

Many other distinguished scientists have made major contributions to our understanding of
the acoustics of the violin, pre-eminent amongst them being Helmholtz - the founder of modern
acoustics. He was the first to understand the vibrations of the bowed string and the acoustically
important resonance of the air inside the instrument, which vibrates in and out of the f -holes
cut into the front plate, as described in the next section.

At the turn of the 20th century, C.V.Raman established his early scientific career with
extensive and highly innovative experimental and mathematical investigations of the vibrations
of bowed strings [22], before founding the Indian Physical and moving to America, where his
research on opto-acoustics led to the award a Nobel Prize.

In more recent times, Frederick Saunders – known from Russell-Saunders LS spin-orbit
coupling in atomic physics – was one of the first to attempt an understanding of the quality of
a violin in terms of its acoustical properties [1]. With John Schelling, a retired research director
from Bell Laboratories, and Carleen Hutchins, a biologist turned innovative violin maker, he
co-founded the Catgut Acoustical Society of America. This society, through its newsletters,
journal and meetings, established an international community of scientists, engineers and violin
makers, with the aim of advancing our understanding of violin acoustics and the promotion of
scientific methods as an aid to the more consistent and potentially improved quality of modern
instruments.

Anyone interested in the acoustics of the violin should consult the four volumes of research
papers edited and collated by Carleen Hutchins [3,4], who remains the inspirational leader of the
scientific violin making community (see also, her comprehensive review of violin research prior
to 1983 [5]). Cremer’s monograph on the Violin [7] provides an authoritative guide by a leading
researcher, while the advanced text-book on Musical Acoustics by Fletcher and Rossing [8] is
an excellent source of the underlying science and provides references to most of the important
research on the violin and many other instruments over the last century.

In this brief introduction, we adopt a physicist’s viewpoint using simplified models and a
normal mode and wave-functional approach, to describe the general principles underlying the
production of sound by the violin and related stringed instruments. This approach differs from
that of engineers, who aim to reproduce the acoustical properties using detailed structural and
computational models, but often with less emphasis on general principles.
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Section 2.1 provides a brief overview of the way that the bowed violin produces sound,
following the chain of energy transfer from the bowed string to the larger acoustically radiating
surfaces of the shell of the instrument. We first describe (sec. 2.2) the excitation of bowed
Helmholtz waves on the string. Such waves exert an approximately saw-tooth, periodic force
on the bridge, which is very rich in harmonics, with amplitudes of the n-th partial varying as
1/n. This results in a similarly periodic waveform of the sound radiated, but with amplitudes
of the partials strongly dependent on the resonant frequencies and radiation efficiencies of the
various structural modes excited - and the resonant modes of the performance space in which
the instrument is played!

The bridge acts as a wide-band, but relatively strongly peaked, acoustic transformer fa-
cilitating the exchange of energy from the vibrating strings to the mechanical vibrations of
the supporting body, as described in section 2.3. The coupling of the string vibrations to the
resonant modes of the supporting body results in a set of normal modes. In section 2.4, we
show that damping has a profound effect on the character of the normal modes in the cross-
over region, where the resonances of the un-coupled systems would otherwise nearly coincide.
We show that the normal modes can be classified as weakly- or strongly-coupled depending on
the amount of damping present. This is a generic result for any set of coupled oscillators. The
amount of damping present has a profound influence on the player’s ability to control bowed
notes, especially when the string resonates at a frequency close to an over-strongly coupled,
weakly-damped, resonance of the main body of the instrument, resulting in what is known as
the wolf-note [20,15].

Almost all the sound of a stringed instrument is radiated from the large area front and back
plates of the shell of the instrument. The grading of the thickness and arching of such plates and
the properties of the spruce and maple from which they are carved determine the frequencies and
damping of the acoustically important vibrational modes of the body of the instrument. Such
modes also include the coupled vibrations of the neck, fingerboard and tailpiece, as well as the
air inside the cavity and all the other strings, whether bowed or not. Apart from the Helmholtz
resonance discussed in section 2.5, involving the air inside the cavity vibrating in and out
through the f -holes, none of these additional components are very efficient radiators of sound.
However, they can all contribute significantly to the complex coupled normal modes of the
instrument and can significantly perturb the frequencies and damping of string resonances. Such
perturbations are particularly important, when any resonance of a component part coincides
with prominent partials of the bowed string waveform. The coupling can then seriously affect
the playability of the instrument. For the player, this may be just as important a factor as the
tone quality in assessing the quality of an instrument.

The acoustical properties of the individual individual plates and main shell of the the instru-
ment are discussed in sections 3 and 4. We briefly describe the way their acoustical properties
are measured including Chladni measurements and modern equivalents like laser doppler in-
terferometry and both computational and experimental modal analysis. In both sections, we
examine the role of the geometric shape, f -holes, arching, bass-bar, soundpost and anisotropy
of elastic constants on the the waveforms and modal frequencies. In section 5, we derive the
modes of a Savart trapezoidal model of the violin using a finite element shell model, which
illustrates why the soundpost and it’s position plays such an important role in the sound of
the violin and other members of the violin family. In sect. 6 we briefly consider the radiation
of sound from the violin, the inherent difficulty of reliable assessment of violin quality and the
difficulty of correlating such judgements with measured acoustical properties, followed by a very
brief summary in sect. 7.

2 How the violin works

2.1 Overview

The violin produces sound by bowing one or more of the four strings stretched along its length,
with the strings terminated at one end by the supporting bridge and at the other by the end-nut
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or the player’s finger used to shorten the vibrating length and hence the pitch of the bowed
note. The vibrating string - a linear dipole source - radiates a negligible amount of sound,
because its diameter is very much smaller than the acoustic wavelengths involved. To produce
sound, energy has to be transferred to the radiating body of the instrument via the supporting
bridge. The bridge is therefore never a perfect node of string vibration vibration, so that the
harmonicity of the string modes is perturbed, as we will discuss in the next section.

The way that the transverse string vibrations are coupled to the main body of the instru-
ment is illustrated schematically in fig. 1b showing a cross-section of the violin. The forces
exerted by the two feet of the bridge, pressing against the central island region of the front
plate, excite the vibrational modes of the main shell of the instrument. The front and back
plates are strongly coupled by the supporting ribs and an asymmetrically placed sound-post
wedged between between them, at a position close to the treble foot of the bridge. Without the
soundpost the violin would, to a good approximation, be a symmetric structure. The couple
acting on the bridge could then only excite asymmetric modes of vibration of the instrument,
which at low frequencies would act as a rather weakly radiating dipole source of sound. Off-
setting the soundpost results in additional coupling to the symmetric modes, which radiate
more strongly as monopole sources. The soundpost and its position therefore play a very sig-
nificant role in determining the intensity and quality of sound produced by an instrument (see
Schelling [21]), as long recognised by French violin makers, who refer to it as l’âme or soul of
the instrument.

At low frequencies, below around 400-500 Hz, there are no strongly radiating structural
resonances. To boost the sound of the lowest notes, which extend a whole octave lower (down
to 190 Hz), use is made of the cavity or Helmholtz air resonance at around 270-280Hz. A similar
resonance is used to boost the sound of the guitar at low frequencies, with the air vibrating
in and out of the circular rose hole. In modern times, similar methods were used to boost the
output of loudspeakers at low frequencies - the bass-reflex loudspeaker cabinet. Interestingly,
insects like cicadas have been using such resonances to boost the sound they make [47] – for
many millions of years.

The asymmetry of the violin is further enhanced by a tapered bass bar, which runs along
much of the length of the violin close to the bass-side foot of the bridge. Its purpose is to
strengthen the top plate, partly to resist the very large downward pressures exerted by the
stretched strings, but acoustically more importantly, to increase the coupling of the central
island section between the f -holes to the larger radiating surfaces of the top plate above and
below.

2.2 The bowed string

The bowed string is excited via the visco-elastic frictional force of the rosin coating both the
moving bow hairs and stretched strings [23]. The resultant waves excited on the strings are not
the simple text-book sine waves generally used to illustrate wave motion on stretched strings,
but are to a very good approximation Helmholtz waves. Helmholtz waves are transverse waves
made up of any number of straight sections separated by kinks (discontinuities in slope) which,
for a perfectly flexible string, travel around the string in either direction with the dispersion-less
velocity of transverse waves

√
T/ρ, where T is the tension and ρ the density per unit length.

Such waves are just as acceptable solutions to the wave equation as are sine waves, with
points on the the straight-line sections either at rest or moving with constant velocity, since
within any straight section there can be no net transverse force. The only acceleration occurs
as the kink moves between two straight sections moving with different velocities.

The bowed string waveform is the simplest Helmholtz wave, with a single kink moving
around the string, separating two moving straight sections hinged about the rigid end sup-
ports. This is often referred to as a simple Raman wave, in recognition of Raman’s pioneering
experimental and analytical investigations of the bowed string [22]. To a first approximation,
the string at the bowing point moves with the same velocity as the moving bow hair for part
of the cycle, the sticking regime, and in the opposite direction with constant velocity for the
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Fig. 2. A schematic illustration of the dependence of the sound of the violin on the input bowed
waveform and spectrum and their modification by resonances of the bridge and body of the instrument.
For simplicity the additional resonant structure of the performing acoustic has been omitted.

remainder of the cycle, the slipping regime. This slip-stick motion is made possible because the
frictional forces during the sticking regime are larger than when slipping.

Helmholtz waves with a single kink generate a periodic sawtooth-waveform force on the
bridge, with the amplitude of the n-th Fourier component varying as 1/n. The spectrum of
sound produced by any bowed stringed instrument is therefore very rich in higher harmonics
(∼ 40 for the lowest notes on a violin or cello).

In the absence of damping or loss of energy from the reflecting ends, the Raman wave would
persist indefinitely. In practice, the transfer of energy from the string to the vibrating surfaces of
the instrument via the bridge results in a dynamic response at the point of bridge support and
the generation of secondary waves. Together with reflections from the bow-hair, the secondary
waves result in additional structure and degradation of the Raman waveform. Additional work
has then to be done by the moving bow to maintain the slip-stick motion. Such processes
were extensively studied by Lothar Cremer and his collaborators [7]. More recently, McIntyre
and Woodhouse [9] at Cambridge and Schumacher [9,10], their American collaborator, have
extended such investigations with computer-based models using a Green’s function approach.
Our current understanding of the bowed string has recently been reviewed by Woodhouse and
Galluzo [12].

Detailed computational analysis of the slip-stick excitation mechanism have included such
complicating factors as the finite flexibility of real strings, the excitation of the bowed transverse
waves via the torsional motion of the string, dynamic reflections from both the bridge and bow,
and the hysteretic visco-elastic properties of the frictional force. Despite such complications,
which lead to small amounts of additional structure and a rounding of the waveform, the bowed
waveform still approximates very closely to that of a simple Raman wave, as we will assume
for the purpose of this article.

The quality of an instrument will therefore be determined by the overlap of the spectrum of
the bowed string waveform with the multi-resonant response of the of the bridge, the body of
the instrument and even the acoustic into which the sound is radiated, as illustrated in fig. 2. For
illustration purposes only, we have separated the response of the bridge from that of the body
of the instrument, though strictly speaking, we should always consider the coupled motions of
all component parts of the instrument in terms of the collective normal modes. Because of the
strong peaks and troughs in the multi-resonant response, the spectrum and hence waveform
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of the radiated sound varies dramatically from note to note – and even within a single note
played with vibrato (frequency modulation) [13]. Surprisingly, although such variations may
be responsible for much of the exciting quality of the sound of a violin, there is surprisingly
little variation in the perceived quality in sound of an instrument from note to note or from
point to point in the performance space. This demonstrates that the perceived quality of a
violin is almost certainly associated with global features of the acoustic spectrum and not on
the response at particular resonant frequencies, since the spectrum varies so dramatically from
note to note, as is evident from fig. 2.

2.3 The bridge

Figure 1b illustrates the way that the transverse force from the bowed string excites the body of
the instrument. At low frequencies the bridge can be considered as a rigid body with regard to
the in-plane forces and induced vibrations. The transverse force of the vibrating string, polarised
in the direction of the moving bow, exerts a couple on the central island region of the top plate
between the f -holes via the treble- and bass-side feet of the bridge. Unless, by accident, the
normal modes of the shell of the instrument simultaneously involve strong motions of both
top and back plates, the essentially rigid sound post introduces a node close to the treble-side
foot of the bridge. The bridge is therefore forced to rock about this point, with the bass-side
foot of the bridge driving the central island region asymmetrically. As observed earlier, the
asymmetrical excitation of the top plate results in the excitation of both symmetric, strongly
radiating, monopole and asymmetric, weakly radiating, dipole plate resonances.

The rocking motion of the bridge at low frequencies will result in the point of string support
moving at an angle relative to the bowing direction. String vibrations polarised in this direction
will therefore be strongly coupled to the vibrations of the shell of the instrument, whereas
vibrations polarised in the perpendicular direction will be essentially uncoupled. This leads
to two independent modes of transverse string vibration, with one mode strongly perturbed
in frequency and damping by coupling to the structural resonances and the other effectively
unperturbed (Baker et al [14]).

At higher frequencies, the main body modes generally involve significant vibrations of both
the front and back plates, so that the soundpost post position will no longer be a node. The
bridge then rocks on both its feet with the polarisation of the complex (in and out of phase com-
ponents) admittance tensor at the point of bridge support varying strongly with frequency. In
general, the string will support two orthogonal, elliptically polarised, modes of string vibration,
with both modes damped by energy transfer from the string to the body resonances.

In addition, the bridge has its own important in-plane resonances involving the rocking and
bouncing of the top part of the bridge on its two feet at typically around 3 and 6 kHz respec-
tively. Such resonances strongly affect the reflecting impedance at the end of the string and the
intensity, and hence quality of the radiated sound, as recognised by many early researchers (see
[24] and [7, Chpt. 9]). This problem has recently been revisited by Woodhouse [25], to account
for what is known as the BH (Bridge Hill)-feature or peak often observed at around 2-3 kHz in
the frequency dependence of the admittance of the violin (induced velocity/force) measured in
the bowing direction at the point of string support [26].

At the bridge resonance there is a broad peak in the admittance and radiated sound, with a
peak height and width largely determined by the transfer of energy from the bridge to the shell
of the instrument. Above the in-plane rocking resonance of the bridge, the motion of the top of
the bridge is dominated by its inertial mass rocking about the waist of the bridge above its two
supporting feet. The input admittance is then largely determined by the response of the bridge
rather than by the body of the instrument, with an overall decrease in amplitude of 6 dB per
octave. The amplitude of induced shell vibrations decreases even more rapidly, at around 12 dB
per octave. Such a strong fall-off in response is responsible for removing much of the harshness
of the sound generated by the sawtooth forcing waveform. This is easily demonstrated by the
addition of an additional mass or mute to the top of the bridge. This lowers the frequency of
the bridge resonance and results in an even softer sound, as often used by the player for special
effect - con sordini. Despite such a well-known demonstration of the importance of bridge mass,
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many players - and sometimes even violin makers - are unaware of the importance of the bridge
in affecting the overall quality of sound of an instrument.

2.4 Normal modes

Until now, we have discussed the vibrational modes of the instrument in terms of the separate
vibrational modes of the strings, bridge and body of the instrument. However, as all readers of
this article will be well aware, the coupled vibrations should really be considered in terms of the
normal modes. The coupling of the transverse string modes to the structural modes provides
an excellent example of the importance of damping on the character of normal modes [17],
applicable to all coupled multi-mode systems.

As an illustrative example, we consider the simplest example of the transverse vibrations
of a stretched string terminated at one end by a simple harmonic resonator, representing a
coupled body resonance of the violin. We can characterise the coupled resonator vibrations by
the terminating displacement v of the end support and the string vibrations by the amplitude u
of the excited sinusoidal string vibrations. We then have a pair of coupled equations describing
the motion of the coupled oscillator induced by the force exerted on it by the n-th string mode
(nTπ/`)v, with the resonator exerting a similar force on the end of the string, such that

M
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where M , ωM and QM , and m (half the mass), ωm and Qm represent the effective masses,
resonant frequencies and Q-values of the coupled oscillator and string, length ` and tension T .

In the absence of damping, we recover the familiar result, with normal modes split at the
crossing point such that Ω2

± = Ω2
o ±42, where
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√
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4ω2

M
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√
m

M
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At the crossing point, the normal modes can be described as a combination of string and
coupled oscillator vibrations, with equal energies and amplitudes either in or out of phase. On
passing through the cross-over region, the normal modes vary smoothly from being predomi-
nately string-like to that of the coupled oscillator - and vice versa, with both modes damped
by half the damping of the coupled mode. This is the classical equivalent of mode splitting
in wave-mechanics, where elementary texts generally ignore the effects of damping, which can
considered as coupling to a broad spectrum of other modes.

In classical systems, damping is always important. In the absence of intrinsic string damping,
the complex frequencies of the damped normal modes are given by

Ω2
± = ω2

+ ± {ω4
− +44}1/2 (4)

with, to first order in damping,

ω2
± =

1
2
[ω2

M ± ω2
m + i(ω2

M/QM )] (5)

and i =
√−1.

At the crossing-point, where the uncoupled resonances coincide, the frequencies of the cou-
pled normal are given by

Ω2
± = (Ω2

M (1 + i/2QM )± (44 − (Ω2
M/2QM )2)1/2. (6)

There is clearly a transition in character of the normal modes as the damping is increased
leading to the bracketed second term on the right-hand side of equ. 6 becoming negative. When
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Fig. 3. The frequencies Ω± of the damped normal modes of an undamped string coupled to a damped
body resonance with Q = 25 as a function of string frequency ωS passing through the cross-over
region, for (a) weak-coupling K = 0.72, and (b) strong coupling K = 1.45. The solid curves show the
frequencies of the damped normal modes and the dashed curves indicate their 3-dB widths, with all
frequencies normalised to that of the coupled resonator ΩM .

this occurs the splitting in frequency of the modes disappears and is replaced by a splitting in
the damping at the cross-over frequency. This occurs when

K =
4QM

π

√
m

M
= 1 (7)

The difference in behaviour in the weak (K < 1) and strong (K > 1) coupling limits is
illustrated in Fig. 3. The solid curves represent the frequencies of the coupled modes and the
dashed curves mark their 3dB widths. In the weak-coupling limit, when the damping width of
the coupled body mode is larger than the splitting would have been in the absence of damping,
there is no splitting of the normal modes. The modes retain their predominantly string-like
or coupled resonator characteristics throughout the cross-over region, with a small dispersion
in the frequency of the string resonance and increase in its damping in the cross-over region.
Conversely, in the strong-coupling limit, when the splitting is larger than the damping, the
modes are split in the cross-over region and one can no longer refer to the modes as essentially
string-like or body-like in character, being a combination of both. Note the relatively small
change in coupling constant required to produce a dramatic change in behaviour in the cross-
over region.

The above analysis is quite general for any damped classical or quantum mechanical system.
It justifies treating the various components of a complicated multi-resonant structure like the
violin (e.g. string, bridge, neck, fingerboard, shell, and cavity modes) as individual resonators,
which are only weakly perturbed by their interactions, provided the damping of the coupled
modes is larger than their interaction strengths ∆2. However, such an approximation breaks
down, for example, when the strings on a violin are over-strongly coupled to a lightly damped
body resonance, leading to a split pair of normal modes at the cross-over region. This de-
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stroys the harmonicity of the string modes, so that it is no longer possible to establish a freely
propagating Helmholtz-wave on the bowed string.

This is the origin of the infamous wolf-note phenomena, which causes a breakdown of the
sound of a bowed string when the fundamental component of the string vibrations coincides with
a strongly excited resonance of the body of the instrument [16,15]. The coupled motion results
in a split pair of coupled modes (by as much as 10% on some cellos), removing the fundamental
component of the Helmholtz wave, but leaving the higher partials largely unperturbed. The
string therefore tends to make transitions to a new Helmholtz wave an octave higher based on
the even harmonics of string vibration, which makes the note very difficult for the player to
control. An important aspect of the violin’s design is to maximise the coupling of the string
to the radiating shell modes, without the coupling becoming so strong that it destroys the
harmonicity of string vibrations.

To overcome such problems, one can attempt to reduce K by using a lighter string, in-
creasing the effective mass of the coupled resonance by moving the position of the sound post,
or increasing the damping of the troublesome coupled resonance (sometimes a cork or duster
wedged between the tailpiece and front plate can have the desired effect. An alternative solution
is to transfer energy to a similarly tuned but lossy resonator. A heavily damped mass fixed
to one of the strings on the non-bowing side of the bridge is frequently used, or a damped
cantilever resonator mounted inside the instrument.

2.5 Cavity air resonances

The lowest efficiently radiating structural modes of the main body of the instrument for a violin
are typically between 450 and 500 Hz - more than an octave above the lowest notes played on
the instrument. This is true for all members of the violin family as well as for the guitar. To help
boost the sound output at lower frequencies, use is made of the Helmholtz resonance involving
the oscillation of the air inside the hollow body of the instrument in and out via the f -holes.
For a rigid cavity, the Helmholtz resonance frequency is given by

ωH = c

√
S

`V
, (8)

where c is the speed of sound in air, S the area of the f -holes and ` their effective length, treated
as the neck through which the air enters and leaves the cavity; ` is a shape-dependent factor
of order the typical slot-width of the f -hole openings [7, sec. 2.3]. In practice, the Helmholtz
resonance on a violin is typically 270-290 Hz, boosting the sound output for notes around the
2nd-lowest open string.

The Helmholtz resonance is driven by any breathing mode of vibration of the shell of the
instrument involving a net change in volume of the enclosed air. These will also be the most
strongly radiating modes. Because the frequencies of the Helmholtz resonator and the most
important shell modes are well separated, the coupling is relatively weak, slightly lowering
the frequency of the Helmholtz air-resonance and raising the frequency of the coupled body
resonances - as expected from our earlier discussion of coupled resonators illustrated in fig. 3.

Because the Helmholtz resonances involves a bulk motion of air in and out of the body of
the instrument, it acts as an efficient monopole radiator of sound. However, for excitation at
frequencies below the Helmholtz cavity resonance, any net changes in volume of the shell of
the instrument will be exactly compensated by air moving in or out of the cavity. Hence very
little sound is radiated at the fundamental frequency of the lowest notes, though the radiated
waveforms remain periodic, with almost all the sound intensity concentrated in the higher par-
tials. This illustrates the well-known missing fundamental phenomenon in perceptual acoustics,
whereby the perceived pitch of a note is determined by the periodicity of the waveform, whether
or not there is a fundamental component present.

In addition to the Helmholtz resonance, there are a large number of quasi-2-dimensional
resonant modes of the air within the cavity (Jansson [27] identified around 30 such modes
below 4 kHz ). Such modes are generally only weakly coupled to the resonances of the shell of



10 Will be inserted by the editor

Fig. 4. Chladni patterns for the first twisting (#1) and bending X- and ring-modes (#2 and #5) of a
viola back plate (from Hutchins) and the related modal patterns for an isotropic square plate. Equal
amplitudes of vibration are indicated by different colours (e.g. from red-positive to blue-negative).

the instrument, but may nevertheless radiate a significant amount of sound through the f -holes.
The contribution of such modes to the the sound of the violin remains unclear.

3 Plate modes

3.1 Measurements

We now consider the vibrations of the body of the instrument made up of the top and back
plates, the supporting ribs, the fingerboard, neck, tailpiece and any other attached objects like
a shoulder-rest or chin-rest. But first we consider the plates separately, as they are undoubtedly
the most important components of the violin in determining the quality of the sound produced.

The top and back plates are cut from solid wedges of spruce and maple respectively. The
plates can support longitudinal, flexural and torsional modes of vibration. Of these the flexural
and torsional are the only motions that involve acoustically radiating displacements perpendic-
ular to the surface of the plates. The acoustic properties of the plates are determined by their
geometric shape, the density and elastic properties of the wood, variations in thickness across
the plate and geometric arching. It is the maker’s skill in controlling all such parameters, taking
into account the inevitable variation in density and anisotropic elastic properties of the partic-
ular plank of wood from which the plates are carved, that determines the acoustical properties
and ultimately the quality of sound of the assembled violin.

Makers continuously test the elastic properties of the plates as they thin them down from
the solid. Traditionally, this was done by feel, as the plates were flexed and twisted by the
hands, and by listening to the sound when they were tapped or rubbed around the edges by the
thumb. More recently, largely inspired by Carleen Hutchins and her followers [19], many modern
makers use more quantitative, scientific measurements to monitor the modal frequencies and
modal line-shapes of the individual plates as they are carved from the solid. From the observed
changes in frequencies and nodal line shapes on selective thinning in particular regions, the
maker continuously refines the thickness gradations across the plates. The aim is to end up
with prominent free-plate modes having a particular set of final frequencies and well-defined
nodal line shapes.
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Chladni pattern measurements still provide provide the simplest, most convenient and least
expensive way of making such measurements. To obtain Chladni patterns, the plate is lightly
supported at the nodal points of the particular mode to be measured and is placed over a
loudspeaker cone driven by a sine-wave oscillator. Christmas glitter or some other such light
material is sprinkled over the surface. When the frequency of the sound from the loudspeaker
strongly excites a resonant mode, the glitter moves to the nodal line positions.

Figure 4 shows Chladni patterns for a freely supported viola back plate illustrating the three
modes that tend to be used in the gradation of thicknesses. The corresponding modes of a freely
supported isotropic square plate are shown for comparison. In both cases the first mode is a
simple twisting mode. The following two modes are flexural or bending modes and are referred
to as the X- and ring-modes in view of their similarity with the modes of the square plate.
Such modes can be considered as combinations of [10] and [01] modes, which for a stretched
membrane would be degenerate. However, when a thin plate is bent in a given direction, it bends
in the opposite sense in the orthogonal direction (anticlastic bending). This is a consequence
of the Poisson effect relating longitudinal extensions to transverse contraction when a plate is
stretched. This lifts the degeneracy of the two illustrated modes, with the X -mode with the
inherent anticlastic bending in opposite directions having the lower potential energy and hence
lower modal frequency than the ring mode, with bending in the same sense in both directions.

Savart, working closely with Vuillaume in the the early part of the nineteenth century, noted
that the plates of fine Italian violins had strong plate resonances between C#3 and D3 ( 280-
300Hz) for the front plate and between a semitone or tone higher for the back plate (Savart [48]),
observations that were subsequently confirmed in measurements by Hutchins and Saunders on
a large number of violins [6]. Hutchins has also suggested that the early Italian master violin
makers may well have tuned the modes of their freely supported plates to ring like a well-tuned
bell, with the frequencies of the lowest free-plate modes in simple harmonic relationship to each
other. A bell-like ring would be optimised when the frequencies of modes #1, #2 and #5 of
the top plate are close to an octave apart. In addition, she aims to closely match modes #2
and #5 in the front and back plates, though mode #1 cannot then be matched, because of the
different geometry of the top plates (i.e. with f -holes and bass bar). In addition, she advocates
adjusting the thicknesses of the plates to yield well-defined, symmetrical, Chladni nodal-line
patterns, similar to those shown in fig. 4.

Such design criteria clearly go well beyond what the skilled Cremonese maker’s could possi-
bly hope to have achieved by feel and sound alone - though the ability of skilled violin-makers
using their fingers, ears and experience alone to assess and interpret the feel and sounds of
plates should never be underestimated. However, because they needed to make instruments as
quickly as possible to satisfy their customers and optimise their income, it is far from clear that
Cremonese makers would have spent the time in making such careful matches, even had the
scientific tools then been available. Nor is it clear, that instruments made using these scientific
tools are necessarily any better than instruments made by more traditional methods. However,
such methods will provide a degree of quality control on the overall acoustic properties that
should, at the very least, lead to a more consistent quality of instrument.

Unfortunately, there is relatively little reliable published information on the vibrational
modes of the free plates of outstanding Cremonese instruments, as modern players and dealers
are naturally unwilling to allow their valuable instruments to be taken apart for such measure-
ments. However, such measurements were performed on many fine instruments by Savart and
Vuillaume, probably while the instruments were being taken apart, modified and reassembled
to improve their tonal properties, to match the demands of the the virtuosi performers and
larger concert halls of the day. The improvements included lengthening the neck, using higher
tension metal-covered rather than gut strings, increasing the slope of the strings over the bridge,
using a thicker bass bar, a larger diameter soundpost, a modern bridge, and sometimes even
adding and removing wood from the plates themselves. As a consequence, the powerful and
rich sounds of today’s modernised Cremonese instruments are very different from the quieter
and sweeter sounds of the instruments actually made by Amati, Stradivarius, Guarnerius and
their contemporaries. The paradox is that we are attempting to discover the apparent secret



12 Will be inserted by the editor

of how the great Italian makers made instruments with such outstanding tonal qualities in the
concert hall today, whereas when they were made they sounded very different.

3.2 Thin plate theory

Understanding the beautiful Chladni patterns generated on differently shaped plates presented
a formidable challenge. In 1809 Napoleon offered a prize of 3000 francs for the first person
to provide a theory for such vibrations. The prize was eventually won in 1816 – at her third
attempt – by Sophie Germain, though a complete theory was not obtained until 30-years later
by Kirchhoff [49].

Equation 9 is the fourth-order wave-equation describing flexural or bending waves in a thin
plate. The equations have been generalised to account for the highly anisotropic properties of
the wood used for the plates of stringed instruments(see [28]). In these applications, the wood
is aligned with the grain running along the length of the instrument, making it far easier to
bend in the transverse direction, across the grain.

ρt
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∂t2
+ Bxx

∂4u

∂x4
+ 2Bxy

∂4u
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+ Byy

∂4u

∂y4
= 0 (9)

with

Bxx =
Exxt3

12ρ(1− ν2
xx)

and Byy =
Eyyt3

12ρ(1− ν2
yy)

(10)

and
Bxy = Byx ∼ (BxxByy)1/2, (11)

where t is the local plate thickness and Eij and νij are the anisotropic elastic constants and
Poisson ratios along the symmetry directions parallel to the x - and y-axis.

Well away from the boundaries or any localised boundary condition like the presence of the
soundpost, a thin plate supports sinusoidal waves with frequencies
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where kx and ky are the wave-vectors along the symmetry directions and α = Bxx/Byy

represents the anisotropy of the elastic constants. For typical sitka spruce soundboards of key-
board instruments and the front-plates of the violin or guitar, the anisotropy is along relative
to across the grain is very large, with α ranging from around 13 to 24 (see [8, pp 721-2]).
Within the approximation assumed in eq. 11, the flexural modes of an anisotropic plate of any
shape can be deduced from an equivalent isotropic plate with elastic constant the geometric
mean of the anisotropic plate and the x- and y- lengths scaled by the factor α1/8 ( 1.4–1.5)
and its inverse, keeping the plate area constant. The dispersion relationship leads to an average
constant density of states for flexural waves at high frequencies, with a typical spacing of about
70 Hz for a violin front plate and 110 Hz for the back plate [7, p 292]. However, damping causes
considerable overlap of the resonances, so that the partials of the bowed string input tend to
excite groups of closely-spaced structural modes simultaneously.

In addition to propagating wave-like solutions, the fourth-order partials in the wave equation
also allow exponentially damped solutions varying as e±kxx and e±kyy with the same dispersion
relationship. Such solutions are important at the edges of the plate and have to be included
to satisfy the boundary conditions, unless the plate is hinged at its edges. For a free plate, the
boundary conditions require the forces and couples acting on the edges to be zero, which mixes
flexing in the x- and y-directions. Unlike the simple straight-line nodal patterns of transverse
waves on a stretched rectangular membrane, such mixing results in considerable curvature of
the modal lines, which accounts for many of the beautiful shapes observed in Chladni patterns.

Thin plates also support torsional modes, such as the twisting, u = xy, mode #1 in
fig. 4. Unlike the bending modes, these modes are non-dispersive with a wave velocity cT =
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(a) (b) (c) (d)

(e) (f) (g) (h)

680 594 889 880 1182 934 1437 1402 Hz

1656 1843 1763 2300 2576 3200 3085 Hz

Fig. 5. (a)-(h) selected modes of an isotropic, flat, guitar-shaped, thin plate before and after cutting
slots to mimic the effect of f -holes.

(2h/w)
√

E/2ρ(1 + ν) for a thin plate of width w, where the elastic properties will again be
affected by anisotropic shear moduli parallel to and across the grain. For a freely supported
thin-plate, conservation of linear and rotational momentum and boundary conditions can in-
duce coupling between the bending and torsional modes, demonstrated later in relation to shell
modes.

3.3 Plate geometry

The modes of the violin are strongly influenced by the outline of the individual plates, the
f- holes cut into the top plate and the strengthening bass-bar [31]. Because the plates are
relatively rigidly supported by the side ribs, the wave functions and corresponding frequencies
will be very different from those of the freely supported plates tested by the maker in the pre-
assembly stage. The relatively narrow waist of the plates tends to separate the upper and lower
areas, so that at low frequencies several modes can be excited that are predominantly localised
in the upper or lower sections. This is illustrated in fig. 5 by selected modes of a guitar-shaped
flat plate, rigidly supported around its edges, before and after slots are cut into the plate to
mimic the effect of the f-holes. The modes were calculated using COMSOL [39], a powerful but
user-friendly software package for rapid finite-element calculations. This software is particularly
useful for illustrating the vibrational modes of simple structures - as in this article - though its
real strength lies in multi-physics modelling of complex structures.

The size and shape of the plate in the above example was been chosen to approximate to
the geometry of the major vibrating surfaces of actual violin plates (a smoothed guitar-shaped
region following the line of the ribs and the inside of the solid wooden blocks that strengthens
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the shell at the corners above and below the waist. At this stage, no attempt has been made
to to incorporate the arching of the plates or the appropriate orthotropic elastic properties of
the wood. Although such factors will affect the detailed shape and frequencies of modes, their
inclusion would not be expected to change the basic physics illustrated by this simplified model.

The modes in figs. 5(a),(b) and (d) illustrate the tendency for localisation of the vibrations
into the upper and lower regions of the plate. For these examples, the presence of the slots,
with their freely supported edges, allows an increased penetration of the wave-functions into
the relatively flexible central island section on which the bridge rests. This not only lowers the
modal frequencies but, more importantly, significantly increases the strength of the coupling
of such modes to the vibrating strings - via the bridge resting on the island section. This will
clearly increase the intensity of the radiated sound. The shape and position of the f -holes is
therefore likely to be important important, not only for their role in determining the frequency
of the Helmholtz air resonator boosting the low-frequency response, but also for allowing modal
vibrations to penetrate more strongly into the island region supporting the bridge.

One can consider the island region between the slots or f -holes as a 3-port acoustic trans-
former coupling the modes of the upper and lower regions of the plate, as in fig. 5(c), (f), (g)
and (h), in addition to coupling such vibrations to the vibrating strings via the bridge. At
certain frequencies, the coupling between the upper and lower regions can be large, as in fig. 5
(c), (f) and (g - without slots), or relatively weak, as in fig. 5 (h), where the coupling with and
without the slots reverses the relative amplitudes of the modes in the upper and lower regions.
From our discussion of coupled oscillators (section 2.4), one expects the coupling strength to
be strong when the resonant frequencies of the modes in the upper and lower regions of the
plate are closely matched, but weak otherwise. In addition, the island region can have resonant
modes of its own, as illustrated in fig. 5 (e) and (g - with slots), which have no parallel in
the unslotted plate. Such modes, with antinodes of vibration at the slot or f -hole edges, arise
because of the increased flexibility of the freely supported central island region relative to the
rigidly supported region without slots.

3.4 Soundpost

For symmetrical plates, the symmetry of the coupled wave functions in the upper and lower
regions will always be the same (i.e either both odd or both even about the central axis).
However, in the assembled instrument, the offset soundpost wedged between the two plates
introduces an additional asymmetric constraint. At low frequencies, the modes of the front and
back plates are generally well separated. This results in the soundpost position acting as a node
of vibration, because the soundpost is a rather rigid body with its longitudinal mode resonances
at very much higher frequencies. A node at the position of the soundpost can only be achieved
by combinations of the symmetric and asymmetric modes illustrated in fig. 5. This often results
in rather complicated modal wavefunctions, especially at high frequencies, as in fig. 6(d - with
soundpost). The combined modes will tend again to be those with closely matching frequencies.

Figure 6(a-d) illustrates the effect of an offset soundpost on some of the lower frequency
modes, with wave-functions forced to move away from the soundpost nodal position and read-
justing their distribution across the plate to minimise their stored energy. The perturbation
of the wavefunctions results in a highly asymmetric local region of the wavefunction in the
island region. When incorporated into the body of the instrument, such modes would allow the
asymmetrical rocking motion of the bridge to couple strongly to the symmetrical lowest order
modes of the plate, fig. 6(a) and (b), which provide strong sources of monopole radiation. The
node at the soundpost will also strongly perturb any modes localised to central island region
localised modes, fig. 6(c).

3.5 Bassbar

The asymmetry of the front plate of a violin is further enhanced by the bass bar, which in-
creases its ability to support the downward force of the stretched strings on the bridge without
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(c) (d)
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Fig. 6. (a)-(d) Modal wavefunctions and frequencies for a guitar-shaped thin plate with slots, with
and without a soundpost - position indicated by the solid circles.

(a) (b)

709 888 Hz

1221 1407 Hz

703 890

1202 1386

(c) (d)

Fig. 7. (a)-(d) First four modes of guitar-shaped thin plate with slots and a soundpost node, with and
without a 5x5 mm rectangular bass bar in the position indicated
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collapsing. It also affects the vibrational modes by increasing the coupling between the upper,
lower and island regions. However, because its mass is relatively small compared with the plate
itself, it only weakly perturbs the modal frequencies, as indicated for the first four modes in fig.
7. Nevertheless, it increases slightly the penetration of the wavefunctions into the island region
and proximity to the bridge and will therefore increase the output sound somewhat.

3.6 Arching

The beautiful arching of the front and back plates of the violin was almost certainly chosen
to prevent the body of the instrument from collapsing under the large downward force of
the stretched springs pressing on the top plate. However, more importantly from an acoustics
viewpoint, such arching results in a significant increase in modal frequencies, particularly for the
lowest order bending modes. This arises because any motion of the plates perpendicular to an
arched surface induces a first-order longitudinal strain parallel to the surface. This increases the
potential energy and hence frequency of the flexural wave modes. The perturbation is larger
for symmetric modes than for asymmetric modes, where the net energy change in potential
energy is much smaller. The effect of arching also decreases with increasing frequency, as the
wavelength of the of the flexural vibrations become much shorter than the characteristic radii
of curvature.

As an example, the fundamental mode of a circular plate, belled outwards to a height H, is
initially increased by a factor ∼ [1 + α(H/h)2], where α = 0.67 when clamped at its edges and
0.84 when freely supported [30]. For the violin, with a typical front-plate thicknesses of around
2.5 – 3.5 mm and arching heights in the range 13–16 mm, this would imply an approximate
doubling or more of the frequency of the lowest order flexural mode relative to that of a flat
plate. This is consistent with finite element analysis computations of the modes of a freely
supported arched violin plate by Roberts [31], yielding a 3-fold increase of some modes on
varying the arching from zero to twice the normal height.

The frequencies of the lowest important acoustic modes can therefore be just as dependent
on the arching height and the arching contour as on plate thickness [31,37,38]. The reduction
in the arching height of violins from the highly arched Stainer and early Amati models to
Stradivari violins and even flatter Guarneri models is almost certainly the main reason for the
increased intensity and darker sound of the latter instruments.

3.7 Anisotropy

The violin front plate is generally made of sitka spruce and the back from maple, both of which
have highly anisotropic elastic properties parallel and transverse to the grain running along
the length of the the plates. As described earlier, one can use isotropic thin plate theory to
evaluate the modes of anisotropic materials by scaling the geometry parallel and perpendicular
to the grain by the factor (EL/ET )1/8 perpendicular to and its inverse along the grain, using an
elastic constant equal to the the geometric mean

√
ELET of the anisotropic elasticity constants.

Such scaling leaves the density of modes unchanged at high frequencies. Having determined the
modal waveforms and frequencies, one can then reverse the scaling, to view the waveforms in
the original geometry.

This is illustrated in fig. 11, which compares the first four modes of guitar-shaped plates,
first for an isotropic plate with the geometric mean of the elasticity constant and then for an
anisotropy factor of 10. The increase in elastic constant along the grain for the anisotropic
plate leads to a significantly larger penetration of the first mode into the island and upper
regions of the plate, and an associated decrease in the modal frequency from 426 Hz to 384 Hz.
Whereas the first mode of the anisotropic plate can be considered as having a large contribution
from the first two modes of the isotropic plate acting in phase, the second mode is clearly a
combination of the two modes with opposite phases and a corresponding frequency of 486 Hz in
between them (426 and 556 Hz). In contrast, the anisotropy has only a slight influence on the
wavefunctions and modal frequencies of the third mode, whereas the anisotropy significantly
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Fig. 8. Modal waveforms and frequencies of guitar-shaped thin plates with isotropic and anisotropic
elastic constant, as described in the text

lowers the frequency of the fourth mode, due to the greater penetration of the waves into the
central region.

In general, the larger the degree of anisotropy the larger will be the coupling of the major
plate vibrations into the island area on which the rocking bridge rests. This explains why the
acoustical properties of the individual plates and shell of the instrument are so sensitive to the
elastic constants and anisotropy of the wood from which they are carved. In practice, makers
go to considerable lengths in the selection of the wood they use, which varies from species to
species, tree to tree and the local climatology - even from which side of the tree the wood is
taken. Recently is has been suggested that the claimed superiority of Cremonese instruments
is derived from the quality of the wood that was available to the great makers [43], but this
remains a contentious issue.

4 Shell modes

4.1 General considerations

Having discussed the properties of the individual plates in some detail, we are now in a position
to consider the modes of the assembled body or shell of the instrument. The normal modes of the
shell of the instrument will include the vibrations and coupling of the plates, the supporting
side ribs, the soundpost and air inside the body. In addition, the vibrational modes of the
neck, fingerboard and tailpiece will be also be involved, though they may not themselves be
responsible for significant acoustic radiation [33]. Because the fingerboard and neck are attached
to the outer edges of the violin, where the amplitude of the excited modes is generally relatively
small, to a first approximation, we can ignore such attachments. They can be included later as
weakly coupled resonators, with their own modes adding to the normal modes of the assembled
instrument, only weakly perturbing the shell modes.

In addition, in any measurements or when played, the instrument has to be supported (e.g.
by the shoulder- and chin-rest and the hand supporting the neck). Because such supports are
again made via the edges of the shell, the resulting perturbation of the normal modes will be
relatively small. In practice, the main effect of holding an instrument is to increase the damping
of any shell mode involving significant motions of the outer edges at the positions of support
[41,33,13].
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Fig. 9. Examples of shell modes of a freely supported rectangular box (5x3x2) with walls of equal
thickness, chosen to illustrate the interaction of the flexural plate modes to the translational, rotational,
twisting and bending modes of the structure as a whole. The first mode involves vibrations of opposite
sign in the top and back plates, in all others the front and back plate move in the same direction. The
individual plate modes are illustrated.

The normal modes of a shell will include the six displacement and rotational motions of
the body of the constrained instrument. In addition there will be plate-like twisting or twisting
motions of the main shell of the instrument about the 3 principal axis, just like the torsional
modes of a thick plate. Then there will be the flexural motions of the plates largely responsible
for the radiated sound. For a freely supported shell, the flexural modes can couple to the
translation, rotational, twisting and flexing modes of the structure as a whole.

Fig. 9 shows selected modes of a simple rectangular box with all surfaces having the same
properties and thickness, which illustrate the coupling (or lack of coupling) of the flexural waves
to the other degrees of freedom. The first example at 310 Hz, is the major breathing mode,
with the front and back plates vibrating in their fundamental mode, but in opposite directions.
The two plates therefore exert equal and opposite forces and couples on the supporting side
structures. As the coupled bending modes of the sides will have high modal frequencies, be-
cause of their relatively small height, they will act as rather stiff springs. This will inhibit any
significant rotation about the plate edges. For this particular mode, the shell mode and modal
frequency will therefore approximate rather closely to those of rigidly supported top and back
plates. This will be an increasingly valid assumption at high frequencies.

In contrast, for plate vibrations in the same sense in the front and back plates, there will be
significant coupling to the translational, rotational and twisting modes of the overall structure,
as illustrated by all the other selected examples in fig. 9. However, apart from the strong
anticlastic bending mode at 1216 Hz, the displacements of the side-walls are generally small
compared to the major excursions within the top and back plates, as illustrated by the modal
patterns of the front plate alone.

Similar arguments will hold for the violin. However, because the front plate is somewhat
thinner than the back plate and has an increased flexibility due to the f -holes, the modal
frequencies will be lower than in the back plate and the density of modes correspondingly
higher. Moreover, for a given exciting force the displacement will also be smaller. The acoustic
properties and quality of the violin are therefore likely to be more strongly influenced by the
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Fig. 10. (a) Two views of exaggerated displacements of an important breathing mode at 536 Hz for
a computer-modeled violin derived by Knott [32] using FEA, and (b) a “see-through” cross-section of
displacements of a weakly radiating mode at 425 Hz and a strongly radiating breathing mode at 480
Hz for a real violin obtained from experimental modal analysis by Bissinger [45].

properties of the front plate than the back, though the latter is still responsible for a significant
fraction of the radiated sound.

Because the edges of the front and back plates of the violin are supported fairly rigidly by
the supporting ribs, it could be argued that makers might find it more helpful to optimise the
modal frequencies and nodal line shapes of plates, with the plates glued round their edges to
a rather rigid supporting structure. This would then more closely approximate to the modes
of the shell of the instrument when assembled than the freely supported plates most usually
considered.

4.2 Modal analysis

Unfortunately, it is not possible to perform Chladni measurements on the highly arched surfaces
of the violin. However, equivalent measurements can be made by frequency- and time-domain
laser holography [37] and by both computational (see Knott [32], Rogers [38] and Roberts [31])
and experimental modal analysis (Marshall [41] and Bissinger [33]).

Figure 10(a) shows two projections of a normal mode of a violin obtained from finite element
analysis computations by Knott [32]. The amplitudes of vibration are greatly exaggerated for
illustration purposes. In practice, they are typically of order microns, so one is well within any
linear limit elastic approximation. Such computations show that many of the modes involve
significant vibrations of the neck, fingerboard and tailpiece. A particular advantage of finite
element analysis is the ability to investigate the effects of varying the materials and design of
a violin at will, without having to build and test a new instrument.

In experimental modal analysis, the instrument is excited at some point, such as the top
corner of the bridge, and the induced vibrations measured at a large number of points (typically
∼ 40) distributed over the surface of the instrument. The induced velocities can, for example, be
monitored by laser doppler measurements, (see Bissinger[33]). Figure 10(b) shows a see-through
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cross-section of two strongly excited modes of a violin at 423 and 480 Hz obtained from such
measurements. Alternatively, the induced velocity at the bridge, for example, can be monitored
as the instrument is struck by a hammer at a large number of points across the surface [41].
Both types of measurements enable the modal wavefunctions and positions of line nodes to be
mapped across the surface of the shell.

The two modes illustrated in fig. 10b both involve large rocking motions of the bridge. They
are therefore strongly coupled to the bowed string, leading to a potential wolf-note problem,
should the coupling be too strong (section 2.4). They give rise to the characteristic double peak
usually observed in the measured input admittance at the bridge (induced velocity per unit
force).

In fig. 10, the lower frequency mode at 423 Hz involves similar motions of the top and back
plates, with only a small change in net volume. The mode involves a shearing motion of the
top plate relative to the back and associated tipping of the side ribs. This results in a more
nearly hinged boundary condition on the plate edges. The modal frequencies will therefore be
intermediate between those of the rigidly and freely supported plates. In contrast, the higher
frequency mode at 480 Hz involves large amplitude motions in opposite directions in the front
and back plates. There is therefore a volume changing breathing mode acting as a strong source
of monopole radiation, whereas the lower frequency mode radiates much less strongly as a dipole
source.

The relative sizes of the two peaks will therefore differ markedly when the response to a
force at the bridge is measured at the bridge or in the radiation field. The same is also true for
the Helmholtz air resonance, which introduces a small peak in admittance measurements at the
bridge, since it is only relatively weakly coupled to the shell modes, whereas it is a prominent
feature in the radiation field response. In practice, it is much easier to make reliable measure-
ments of the input admittance at the bridge than measurements of the radiated sound. This
is due to the increasingly directional properties of the radiated sound on increasing frequency
(see Weinreich [46]), differences in the near and far radiation fields, and the influence of the
room acoustic, unless measurements are made in an anechoic chamber.

5 Trapezoidal violin model

5.1 Historical

As our final illustration of the value of simple FEA models to elucidate the acoustics of the
violin, we follow Savart’s example [2] and consider the vibrational modes of a trapezoidal-
shaped instrument. In particular, we consider the influence of the soundpost position on modal
frequencies and waveforms. The model demonstrates why the symmetry-breaking soundpost
position has such a large effect on the coupling of the bowed strings to the radiating vibrational
modes via the bridge.

Although the modern violin is essentially unchanged in geometric form from that of the
earliest Cremonese instruments, the shape can be modified to quite a large extent while still
sounding like a violin. In folk-cultures, the shell of the violin is sometimes replaced by a simple
rectangular box - even a suitably stringed tea-kettle has been demonstrated in public lectures
sounding somewhat like a violin! Stradivarius also experimented with the shape, notably in
the design of a guitar-shaped violin (the Tom Taylor Strad 1732) shown in fig.11(a). This fine
sounding violin was played by the distinguished soloist Joshua Bell in his early recordings and
for the film score of The Red Violin.

In the earlier part of the 19th century, the French violin maker Vuillaume served his ap-
prenticeship with Chanot, making guitar-shaped violins with flat plates, fig.11(b), aimed at the
rapidly developing mass market for inexpensive instruments. In blind listening tests by French
academicians and distinguished musicians, the sound of such a violin was considered the equal
of fine Cremonese instruments!

Subsequently, Felix Savart collaborated with Vuillaume in a detailed investigation of the
acoustics of the violin [2]. He adopted a very modern approach by investigating a highly sim-
plified structure, using a trapezoidal-shaped instrument with flat plates (1819), shown in fig.
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Fig. 11. Guitar-shaped violins by Stradivarius and Chanot.

Fig. 12. (a) Savart violin 1823, (b) Chladni patterns using sand, and (c) finite element analysis of the
lowest order modes of a trapezoidal plate with slots.

12(a), to elucidate the basic physics. However, instead of an offset soundpost, he used a solid
arch extending from the side ribs and pressing centrally on the top plate.

Savart made extensive use of Chladni patterns to investigate the vibrational modes of in-
dividual violin plates (including those of valuable Cremonese instruments) and the trapezoidal
violin, exciting the plates at the edges by a bow and using sand to form the nodal patterns.
Examples of Chladni patterns for the trapezoidal violin are shown in fig. 12(b). All the illus-
trated modes are asymmetric, as expected from the construction of the violin with its centrally
placed support rather than an offset soundpost. For comparison, fig. 12(c) illustrates the lowest-
order symmetric and asymmetric modes computed for a slotted trapezoidal flat plate with fixed
edges, but no additional soundpost constraint. The asymmetric modes are very similar to those
expected from Savart’s observations.

In blind-listening tests, the sound of the trapezoidal violin was also considered equal to that
of Stradivari and Guarneri instruments. Such tests, although no more reliable than many such
modern day comparisons, showed that the detailed shape of the violin cannot be particularly
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Fig. 13. Energy transfer for a trapezoidal violin with slots, excited by equal and opposite forces at
feet of bridge, as a function of soundpost offset from central axis (0, 5,10 and 15 mm), for a couple
exerted by centrally placed bridge. The modal terns illustrate the effect of offsetting the soundpost by
15 mm from its central position.

important in determining its tonal quality. This justifies our approach of using simple models
to elucidate the essential physics.

5.2 A model calculation

In our example, we use the COMSOL FEA shell package to illustrate the vibrational modes
of the shell of a trapezoidal violin, with slots to mimic the effect of the f -holes, but with a
conventional offset soundpost between the plates rather than the arched structure used by
Savart. The flat trapezoidal plates had length 30 cm, and widths of 20 cm and 10 cm at the
bottom and top with ribs 3 cm high. All plates were of uniform density ρ = 500 kg m−3,
with front plate thicknesses 3 mm, back plate 4 mm and side walls 1 mm. For simplicity, the
elastic constants were taken to be isotropic with E = 1010 Pa and damping terms equivalent
to frequency independent Q-values for all modes of 50. The structure was supported by three
orthogonal weak springs at the four corners of the lower plate.

The shell structure was excited by a sinusoidal force Feiωt at the top of the bridge, to
mimic the force from the partials of the bowed string. At low frequencies, the bridge can be
considered as a rigid body, so that the “bowing” force can be reproduced by an equal force
parallel to the top plate, with additional equal and opposite perpendicular forces exerted by
the two bridge feet symmetrically placed across the central axis. The bowing force parallel to
the top plate will tend to rotate the shell of the instrument about its longitudinal axis. As
the rotational inertia of the instrument is large, such vibrations will be small and will decrease
with increasing frequency. Acoustically, the most important forces are the perpendicular forces
transmitted via the two feet of the bridge, which will excite the shell modes via the induced
motion of the island region between the f -holes and the soundpost connecting to the back plate.

Figure 13 shows the calculated energy transfer per unit force at the bridge to the vibrational
modes, as a function of frequency and position of the soundpost offset from the central axis
by 0, 5, 10, and 15 mm. Peaks in the energy dissipation curves, plotted on a logarithmic scale,
indicate the frequencies of the damped normal modes. Below the graph, the calculated modal
patterns are shown for prominent peaks for the soundpost, first in a central position and then
offset by 15 mm.
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For a centrally placed soundpost, only asymmetric modes of the shell structure can be
excited - as in Savart’s measurements. In contrast, on offsetting the soundpost, both asymmetric
and symmetric modes are excited, with an increase in energy transfer at the resonant frequency
of the lowest order symmetric modes approaching 60 dB. The increase in radiated sound at low
frequencies would be even greater, since the symmetric modes are much more efficient sources
of acoustic radiation.

It is also interesting to note the relatively small effect that the soundpost position has on
the modal frequencies, despite the dramatic changes in coupling to the bridge. Above 1kHz the
amplitudes of both the symmetric and asymmetric modes are strongly dependent on soundpost
position, with offsetting the soundpost increasing the energy transfer in some frequency ranges
but decreasing it in others. Such calculations illustrate the very strong dependence of overall
timbre of an instrument for large-scale changes in position of the soundpost. The same would
almost certainly be true for conventionally shaped violins.

In practice, the skilled instrument maker and instrument restorer takes great care in ad-
justing the position of the soundpost, often to within a fraction of a mm, to optimise the tone
quality of a valuable instrument. Such attention to the violin’s set-up and associated tonal
properties almost certainly contributes to the perceived superior sound of valuable Cremonese
instruments over many modern instruments, which rarely have the advantage of such skillful
optimisation.

6 Sound radiation and tonal quality

We now briefly consider the age-old problem of correlating the perceived tone quality of violins
with their acoustic properties. As a physicist, one has to believe that some kind of correlation
must exist. In contrast, many dealers, makers and players believe that the love and affection of
a great player for a violin and the way it has been played in recent years are just as important in
determining the quality of sound. In reality, it is almost certainly the way that the player’s au-
ditory responses and technique adjust to the acoustical properties of the violin, which accounts
for the apparent improvement in tone with playing that is often perceived!

When the acoustic wavelength is larger than the dimensions of the body of the instrument
– typically below about 1 kHz – the radiated sound can be considered as a superposition
of point monopole, dipole and quadrupole sources, with radiation efficiencies varying with
frequency as w2, w4, w6 respectively (see Hill and Richardson [34] for a multi-pole analysis
of guitar sounds). In this regime, most of the sound is therefore radiated isotropically by the
monopole component, with the dipole and quadrupole components increasing in strength. Above
a cross-over frequency of around 1-2 kHz, the acoustic wavelength becomes shorter than the
wavelength of the dispersive flexural waves in the plates, so that interference between the
sound radiated from adjacent regions becomes important. The individual plates then act as
baffled radiators, with the sound becoming increasingly directional (Weinreich [46]), and energy
radiated proportional to the square of the velocity displacements integrated over the plate
surfaces.

In formal terms, the sound pressure at a distance r and polar coordinates (θ, φ) for a
sinusoidal force per unit sinusoidal force at the bridge at the bridge can be expressed as

p(r, θ, φ) =
∑

n

Rn(r, θ, φ)cn

mn(ω2
n − ω2 − iωωn/Qn)

(13)

where ωn, mn and Qn are the frequencies, effective masses at the bridge and Q-values of the
normal modes of the complete violin structure (including the bridge, fingerboard, neck, etc) and,
strictly speaking, the coupled modes of the performance space into which the violin radiates.
Rn(r, θ, φ) represents the directionality and positional dependence of the radiated sound and cn

represents the coupling strength of the structural modes to the radiation field. Rn(r, θ, φ) will
vary markedly with both distance and frequency. The intensity of the sound experienced by
the player will be dominated by direct sound from the violin, while the sound experienced by



24 Will be inserted by the editor

the listener will be strongly coloured by the acoustics of the performance space. This is almost
certainly why a player finds it far easier to differentiate between the quality of different violins
than the listener at a distance. The sounds they hear are very different, and the more resonant
the acoustic, the larger such differences become. When played in a resonant acoustic, almost
any violin played by a good player appears to have a fine sound - rather like one’s own singing
voice in a marble-walled bathroom.

Another way to consider the radiated sound is to consider the response in the time-domain.
Applying a sharp tap or impulse to the bridge is equivalent to excitation by a wide-band
frequency source. The resulting transient response is simply the Fourier transform of the spectral
response – and vice versa. This will also be true for the sound heard by the listener in the
performance space, which will include the additional reflections and reverberant decay from
the surrounding reflecting walls, which can be significantly louder than the direct sound from
the violin. Once the impulse response p(t) is known for a particular position of the violin and
listener in the performance space, the sound pressure P (t) for an arbitrary force f(t) at the
point of string support on the bridge can be determined from the convolution of f(t) with p(t),

P (t) =
∫ t

−∞
f(t′)p(t− t′)dt′ (14)

If the sound is monitored close to the violin, the impulse response will be dominated by the
excited modes of the violin decaying with a typical exponential time constant ∼ 30-50 ms,
though excited string modes ring for much longer. If the sound is monitored at a distance from
the violin, the transient impulse response will include all the echoes and reverberation from
the performance space. For a typical Sabine 60 dB decay-time of 2 seconds, the decay of the
impulse response from the violin will be increased to well over 100 ms - increasing the apparent
ringing quality of the violin, which is one of the attributes of the sound of a violin that appears
to be correlated with its intrinsic quality. This is particularly true when the violin is played
with vibrato (frequency modulation), due to the interference of the immediately received sound
with delayed reflections at a different frequency, which leads to more complex and aurally more
interesting waveforms [50,18].

The inherent ringing quality of a violin will clearly be related to the damping and Q-values
of the excited structural modes, which could be just as important as their specific frequencies in
determining the quality of a violin. This is consistent with the way that violin makers generally
choose wood with a strong ringing quality (low damping). However, the distinguished American
violin maker, Joseph Curtin, has recently observed that, to the contrary, the plates of fine Italian
violins often appear to be rather heavily damped [51]. This might also be because Cremonese
plates often tend to be somewhat lighter than those of many modern makers, the damping
being a function of both vibrating mass and the inherent losses. This is clearly an area for more
research.

7 Summary

In this article we have emphasised the importance of the spatial distribution of the modal
wavefunctions in determining the coupling of the string vibrations to the body of the instrument
and ultimately to the radiated sound. We have highlighted the continuing role of Chladni
pattern measurements as an aid to understanding the physics of the violin and to makers in
optimising the acoustical properties of the plates during the carving stage. Modern techniques
like laser interference holography, finite element analysis and modal analysis provide rather more
information about the wave functions than Chladni measurements. This has been demonstrated
by illustrative FEA calculations on model guitar- and trapezoidal-shaped plates, which enable
us to assess the relative contribution to the overall acoustical properties of the bridge, f -holes,
soundpost, bass bar, arching and anisotropy. A finite element analysis of the shell modes of a
trapezoidal shaped violin demonstrates the importance of the offset soundpost in exciting both
symmetric and asymmetric modes of the shell, which has a dramatic effect on the radiated
sound. We have concluded with a brief introduction to the problem of reliable assessment of
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violin quality and have highlighted the influence of the room acoustics, in addition to the
inherent damping properties of the violin, resulting in the difference in sound of a violin heard
by the player and the listener.
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