BAND SAW BLADES

INTELLIGENT SOLUTIONS MADE BY

PRECISION FROM THE WORD GO.

Bandsaw cutting has evolved into a sophisticated high-technology. J.N. Eberle & Cie. GmbH rises to the challenge thanks to its highly skilled team, modern and reliable manufacturing facilities and many years of experience. The combination of experience and specialized technical knowledge ensures high performance blades that are perfectly adapted to meet your specific requirements.

Quality is not a matter of chance, but the result of intensive groundwork. High quality strip steel is the prerequisite for precision band saw blades. Right from the start, Eberle sets the highest standards of quality. We roll our strip steel and have perfected the welding procedure to combine the backing material and HSS-wire.

We can therefore guarantee that our customers will receive consistent, reliable performance from Eberle products – a standard as yet unequalled worldwide. Our corporate policy: top quality and total customer satisfaction

FOR OUR CUSTOMERS, THIS MEANS IN PARTICULAR:

- > consistent reliability and performance
- > precise cuts
- > outstanding cutting results

PRODUCTS

01 | **PREMIUM LINE**

Carbide-tipped blades

CT-flex 3000	6
CT-flex 4000	_ /
Bimetal blades	
nanoflex® Black	_ 8
nanoflex [®] Gold	_ 9
duoflex® GT	_ 10
duoflex® PM	_ 11

TECHNICAL DATA

Band saw blade geometry,	
Tooth pitch, tooth set	22
Tooth form	23
Toothing recommendations	24

02 **PROFESSIONAL LINE**

Carbide-tipped blades		Bimetal blades	
CT-flex 3000	6	duoflex® M51	15
CT-flex 4000	_ 7	duoflex® M42	16
		duoflex® PT	17
Bimetal blades		duoflex® Matrix2	18
nanoflex® Black	8		
nanoflex® Gold	9	Tool steel blades	
duoflex® GT	_ 10	optimaflex	19
duoflex® PM	_ 11		
duoflex® SP	12	Customer service	20

Recommendations for blade use	25
Microstructure, formula	26
Material groups and standards	27

PREMIUM LINE

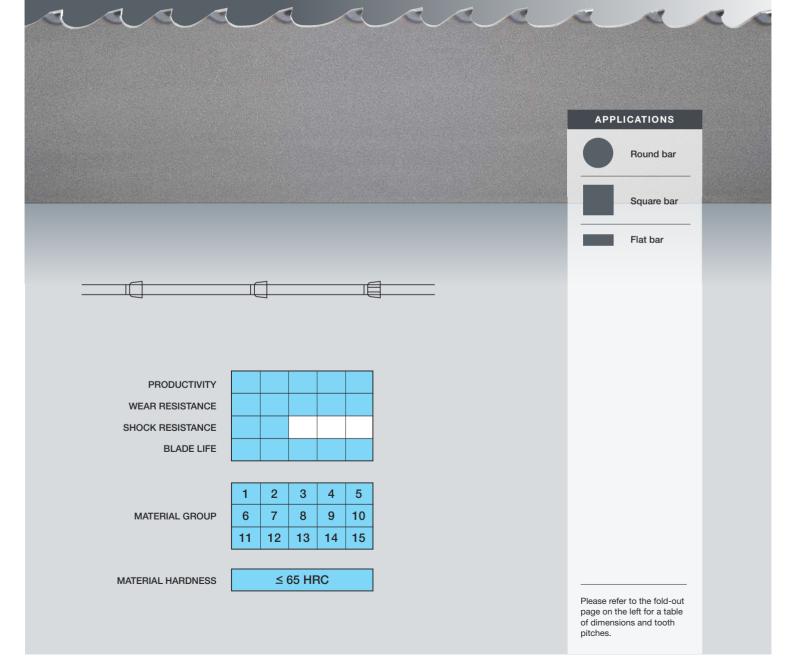
SUCCESS: DYNAMICS AND PRECISION.

CARBIDE

Eberle PREMIUM band saw blades are characterized by their extreme hardness and durability. They are particularly engineered to saw hard-to-cut materials such as titanium alloys, Inconel or nickel-based alloys. Our PREMIUM band saw blades will enable you to vastly improve cutting performance. Together with Eberle's established backing material, both our carbide-tipped products, CT-flex 3000 and CT-flex 4000, set an absolute benchmark in bandsaw cutting technology.

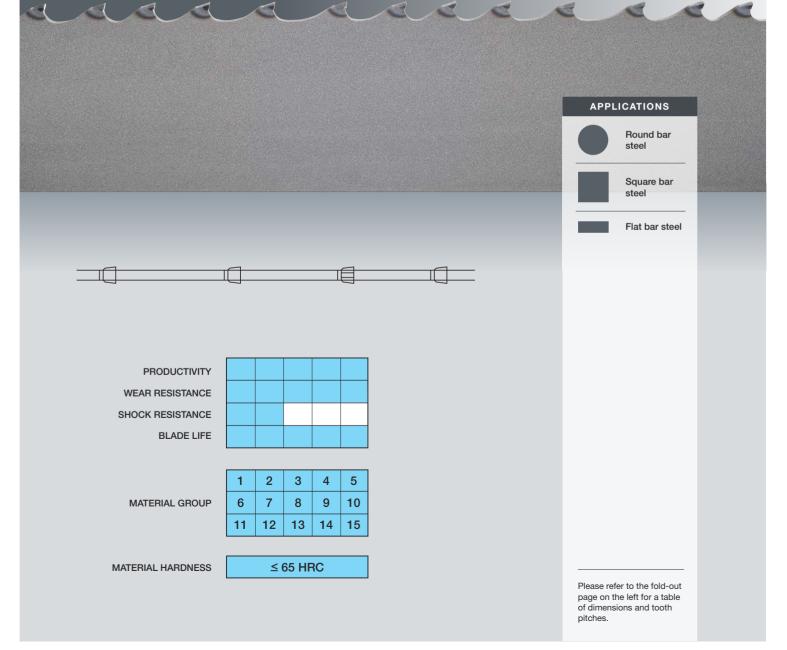
COATED BIMETAL

nanoflex[®] bimetal band saw blades undergo a special edge treatment which, combined with their coating, results in an especially hard, highly-efficient blade. In comparison to uncoated saw blades, productivity can be significantly increased as nanoflex[®] permits a faster feed rate while blade life remains the same.

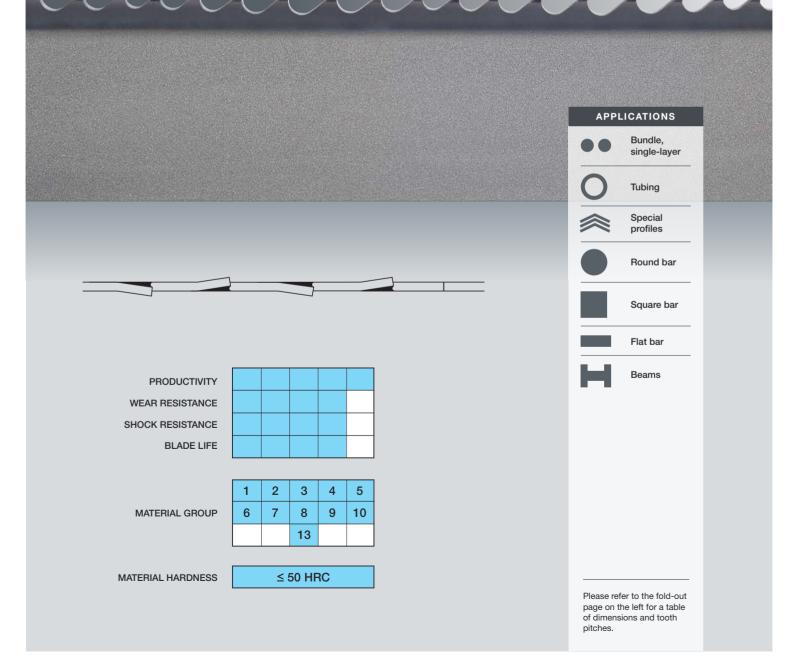

01 | **PREMIUM LINE**

dimensions in			te	eth per inch (tpi)			dimensions mm
			CT-flex 3000	carbide-ti	oped blades			
	.75/1.25	1/1.3	1.4/2	2	2/3	3		
1 x .035					TR			27 x 0,90
1 1/4 x .042				TR	TR	TR		34 x 1,10
1 1/2 x .050			TR	TR	TR	TR		41 x 1,30
2 x .063		TR	TR	TR				54 x 1,60
2 5/8 x .063	TR		TR					67 x 1,60
3 1/8 x .063	TR							80 x 1,60
			CT-flex 4000	carbide-ti	oped blades			
	.75/1.25	1/1.3	1.4/2	2	2/3	3	3/4	
3/4 x .035						TR	TR	20 x 0,90
1 x .035					TR	TR	TR	27 x 0,90
1 1/4 x .042				TR	TR	TR	TR/TRN	34 x 1,10
1 1/2 x .050			TR	TR	TR	TR	TR/TRN	41 x 1,30
2 x .063		TR	TR	TR	TR			54 x 1,60
2 5/8 x .063	TR		TR					67 x 1,60
3 1/8 x .063	TR							80 x 1,60
			nanoflex [®] Blac	ck / Gold b	imetal blades			
		.75/1.25	1/1.4	1.4/2	2/3	3/4		
1 1/2 x .050				DCS	DCS	DCS	1	41 x 1,30
2 x .063			DCS	DCS	DCS	DCS		54 x 1,60
2 5/8 x .063		DCS	DCS	DCS				67 x 1,60
3 1/8 x .063		DCS	DCS	DCS				80 x 1,60
			duoflex∘	GT bimeta	l blades			
	_	.75/1.25	1/1.3	1.4/2			1	
2 x .063		DCS	DCS	DCS	1		1	54 x 1,60
2 5/8 x .063			DCS				1	67 x 1,60
3 1/8 x .063			DCS	DCS				80 x 1,60
		I					1	
	_		duoflex∘		l blades	_	_	
		.75/1.25	1/1.3	1.4/2	2/3			
1 1/2 x .050				DCS	DCS			41 x 1,30
2 x .063		DCS	DCS	DCS	DCS			54 x 1,60
2 5/8 x .063		DCS	DCS					67 x 1,60
3 1/8 x .063		DCS	DCS	 				80 x 1,60
			duoflex∘	SP bimeta	l blades			
	.75/1.25	1/1.3	1.4/2	2/3	3/4		I	
1 x .035					CSP			27 x 0,90
1 1/4 x .042				CSP	CSP			34 x 1,10
1 1/2 x .050			CSP	CSP	CSP			41 x 1,30
2 x .063		CSP	CSP	CSP				54 x 1,60
2 5/8 x .063	CSP	CSP	CSP	CSP				67 x 1,60
3 1/8 x .063	CSP	CSP						80 x 1,60

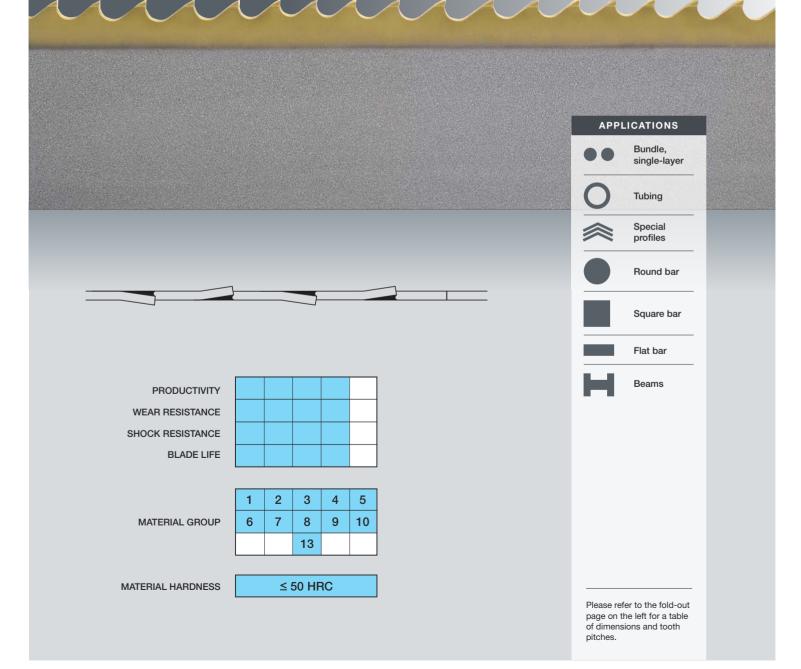
For an explanation of TR, TRN, DCS and CSP, please refer to page 22.


CT-flex 3000

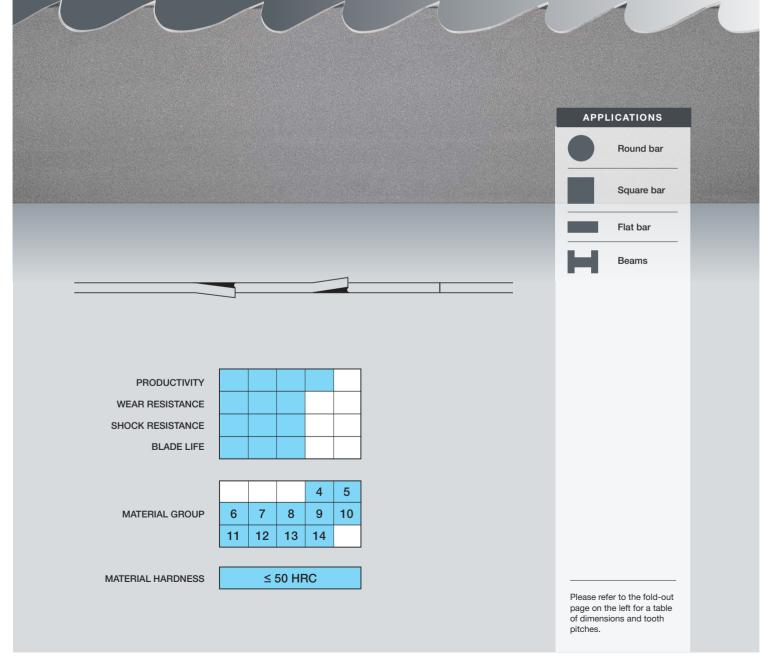
The carbide-tipped blades with CT3 geometry are especially suited to sawing hard-to-cut materials such as titanium alloys, Inconel or nickel-based alloys. Moreover, in comparison to bimetal, a considerable improvement in performance is evident. Combined with our reliable 4% chromium backing material, this sophisticated blade attains the top-quality standard of the premium line.


CT-flex 4000

The carbide-tipped blades with CT4 geometry cut a variety of materials with low machinability including Titanium alloys, Inconel, and nickel-based alloys. Additionally, the range extends to cutting Aluminum and other non-ferrous metal applications where short cycle times are required. The teeth are engineered to divide the cutting area over several cutting teeth, so the blade runs extremely smoothly.


nanoflex[®] Black

The high degree of coating hardness and red hardness of nanoflex[®] Black coated with TiAIN, combined with the shock resistance of bimetal, results in an extremely efficient, versatile band saw blade. The teeth are honed before coating, means breaking-in of the blades can be omitted.


nanoflex[®] Gold

nanoflex[®] Gold is coated with TiN. Its high coating hardness combined with the very tough bimetal results in a very efficient multi-functional saw blade. Breaking-in of the blades can be omitted, which means a considerable increase in productivity.

duoflex[®] GT

The bimetal blade duoflex[®] GT is designed to cut large to very large work pieces. Due to its specially ground toothing, this blade is characterized by long blade life and extremely clean cutting surface.

duoflex[®] PM

The special composition of HSS wire manufactured by powder metallurgy gives duoflex® PM its high wear resistance and enhanced cutting performance when compared to other bimetal blades.

BLADE LIFE			

7

12

8

13

≤ 50 HRC

9

14

10

6

11

MATERIAL GROUP

PRO

F

WEAR RE SHOCK RE

MATERIAL HARDNESS

Please refer to the fold-out page on the left for a table of dimensions and tooth pitches.

11

duoflex[®] SP

The variable positive tooth geometry of duoflex[®] SP reduces cutting force and heat generated in the cut. This blade is especially suited to cutting austenitic steels as well as nickel-based alloys.

PRODUCTIVITY		
VEAR RESISTANCE		
IOCK RESISTANCE		
BLADE LIFE		
		4

6

11

MATERIAL GROUP

v s⊦

MATERIAL HARDNESS

 4
 5

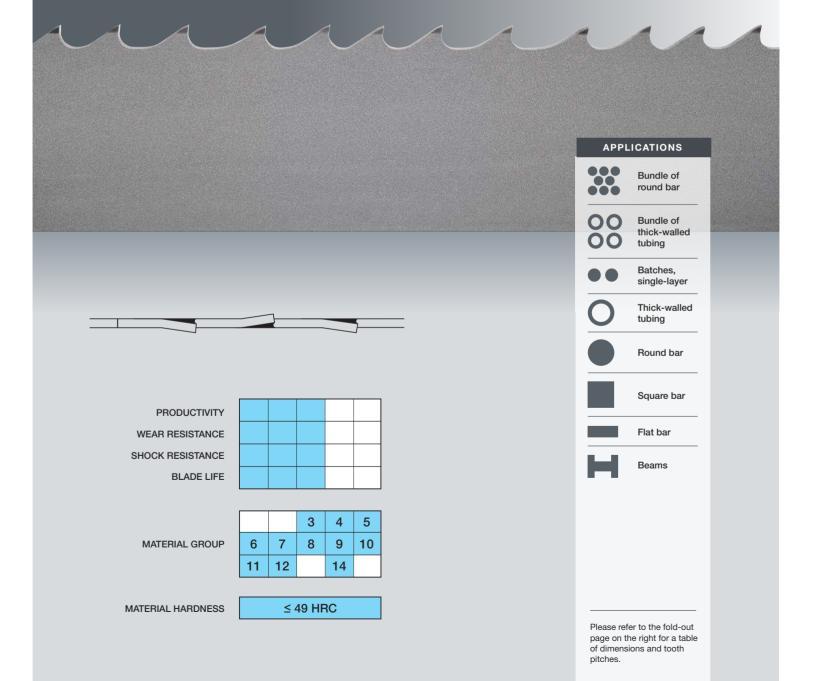
 7
 8
 9
 10

 12
 14
 ✓

Please refer to the fold-out page on the left for a table of dimensions and tooth pitches.

SUCCESS: ENDURANCE AND POWER.

Our established PROFESSIONAL LINE is characterized by its high versatility with regard to application. We are constantly optimizing our standard of quality by investing in the process chain and in new production techniques. When using these quality blades for standard applications, excellent cutting performance is achieved. A range of special tooth geometry and extremely symmetrical tooth sets are the major reason for its top performance in a wide range of applications.


02 | **PROFESSIONAL LINE**

dimensions in								te	eeth per	inch (t	pi)								dimensions mm
<i>duoflex</i> ∘ M51 │ bimetal band saw blades																			
		_	1.2	25	.75/	1.25	1/	/1.3	1.4	1/2	2.	/3	3/	4	4.	/6			
1 x 0.35									1		D(CS	DC	s	C	s			27 x 0,90
1 1/4 x 0.42											D(CS	DC	S	C	S			34 x 1,10
1 1/2 x 0.50											D(CS	DC	S					41 x 1,30
2 x 0.63							D	CS	D(CS	D(CS	DC	S					54 x 1,60
2 5/8 x 0.63			DC	S	D(CS	D	CS	D(CS	D(CS							67 x 1,60
3 1/8 x 0.63			DC	S	D(CS	D	CS	D(CS	D0	CS							80 x 1,60
						du	oflex∘	M42	bime	etal ba	nd saw	/ blade	es						
	1.25	2	3	4	6	8	10	14	.75/ 1.25	1/1.3	1.4/2	2/3	3/4	4/6	5/8	6/10	8/12	10/14	
1/4 x .035				CW	CW		N	N										N	6 x 0,90
3/8 x .035				CW	CW		N	N										N	10 x 0,90
1/2 x .025					CW		N	N										N	13 x 0,65
1/2 x .035			CW	CW	CW	Ν	N	N									N	N	13 x 0,90
3/4 x .035			CS	CS	N/CS	Ν	N	N					<u> </u>	N/CS	CS	N	N	N	20 x 0,90
1 x .035			DCS	CS	N/CS	Ν	N	N				DCS	N/DCS		N/CS	N	N	N	27 x 0,90
1 1/4 x .042		DCS	DCS	CS	CS							DCS	N/DCS	N/CS DCS	N/CS	N	N		34 x 1,10
1 1/2 x .050		DCS	DCS	CS	CS						DCS	DCS	N/DCS	N/CS DCS	N/CS				41 x 1,30
2 x .050												DCS	DCS	CS					54 x 1,30
2 x .063	DCS	DCS	DCS							DCS	DCS	DCS	DCS	CS					54 x 1,60
2 5/8 x .063	DCS	DCS							DCS	DCS	DCS	DCS							67 x 1,60
3 1/8 x .063	DCS								DCS	DCS	DCS	DCS							80 x 1,60
						dı	uoflex	PT	bime	tal ban	d saw	blade	s						
				2	2/3			3	3/4			4	/6			5	/8		
1 x .035				C	ST			(CST			C	ST			C	ST		27 x 0,90
1 1/4 x .042				C	ST			(CST			C	ST			C	ST		34 x 1,10
1 1/2 x .050				C	ST			(CST			C	ST			C	ST		41 x 1,30
2 x .063				C	ST			(CST			C	ST						54 x 1,60
	duoflex Matrix 2 bimetal band saw blades																		
		2/3			3/4			4/6			5/8			6/10			8/12		
1 x .035					DCS			CS			Ν			Ν			Ν		27 x 0,90
1 1/4 x .042		DCS			DCS			CS			Ν								34 x 1,10
						op	otimaf	lex	tool ste	el bar	nd saw	blade	S						
					6		8		10	1	4	1	18						
1/4 x .025				(CS		N		N	1	V		N						6 x 0,65
5/16 x .025				(CS		N		N	1	N								8 x 0,65
3/8 x .025				(CS		N		N	1	N								10 x 0,65
1/2 x .025				(CS				Ν	1	N								13 x .065
5/8 x .032					CS														16 x 0,80
3/4 x .032					CS		N		N	<u> </u>				<u> </u>		<u> </u>		<u> </u>	20 x 0,80
1 x .035				(CS				N	1	N								25 x 0,90

Please refer to page 22 for an explanation of DCS, CS, CST, CW and N.

duoflex[®] M51

duoflex[®] M51 is engineered for use in heavy cutting applications. The cutting performance of the high speed steel teeth is substantially increased through alloying elements such as Cobalt and Tungsten.

duoflex[®] M42

duoflex[®] M42 is a high-performance, multi-functional bimetal band saw blade that is characterized by its high wear resistance and long blade life. The blade is suited to cutting almost all steel grades in workshops and serial production.

PRODUCTIVITY WEAR RESISTANCE SHOCK RESISTANCE BLADE LIFE

3

8

≤ 44 HRC

5

10

4

9

14

2


7

1

6

MATERIAL GROUP

MATERIAL HARDNESS

Please refer to the fold-out page on the right for a table of dimensions and tooth pitches.

duoflex[®] PT

duoflex[®] PT stands for highest cutting performance and blade life in interrupted cuts. Its special tooth geometry significantly reduces vibration and tooth breakage in applications, such as pipes and tubes.

1

6

2

7

PRODUCTIVITY WEAR RESISTANCE SHOCK RESISTANCE BLADE LIFE

3

8

≤ 44 HRC

4

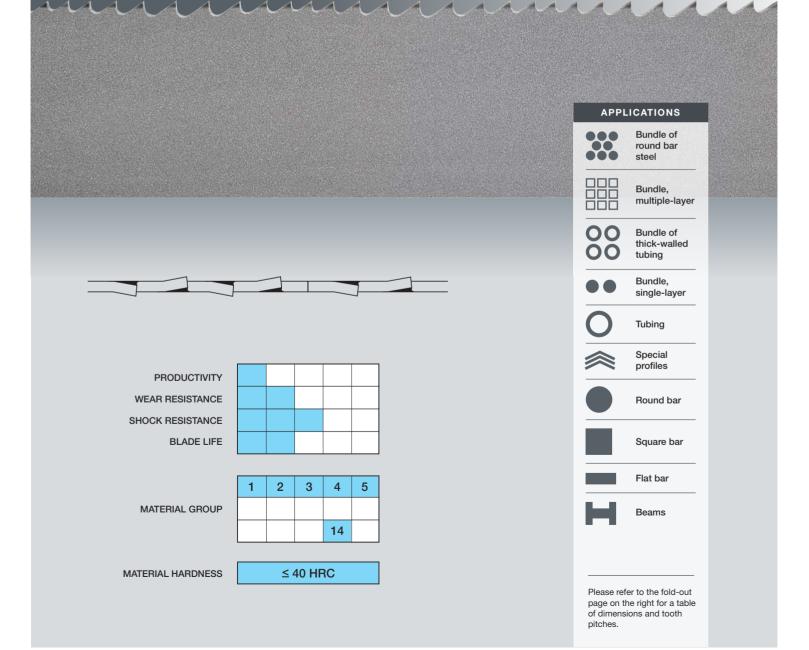
9

14

5

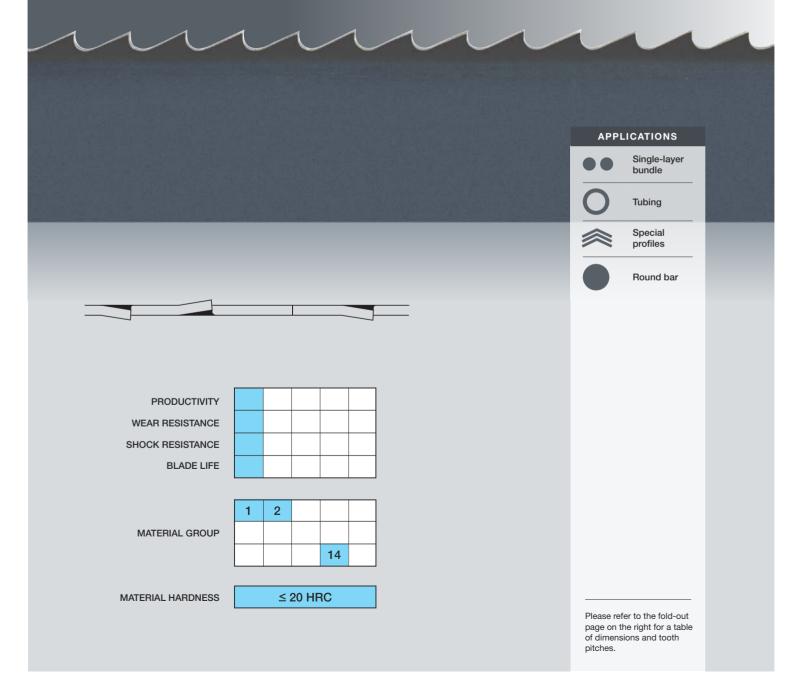
10

MATERIAL GROUP


MATERIAL HARDNESS

APPL	ICATIONS
	Bundle of round bar steel
	Bundle, multiple-layer
00	Bundle of thick-walled tubing
••	Bundle, single-layer
0	Tubing
\approx	Special profiles
	Beams

Please refer to the fold-out page on the right for a table of dimensions and tooth pitches.


duoflex[®] Matrix2

Tooth geometry and backing material account for the saw blade's universal application in steel and low to medium alloys as well as on non-ferrous materials in the workshop.

optimaflex

The optimaflex band saw blade is made of alloyed tool steel. It is ideal for basic sawing jobs on low-alloy materials, non-ferrous metals and plastics.

CUSTOMER SERVICE – YOUR BENEFIT.

Put your trust in our experience

Our international distribution network is based on longstanding partnerships with top-notch sawing specialists who help solve your specific questions regarding various applications.

We are always available to help you select the optimum blade and cutting parameter. To assist you better please provide the following data:

- > band saw machine, blade size
- > material type and grade
- > size and shape of work piece
- > type of cut (single, piece or bundle)

To place an **order**, please contact either your regional Eberle Distribution Center (EDC), local distributor/salesman or get in touch with our headquarters in Augsburg.

Training

We offer band saw blade training to your company upon request. Just contact your Authorized Eberle Distributor or get in touch with our headquarters.

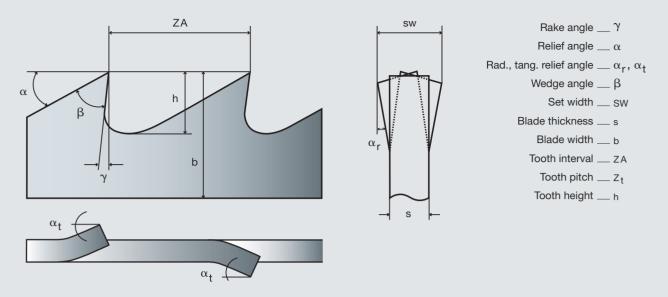
Technical advice

Should you have any questions about band saw applications or ways to optimize sawing processes, Eberle's expert team will provide competent support.

Tel.:	+49 (821) 5212-220
Fax:	+49 (821) 5212-300
Email:	support@eberle-augsburg.de

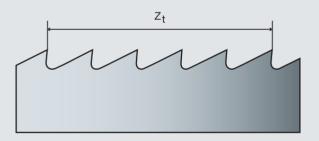
We look forward to your call.

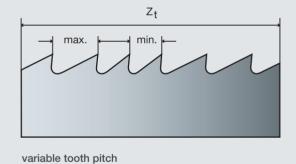
Logistics


Reliability and flexibility are the key objectives of our logistics services. Experienced partners handle the transport logistics competently and rapidly between our Augsburg production site and customers' premises. Our AEO-Certification simplifies customs clearance at airand seaports since we are an Authorized Economic Operator. For our customers, this certification saves valuable time.

TECHNICAL DATA

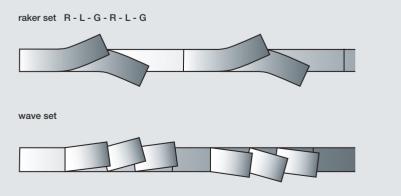
SUCCESS: PERFORMANCE AND EXCELLENCE.

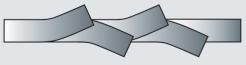

We continually challenge ourselves to produce and develop high performance band saw blades. Our experience has been crucial to a first-class product. To make sure our customers get the best possible performance, we quality inspect our products during the development and manufacturing process. We refuse to deliver any of our tools before intensive quality checks are conducted. State of the art quality assurance methods support us, to ensure this consistent high level – from the word go.


BAND SAW BLADE GEOMETRY

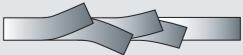
тоотн рітсн

Tooth pitch Zt (tpi) describes the number of teeth per inch (1 inch = 25.4 mm). With band saw blades, a distinction is drawn between constant and variable tooth pitch.




constant tooth pitch

TOOTH SET


During the setting process the teeth will be bowed side ways to free the blade from chip load. Depending on the application, we offer the following set patterns:

constant set R - L - R - L - G

variable set R+-L+-R-L-G

Special sets and special set widths are available upon request.

TOOTH FORMS

N-TOOTH | negative rake angle

- > short-chip materials
- > small work pieces

CS-TOOTH | positive rake angle

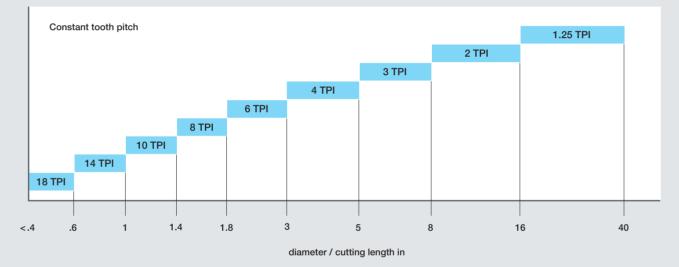
- > long-chip, tough materials
- > universal application

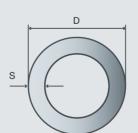
DCS-TOOTH | positive rake angle > heavy duty, high alloyed work pieces > large cross-sections

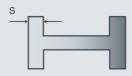

CSP-TOOTH | positive rake angle > austenitic materials > nickel-based alloys

CST-TOOTH | positive rake angle > short-chip materials > profiles, tubes, bundles

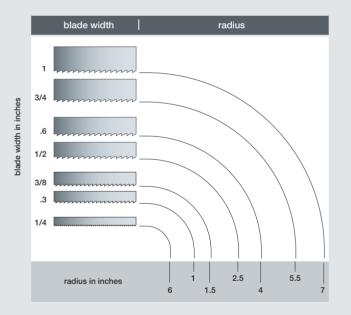



CW-TOOTH | positive rake angle > low-alloy materials, Aluminum > mold construction, contours


TR/TRN-TOOTH | variable rake angle > heavy duty work pieces > high cutting performance


CUTTING RECOMMENDATIONS FOR SOLID MATERIAL

CUTTING RECOMMENDATIONS FOR TUBES AND PROFILES


D in	.75	1.5	2.4	3	4	6	8	12	16		20		> 28
S in						teet	h per inc	h					
.08	14	14	14	14	10/14	10/14	10/14	10/14	4 8/12	2	8/12		6/10
.12	14 1	10/14	10/14	8/12	8/12	8/12	6/10	6/10	6/10)	6/10		6/10
.15	14 1	10/14	10/14	8/12	8/12	6/10	6/10	5/8	5/8		4/6		4/6
.20	14 1	10/14	10/14	8/12	6/10	6/10	5/8	4/6	4/6		4/6		4/6
.25	14 1	10/14	8/12	8/12	6/10	5/8	5/8	4/6	4/6		4/6		4/6
.3	14	8/12	6/10	6/10	6/10	5/8	5/8	4/6	4/6		4/6		4/6
.4		6/10	6/10	5/8	5/8	4/6	4/6	4/6	4/6		3/4		3/4
.5		6/10	5/8	4/6	4/6	4/6	4/6	3/4	3/4		3/4		3/4
.6				4/6	4/6	3/4	3/4	3/4	3/4		2/3		2/3
.75				4/6	4/6	3/4	3/4	3/4	3/4		2/3		2/3
1.2				3/4	3/4	3/4	2/3	2/3	2/3		2/3		1.4/2
2						2/3	2/3	2/3	2/3		1.4/2		1.4/2
3							2/3	1.4/2	1.4/2	2	1.4/2		1/1.3
4								1.4/2	1.4/2	2	1/1.3		.75/1.25
6										Ī	.75/1.25	Ι	.75/1.25
> 10										I	.75/1.25		.75/1.25

Setting the tension of band saw blades

Correct tension significantly affects the blade's cutting accuracy. When blades are manually tensioned in sawing machines, the tension should be checked after breaking-in and corrected where necessary. The Eberle tension meter can be used to set the optimum blade tension.

Contour sawing

The graph below depicts the optimum ratio between saw blade width and the radius to be cut. By adhering to this data, clamping or twisting of the blade can be avoided.

Band saw guides

Blade beam strength is responsible for accurate cuts. The closer the guides are to the materials being cut, the more accurate the cuts will be.

Blade break-in

By breaking-in the saw blade, it is possible to achieve optimum durability. With uncoated saw blades, Eberle recommends breaking-in at a 40% reduced feed rate. If vibration occurs during break-in, a slight reduction in cutting speed will increase cutting pressure to stabilize blade. Break-in should last approx. 15 minutes or cut a minimum of 100 sq/inches of material.

Chip formation

The shape and color of the chips provide information about cutting pressure and thermal load on the saw blade.

Very fine or pulverized chips indicate that cutting pressure is too low.

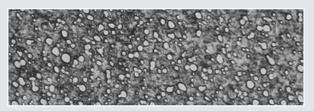
Thick, heavy or bluish chips signal overstressing of the saw blade.

Loosely coiled chips are a sign of ideal cutting conditions.

Cooling lubricant

With most metal materials, cooling lubricant is indispensable. With Aluminum and Aluminum alloys, it also helps keep the gullets free of chips and achieve improved cutting surfaces. No lubricant is necessary for cast iron, brass and some non-metallic materials such as plastics, graphite etc.

Safety information


To avoid injury, protective gloves, safety goggles and protective shoes should be worn when using band saw blades.

CARBIDE AND BIMETAL MICROSTRUCTURE

Carbide

Eberle uses carbide exclusively for its products in the carbide sector, which are characterized by their extreme shock and wear resistance. Sub-micrograin types with a homogeneous microstructure are used.

Bimetal M51

The heat treatment of the HSS and the backing material is crucial for the hardness and shock resistance of the band saw blades. The quality of Eberle band saw blades is largely due to the size, number and distribution of the carbides.

FEED RATE CALCULATION IN (LINEAR INCHES PER MINUTE)

- 1.) Determine Number of Teeth in 12" Section of Blade. (Note: Use Optimum Tooth Pitch Based on Effective Material Width)
- 2.) (Blade Speed For Material Grade & Width) X (Number of Teeth in 12") = Number of Teeth per Minute (Note: Band speed equals machinability. Determining proper speed relative to material hardness is crucial.)
- 3.) (Number of Teeth Per Minute) X (*Tooth Penetration .0002") = Feed Rate in Linear Inches Per Minute

* Determining Tooth Penetration								
Tooth Penetration Result		Result						
High Production		.0004" per tooth		Parts Per Hour & Poor Blade Life				
Good Production .0002"0003" per tooth Good Blade Life & Good Prod		Good Blade Life & Good Production						
Low Production		.0001" per tooth		Low Production & Poor Blade Life				

*Note:

Carbide blades can operate in .0002" - .0004" achieving good blade life and exceptional production.

NON-HEAT TREATED MATERIAL EXAMPLE:

Example Scenario 1: (4" Diameter) Material 4140 - 3/4 Tooth

- 1.) 3/4 Tooth 12" Section has 40 Teeth
- 2.) Blade Speed 225 SFM X 40 Teeth = 9000 Number of Teeth per Minute
- 3.) 9000 T/Min. X .0002" Tooth Penetration = 1.8 Linear Inches on Feed Rate Control

HEAT TREATED MATERIAL EXAMPLE:

Note: Refer to the following chart if material is heat treated.

	For	Heat	Treated Material	s:		
Redu	ice Band Speed	T	Rockwell C	1	Brinell	
	10%	1	20-24		226-247	
	20%	1	24-28		247-271	*See Example Scenario #2
	30%		28-32		271-301	Scenario #2
	40%		32-38		301-353	
	50%		38+		353+	

Example Scenario 2: (4" Diameter) Material 4140 - 3/4 Tooth

1.) 3/4 Tooth - 12" Section has 40 Teeth

2.) Blade Speed 135 SFM X 40 Teeth = 5400 Number of Teeth per Minute

3.) 5400 T/Min. X .0002" Tooth Penetration = 1.08 Linear Inches on Feed Rate Control

MATERIAL GROUPS AND STANDARDS

MATERIAL GROUP	MATERIALS	SYMBOL	MATERIAL- NO.	USA AISI / SAE	JAPAN JIS	RUSSIA GOST	FRANCE AFNOR
Group 1	free cutting steel,	10 S 20	1.0721	1108	-	-	10 F 2
	structural steel,	35 S 20	1.0726	1140	-	-	35 MF 6
	deep drawing steel	St 37	1.0037	1015	STKM 12A; C	Ст3сп	E 24-2
		St40	1.0040			-	
		C15	1.0401	1016	S 15 C	15	C 18
Group 2	structural steel,	St 50	1.0050	A 572 (50)	SS 490	Ст5пс	A 50-2
	tempered steel	St 60	1.0060	A 572 (65)	SM 570	Ст6пс	A 60-2
		C35	1.0501	1035	S 35 C	35	C35
		C45 14Mn4	1.0503	1045 1039	S 45 C	45 40Г	C45 40 M 5
		1 1410114	1.1157	1 1039		401	40 101 5
Group 3	tempered steel	42CrMo4	1.7225	4140	SCM 440 (H) (M)	38XMA	42 CrMo4
	case-hardened steel	41Cr4	1.7035	5140	SCr 440 (H) (M)	40X	41 Cr 4
		34CrNiMo6	1.6582	4340	SNCM 431	38X2H2MA	34 CrNiMo 6
		16MnCr5 50CrV4	1.7131	5115 6150	- SUP 10	18ΧΓ 50ΧΓΦΑ	16 MnCr 5 50 CrV 4
		500rV4	1.0159	0150	SUP 10		50 CrV 4
Group 4	tool-steel,	C125W	1.1663	W 112	SK 2	У13	
	ball bearing steel	75Cr1	1.2003	8670		9ХФ	
		100Cr6	1.3505	52100	SUJ 2 - SUJ4	ШХ15	100 Cr 6
		100CrMn6	1.3520	1		ШХ15СГ	
Group 5	high-speed steel	S6-5-2	1.3343	M 2	SKH 51	R6M5	HS6-5-2
		S2-10-1-8	1.3247	M 42	SKH 59	Р2М10К8-МП	HS2-9-1-8
		S10-4-3-10	1.3207	-	SKH 57	Р10М4Ф3К10-МП	HS10-4-3-10
		S18-1-2-5	1.3255	T4	SKH 3	P6M5K5	HS18-1-1-5
Group 6	cold working steel	X210Cr12	1.2080	D3	SKD 1	X12	X200 Cr12
		X155CrVMo12-1	1.2379	D2	SKD 11	Х12МФ	X160CrMoV12
		90MnCrV8	1.2842	02	-	9Г2Ф	90MnV8
		X165CrMoV12	1.2601	D5	STD 11	X12M	Z160CDU12
Group 7	nitriding steel,	55NiCrMoV6	1.2713	L6	SKT 4	I 5XHM	55NiCrMoV7
	high-alloy	34CrAl6	1.8504			_	
	tempered steel	40CrMnNiMo7	1.3211			-	
		X40CrMoV5 1	1.2344	H 13	SKD 61	4X5MΦ1C	Z40CDU5
		40CrMnNiMo	1.2738	P 20	-	_	
Group 8	corrosion and	X5CrNi18 10	1.3401	A 128 (A)	SCMn H 11	110Г13Л	Z 120 M 12
	acid-resistant steel	X6CrNiMoTi17 12 2	1.4571	316 Ti	SUS 316 Ti	10X17H13M2T	Z 6 CNDT 17-1
	(austenitic)	X46CiNiTi18 10	1.4541	321	SUS 321	06X18H10T	Z 6 CNT18-10
Group 9	corrosion and	X90CrMoV18	1.4112	440 B	1	20X17H2	
	acid-resistant steel	X35CrMo17	1.4122			-	
	(ferritic)	X110CrMo17	1.4126			95X18	
Group 10	heat-resistant steel	X2CrNiMoN22 5 3 X15CrNiSi25 4	1.4426	014	01111010	-	
		X15CrNiSi25 4 X15CrNiSi25 20	1.4821	314 310	SUH 310 SUH 310S	20X25H20C2 20X25H20C2	Z 15 CNS 25-2
		X12CrNi25 21	1.4854	310	301 3103	-	
					<u> </u>		
Group 11	nickel-based alloys	NiMo16Cr16Ti	2.4610	Hastelloy	-	-	
		NiCr20Co18Ti	2.4632	Nimonic	-	-	
		NiCr19Fe19Nb5Mo3	2.4668	Inconel 718	-	-	
Group 12	titanium alloys	Ti Grade 1	3.7025	CP Titanium	-	BT1-0	
		Ti-6Al-4V	3.7164	Ti-6Al-4V	-	BT6	
Group 13	cast iron	GG15	0.6015			C415	
	(lamellar, globular)	GG30	0.6030	A48-45B	-	СЧ30	
		GGG50	0.7050	65-45-12	-	-	
		GGG70	0.7070				
Group 14	brass, copper,						
	aluminum						
Group 15	aerated concrete,						
	graphite, composite						

J. N. Eberle & Cie. GmbH

Eberlestr. 28 D-86157 Augsburg Tel.: +49 (821) 5212-0 Fax: +49 (821) 5212-300 E-Mail: info@eberle-augsburg.de www.eberle-augsburg.de

Eberle America, Inc.

6311 Ronald Reagan Drive Suite 174 USA - 63667 Lake St. Louis, MO Tel.: +1 (314) 406 -1102 Fax: +1 (636) 240 - 6155 email: david@eberle-america.com www.eberle-america.com

Eberle France

20, Boulevard des Nations F-69960 Corbas Tel.: +33 (4) 78 96 07 53 Fax: +33 (4) 78 96 97 67 E-mail: contact@eberlefrance.fr www.eberle-france.com

Eberle Italia S.r.l.

Via Umbria 3/D I-20098 San Giuliano Milanese Tel.: +39 (02) 98 28 17 17 Fax: +39 (02) 98 28 01 78 E-mail: eberle@eberle.it www.eberle.it

A company of the group

GREIFFENBERGER AG

<u>Eberle</u>

J.N. EBERLE & CIE. GmbH, Augsburg, Germany Cold Rolling Mill and Saw Factory Quality products since 1836